Update README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,9 @@ license: apache-2.0
|
|
3 |
datasets:
|
4 |
- ewanlong/Food_Classification_Dataset
|
5 |
---
|
|
|
6 |
|
|
|
7 |
|
8 |
```py
|
9 |
Classification Report:
|
@@ -47,4 +49,116 @@ Crispy Chicken 0.9811 0.9707 0.9759 1500
|
|
47 |
accuracy 0.9729 23873
|
48 |
macro avg 0.9719 0.9775 0.9745 23873
|
49 |
weighted avg 0.9731 0.9729 0.9729 23873
|
50 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
datasets:
|
4 |
- ewanlong/Food_Classification_Dataset
|
5 |
---
|
6 |
+
# **Indian-Western-Food-34**
|
7 |
|
8 |
+
> **Indian-Western-Food-34** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify food images into various Indian and Western dishes using the **SiglipForImageClassification** architecture.
|
9 |
|
10 |
```py
|
11 |
Classification Report:
|
|
|
49 |
accuracy 0.9729 23873
|
50 |
macro avg 0.9719 0.9775 0.9745 23873
|
51 |
weighted avg 0.9731 0.9729 0.9729 23873
|
52 |
+
```
|
53 |
+
|
54 |
+
---
|
55 |
+
|
56 |
+
The model categorizes images into 34 food classes:
|
57 |
+
|
58 |
+
### **Western Foods**
|
59 |
+
- **Class 0:** "Baked Potato"
|
60 |
+
- **Class 1:** "Crispy Chicken"
|
61 |
+
- **Class 2:** "Donut"
|
62 |
+
- **Class 3:** "Fries"
|
63 |
+
- **Class 4:** "Hot Dog"
|
64 |
+
- **Class 5:** "Sandwich"
|
65 |
+
- **Class 6:** "Taco"
|
66 |
+
- **Class 7:** "Taquito"
|
67 |
+
- **Class 8:** "Apple Pie"
|
68 |
+
- **Class 9:** "Burger"
|
69 |
+
- **Class 13:** "Cheesecake"
|
70 |
+
- **Class 18:** "Fried Rice"
|
71 |
+
- **Class 19:** "Ice Cream"
|
72 |
+
- **Class 27:** "Omelette"
|
73 |
+
- **Class 31:** "Pizza"
|
74 |
+
- **Class 33:** "Sushi"
|
75 |
+
|
76 |
+
### **Indian Foods**
|
77 |
+
- **Class 10:** "Butter Naan"
|
78 |
+
- **Class 11:** "Chai"
|
79 |
+
- **Class 12:** "Chapati"
|
80 |
+
- **Class 14:** "Chicken Curry"
|
81 |
+
- **Class 15:** "Chole Bhature"
|
82 |
+
- **Class 16:** "Dal Makhani"
|
83 |
+
- **Class 17:** "Dhokla"
|
84 |
+
- **Class 20:** "Idli"
|
85 |
+
- **Class 21:** "Jalebi"
|
86 |
+
- **Class 22:** "Kaathi Rolls"
|
87 |
+
- **Class 23:** "Kadai Paneer"
|
88 |
+
- **Class 24:** "Kulfi"
|
89 |
+
- **Class 25:** "Masala Dosa"
|
90 |
+
- **Class 26:** "Momos"
|
91 |
+
- **Class 28:** "Paani Puri"
|
92 |
+
- **Class 29:** "Pakode"
|
93 |
+
- **Class 30:** "Pav Bhaji"
|
94 |
+
- **Class 32:** "Samosa"
|
95 |
+
|
96 |
+
---
|
97 |
+
|
98 |
+
# **Run with Transformers🤗**
|
99 |
+
|
100 |
+
```python
|
101 |
+
!pip install -q transformers torch pillow gradio
|
102 |
+
```
|
103 |
+
|
104 |
+
```python
|
105 |
+
import gradio as gr
|
106 |
+
from transformers import AutoImageProcessor
|
107 |
+
from transformers import SiglipForImageClassification
|
108 |
+
from transformers.image_utils import load_image
|
109 |
+
from PIL import Image
|
110 |
+
import torch
|
111 |
+
|
112 |
+
# Load model and processor
|
113 |
+
model_name = "prithivMLmods/Indian-Western-Food-34"
|
114 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
115 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
116 |
+
|
117 |
+
def food_classification(image):
|
118 |
+
"""Predicts the type of food in an image."""
|
119 |
+
image = Image.fromarray(image).convert("RGB")
|
120 |
+
inputs = processor(images=image, return_tensors="pt")
|
121 |
+
|
122 |
+
with torch.no_grad():
|
123 |
+
outputs = model(**inputs)
|
124 |
+
logits = outputs.logits
|
125 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
126 |
+
|
127 |
+
labels = {
|
128 |
+
"0": "Baked Potato", "1": "Crispy Chicken", "2": "Donut", "3": "Fries",
|
129 |
+
"4": "Hot Dog", "5": "Sandwich", "6": "Taco", "7": "Taquito", "8": "Apple Pie",
|
130 |
+
"9": "Burger", "10": "Butter Naan", "11": "Chai", "12": "Chapati", "13": "Cheesecake",
|
131 |
+
"14": "Chicken Curry", "15": "Chole Bhature", "16": "Dal Makhani", "17": "Dhokla",
|
132 |
+
"18": "Fried Rice", "19": "Ice Cream", "20": "Idli", "21": "Jalebi", "22": "Kaathi Rolls",
|
133 |
+
"23": "Kadai Paneer", "24": "Kulfi", "25": "Masala Dosa", "26": "Momos", "27": "Omelette",
|
134 |
+
"28": "Paani Puri", "29": "Pakode", "30": "Pav Bhaji", "31": "Pizza", "32": "Samosa",
|
135 |
+
"33": "Sushi"
|
136 |
+
}
|
137 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
138 |
+
|
139 |
+
return predictions
|
140 |
+
|
141 |
+
# Create Gradio interface
|
142 |
+
iface = gr.Interface(
|
143 |
+
fn=food_classification,
|
144 |
+
inputs=gr.Image(type="numpy"),
|
145 |
+
outputs=gr.Label(label="Prediction Scores"),
|
146 |
+
title="Indian & Western Food Classification",
|
147 |
+
description="Upload a food image to classify it into one of the 34 food types."
|
148 |
+
)
|
149 |
+
|
150 |
+
# Launch the app
|
151 |
+
if __name__ == "__main__":
|
152 |
+
iface.launch()
|
153 |
+
```
|
154 |
+
|
155 |
+
---
|
156 |
+
|
157 |
+
# **Intended Use:**
|
158 |
+
|
159 |
+
The **Indian-Western-Food-34** model is designed to classify food images into Indian and Western dishes. Potential use cases include:
|
160 |
+
|
161 |
+
- **Restaurant & Food Delivery Apps:** Enhancing food recognition for better menu recommendations.
|
162 |
+
- **Health & Nutrition Apps:** Tracking calorie intake and diet preferences.
|
163 |
+
- **Food Blogging & Social Media:** Auto-tagging food items in posts.
|
164 |
+
- **Educational Purposes:** Teaching AI-based food classification.
|