--- license: apache-2.0 language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - graphic - 2d - 3d - image-classifier - art --- ![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/aTXiSUlPQ_2utT9X2ERpN.png) # **Graphic-Class** > **Graphic-Class** is a vision model fine-tuned from **google/siglip2-base-patch16-224** for **graphic content moderation**. It uses the **SiglipForImageClassification** architecture to classify graphical images (such as UI designs, 2D game assets, digital art) into **safe** or **problematic** categories. --- ## **Label Space: 2 Classes** The model classifies each image into one of the following categories: ``` 0: bad 1: good ``` * `bad`: images with bad symbols, inappropriate or offensive text, broken UI/UX elements, distorted or harmful designs. * `good`: plain, safe, or character-rich graphics, such as 2D game elements, educational visuals, or well-structured UI components. --- ## **Install Dependencies** ```bash pip install -q transformers torch pillow gradio ``` --- ## **Inference Code** ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Graphic-Class" # Replace with your model path if different model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Label mapping id2label = { "0": "bad", "1": "good" } def classify_graphic(image): image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = { id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) } return prediction # Gradio Interface iface = gr.Interface( fn=classify_graphic, inputs=gr.Image(type="numpy"), outputs=gr.Label(num_top_classes=2, label="Graphic Content Classification"), title="Graphic-Class", description="Upload a graphic or design asset to classify it as 'good' or 'bad'." ) if __name__ == "__main__": iface.launch() ``` --- ## **Intended Use** **Graphic-Class** can be used for: * **Graphic Content Moderation** – Automatically filter unsafe or visually inappropriate designs in creative pipelines. * **Game Asset Filtering** – Evaluate textures, objects, or sprites for suitability in game environments. * **UI/UX Quality Control** – Detect broken or low-quality interface components in design feedback loops. * **Educational & Kids App Filtering** – Ensure graphics meet safety and design standards for children's content.