Upload Inkscope-Captions-2B-0526 [ Video Understanding ] Demo (#1)
Browse files- Upload Inkscope-Captions-2B-0526 [ Video Understanding ] Demo (5babef05b1050b0b41d691e98386b558e46d9d47)
Inkscope-Captions-2B-0526-Video-Understanding/Inkscope-Captions-2B-0526-Video-Understanding.ipynb
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 1,
|
22 |
+
"metadata": {
|
23 |
+
"id": "XKQwuI75LWLA"
|
24 |
+
},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"%%capture\n",
|
28 |
+
"!pip install gradio transformers pillow opencv-python\n",
|
29 |
+
"!pip install accelerate torchvision torch huggingface_hub\n",
|
30 |
+
"!pip install hf_xet qwen-vl-utils gradio_client\n",
|
31 |
+
"!pip install transformers-stream-generator spaces"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"source": [
|
37 |
+
"import os\n",
|
38 |
+
"import uuid\n",
|
39 |
+
"import time\n",
|
40 |
+
"from threading import Thread\n",
|
41 |
+
"\n",
|
42 |
+
"import gradio as gr\n",
|
43 |
+
"import torch\n",
|
44 |
+
"import numpy as np\n",
|
45 |
+
"import cv2\n",
|
46 |
+
"from PIL import Image\n",
|
47 |
+
"from transformers import Qwen2VLForConditionalGeneration, AutoProcessor\n",
|
48 |
+
"\n",
|
49 |
+
"# Ensure CUDA if available\n",
|
50 |
+
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
51 |
+
"\n",
|
52 |
+
"# Load Callisto OCR3 multimodal model and processor\n",
|
53 |
+
"MODEL_ID = \"prithivMLmods/Inkscope-Captions-2B-0526\"\n",
|
54 |
+
"processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)\n",
|
55 |
+
"model = Qwen2VLForConditionalGeneration.from_pretrained(\n",
|
56 |
+
" MODEL_ID,\n",
|
57 |
+
" trust_remote_code=True,\n",
|
58 |
+
" torch_dtype=torch.float16\n",
|
59 |
+
").to(device).eval()\n",
|
60 |
+
"\n",
|
61 |
+
"# Constants\n",
|
62 |
+
"MAX_INPUT_TOKEN_LENGTH = 4096\n",
|
63 |
+
"\n",
|
64 |
+
"\n",
|
65 |
+
"def downsample_video(video_path: str, num_frames: int = 10):\n",
|
66 |
+
" \"\"\"\n",
|
67 |
+
" Extracts 'num_frames' evenly spaced frames from the video.\n",
|
68 |
+
" Returns a list of (PIL.Image, timestamp_seconds).\n",
|
69 |
+
" \"\"\"\n",
|
70 |
+
" vidcap = cv2.VideoCapture(video_path)\n",
|
71 |
+
" total = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
|
72 |
+
" fps = vidcap.get(cv2.CAP_PROP_FPS) or 1\n",
|
73 |
+
" indices = np.linspace(0, total - 1, num_frames, dtype=int)\n",
|
74 |
+
" frames = []\n",
|
75 |
+
" for idx in indices:\n",
|
76 |
+
" vidcap.set(cv2.CAP_PROP_POS_FRAMES, idx)\n",
|
77 |
+
" ret, frame = vidcap.read()\n",
|
78 |
+
" if not ret:\n",
|
79 |
+
" continue\n",
|
80 |
+
" frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
|
81 |
+
" pil = Image.fromarray(frame)\n",
|
82 |
+
" timestamp = round(idx / fps, 2)\n",
|
83 |
+
" frames.append((pil, timestamp))\n",
|
84 |
+
" vidcap.release()\n",
|
85 |
+
" return frames\n",
|
86 |
+
"\n",
|
87 |
+
"\n",
|
88 |
+
"def generate(video_file: str):\n",
|
89 |
+
" \"\"\"\n",
|
90 |
+
" Process the uploaded video through OCR and return concatenated output.\n",
