Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,20 @@
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- jonathan-roberts1/GID
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
|
|
|
|
|
|
6 |
|
7 |
```py
|
8 |
Classification Report:
|
@@ -31,3 +44,103 @@ artificial grassland 0.9173 0.9425 0.9297 2000
|
|
31 |
|
32 |

|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- jonathan-roberts1/GID
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- google/siglip2-base-patch16-224
|
9 |
+
pipeline_tag: image-classification
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- Gaofen-Image-Dataset
|
13 |
+
- Land-Cover-Classification
|
14 |
+
- Remote-Sensing-Images
|
15 |
---
|
16 |
+
# **GiD-Land-Cover-Classification**
|
17 |
+
|
18 |
+
> **GiD-Land-Cover-Classification** is a multi-class image classification model based on `google/siglip2-base-patch16-224`, trained to detect **land cover types** in geographical or environmental imagery. This model can be used for **urban planning**, **agriculture monitoring**, and **environmental analysis**.
|
19 |
|
20 |
```py
|
21 |
Classification Report:
|
|
|
44 |
|
45 |

|
46 |
|
47 |
+
|
48 |
+
---
|
49 |
+
|
50 |
+
## **Label Classes**
|
51 |
+
|
52 |
+
The model distinguishes between the following land cover types:
|
53 |
+
|
54 |
+
```
|
55 |
+
0: arbor woodland
|
56 |
+
1: artificial grassland
|
57 |
+
2: dry cropland
|
58 |
+
3: garden plot
|
59 |
+
4: industrial land
|
60 |
+
5: irrigated land
|
61 |
+
6: lake
|
62 |
+
7: natural grassland
|
63 |
+
8: paddy field
|
64 |
+
9: pond
|
65 |
+
10: river
|
66 |
+
11: rural residential
|
67 |
+
12: shrub land
|
68 |
+
13: traffic land
|
69 |
+
14: urban residential
|
70 |
+
```
|
71 |
+
|
72 |
+
---
|
73 |
+
|
74 |
+
## **Installation**
|
75 |
+
|
76 |
+
```bash
|
77 |
+
pip install transformers torch pillow gradio
|
78 |
+
```
|
79 |
+
|
80 |
+
---
|
81 |
+
|
82 |
+
## **Example Inference Code**
|
83 |
+
|
84 |
+
```python
|
85 |
+
import gradio as gr
|
86 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
87 |
+
from PIL import Image
|
88 |
+
import torch
|
89 |
+
|
90 |
+
# Load model and processor
|
91 |
+
model_name = "prithivMLmods/GiD-Land-Cover-Classification"
|
92 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
93 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
94 |
+
|
95 |
+
# ID to label mapping
|
96 |
+
id2label = {
|
97 |
+
"0": "arbor woodland",
|
98 |
+
"1": "artificial grassland",
|
99 |
+
"2": "dry cropland",
|
100 |
+
"3": "garden plot",
|
101 |
+
"4": "industrial land",
|
102 |
+
"5": "irrigated land",
|
103 |
+
"6": "lake",
|
104 |
+
"7": "natural grassland",
|
105 |
+
"8": "paddy field",
|
106 |
+
"9": "pond",
|
107 |
+
"10": "river",
|
108 |
+
"11": "rural residential",
|
109 |
+
"12": "shrub land",
|
110 |
+
"13": "traffic land",
|
111 |
+
"14": "urban residential"
|
112 |
+
}
|
113 |
+
|
114 |
+
def detect_land_cover(image):
|
115 |
+
image = Image.fromarray(image).convert("RGB")
|
116 |
+
inputs = processor(images=image, return_tensors="pt")
|
117 |
+
|
118 |
+
with torch.no_grad():
|
119 |
+
outputs = model(**inputs)
|
120 |
+
logits = outputs.logits
|
121 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
122 |
+
|
123 |
+
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
124 |
+
return prediction
|
125 |
+
|
126 |
+
# Gradio Interface
|
127 |
+
iface = gr.Interface(
|
128 |
+
fn=detect_land_cover,
|
129 |
+
inputs=gr.Image(type="numpy"),
|
130 |
+
outputs=gr.Label(num_top_classes=5, label="Land Cover Type"),
|
131 |
+
title="GiD-Land-Cover-Classification",
|
132 |
+
description="Upload an image to classify its land cover type: arbor woodland, dry cropland, lake, river, traffic land, etc."
|
133 |
+
)
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
iface.launch()
|
137 |
+
```
|
138 |
+
|
139 |
+
---
|
140 |
+
|
141 |
+
## **Applications**
|
142 |
+
|
143 |
+
* **Urban Development Planning**
|
144 |
+
* **Agricultural Monitoring**
|
145 |
+
* **Land Use and Land Cover (LULC) Mapping**
|
146 |
+
* **Disaster Management and Flood Risk Analysis**
|