|
91 |
+
" \"\"\"\n",
|
92 |
+
" # Step 1: extract frames\n",
|
93 |
+
" frames = downsample_video(video_file)\n",
|
94 |
+
"\n",
|
95 |
+
" # Step 2: build chat-like messages\n",
|
96 |
+
" messages = [\n",
|
97 |
+
" {\"role\": \"system\", \"content\": [{\"type\": \"text\", \"text\": \"You are a helpful assistant, for video understanding.\"}]},\n",
|
98 |
+
" {\"role\": \"user\", \"content\": [{\"type\": \"text\", \"text\": \"Please explain the content of the following video frames:\"}]\n",
|
99 |
+
" }\n",
|
100 |
+
" ]\n",
|
101 |
+
" for img, ts in frames:\n",
|
102 |
+
" # save temporary frame image\n",
|
103 |
+
" path = f\"frame_{uuid.uuid4().hex}.png\"\n",
|
104 |
+
" img.save(path)\n",
|
105 |
+
" messages[1][\"content\"].append({\"type\": \"text\", \"text\": f\"Frame at {ts}s:\"})\n",
|
106 |
+
" messages[1][\"content\"].append({\"type\": \"image\", \"url\": path})\n",
|
107 |
+
"\n",
|
108 |
+
" # Step 3: tokenize with truncation\n",
|
109 |
+
" inputs = processor.apply_chat_template(\n",
|
110 |
+
" messages,\n",
|
111 |
+
" tokenize=True,\n",
|
112 |
+
" add_generation_prompt=True,\n",
|
113 |
+
" return_dict=True,\n",
|
114 |
+
" return_tensors=\"pt\",\n",
|
115 |
+
" truncation=True,\n",
|
116 |
+
" max_length=MAX_INPUT_TOKEN_LENGTH\n",
|
117 |
+
" ).to(device)\n",
|
118 |
+
"\n",
|
119 |
+
" # Step 4: use streamer to collect output\n",
|
120 |
+
" from transformers import TextIteratorStreamer\n",
|
121 |
+
" streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)\n",
|
122 |
+
" gen_kwargs = {\n",
|
123 |
+
" **inputs,\n",
|
124 |
+
" \"streamer\": streamer,\n",
|
125 |
+
" \"max_new_tokens\": 1024,\n",
|
126 |
+
" \"do_sample\": True,\n",
|
127 |
+
" \"temperature\": 0.7,\n",
|
128 |
+
" }\n",
|
129 |
+
" thread = Thread(target=model.generate, kwargs=gen_kwargs)\n",
|
130 |
+
" thread.start()\n",
|
131 |
+
"\n",
|
132 |
+
" # collect all tokens\n",
|
133 |
+
" buffer = \"\"\n",
|
134 |
+
" for chunk in streamer:\n",
|
135 |
+
" buffer += chunk.replace(\"<|im_end|>\", \"\")\n",
|
136 |
+
" time.sleep(0.01)\n",
|
137 |
+
"\n",
|
138 |
+
" # return full concatenated response\n",
|
139 |
+
" return buffer\n",
|
140 |
+
"\n",
|
141 |
+
"\n",
|
142 |
+
"def launch_app():\n",
|
143 |
+
" demo = gr.Interface(\n",
|
144 |
+
" fn=generate,\n",
|
145 |
+
" inputs=gr.Video(label=\"Upload Video\"),\n",
|
146 |
+
" outputs=gr.Textbox(label=\"Video Caption\"),\n",
|
147 |
+
" title=\"Video Understanding with Inkscope-Captions-2B-0526\",\n",
|
148 |
+
" description=\"Upload a video and get an OCR-based description of its frames.\",\n",
|
149 |
+
" allow_flagging=\"never\"\n",
|
150 |
+
" )\n",
|
151 |
+
" demo.queue().launch(debug=True)\n",
|
152 |
+
"\n",
|
153 |
+
"\n",
|
154 |
+
"if __name__ == \"__main__\":\n",
|
155 |
+
" launch_app()"
|
156 |
+
],
|
157 |
+
"metadata": {
|
158 |
+
"id": "GZXqC00zLbS1"
|
159 |
+
},
|
160 |
+
"execution_count": null,
|
161 |
+
"outputs": []
|
162 |
+
}
|
163 |
+
]
|
164 |
+
}
|