Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,28 @@
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- Shravanig/fire_detection_final
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
```py
|
8 |
Classification Report:
|
@@ -18,3 +39,83 @@ weighted avg 0.9952 0.9952 0.9952 6060
|
|
18 |
```
|
19 |
|
20 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- Shravanig/fire_detection_final
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- google/siglip2-base-patch16-512
|
9 |
+
pipeline_tag: image-classification
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- Forest-Fire-Detection
|
13 |
+
- SigLIP2
|
14 |
+
- climate
|
15 |
+
- Smoke
|
16 |
+
- Normal
|
17 |
+
- Fire
|
18 |
---
|
19 |
+

|
20 |
+
|
21 |
+
# Forest-Fire-Detection
|
22 |
+
|
23 |
+
> `Forest-Fire-Detection` is a vision-language encoder model fine-tuned from `google/siglip2-base-patch16-512` for **multi-class image classification**. It is trained to detect whether an image contains **fire**, **smoke**, or a **normal** (non-fire) scene. The model uses the `SiglipForImageClassification` architecture.
|
24 |
+
|
25 |
+
> [!note]
|
26 |
+
SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features : https://arxiv.org/pdf/2502.14786
|
27 |
|
28 |
```py
|
29 |
Classification Report:
|
|
|
39 |
```
|
40 |
|
41 |

|
42 |
+
|
43 |
+
---
|
44 |
+
|
45 |
+
## Label Space: 3 Classes
|
46 |
+
|
47 |
+
```
|
48 |
+
Class 0: Fire
|
49 |
+
Class 1: Normal
|
50 |
+
Class 2: Smoke
|
51 |
+
```
|
52 |
+
|
53 |
+
---
|
54 |
+
|
55 |
+
## Install Dependencies
|
56 |
+
|
57 |
+
```bash
|
58 |
+
pip install -q transformers torch pillow gradio hf_xet
|
59 |
+
```
|
60 |
+
|
61 |
+
---
|
62 |
+
|
63 |
+
## Inference Code
|
64 |
+
|
65 |
+
```python
|
66 |
+
import gradio as gr
|
67 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
68 |
+
from PIL import Image
|
69 |
+
import torch
|
70 |
+
|
71 |
+
# Load model and processor
|
72 |
+
model_name = "prithivMLmods/forest-fire-detection" # Update with actual model name on Hugging Face
|
73 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
74 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
75 |
+
|
76 |
+
# Updated label mapping
|
77 |
+
id2label = {
|
78 |
+
"0": "Fire",
|
79 |
+
"1": "Normal",
|
80 |
+
"2": "Smoke"
|
81 |
+
}
|
82 |
+
|
83 |
+
def classify_image(image):
|
84 |
+
image = Image.fromarray(image).convert("RGB")
|
85 |
+
inputs = processor(images=image, return_tensors="pt")
|
86 |
+
|
87 |
+
with torch.no_grad():
|
88 |
+
outputs = model(**inputs)
|
89 |
+
logits = outputs.logits
|
90 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
91 |
+
|
92 |
+
prediction = {
|
93 |
+
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
|
94 |
+
}
|
95 |
+
|
96 |
+
return prediction
|
97 |
+
|
98 |
+
# Gradio Interface
|
99 |
+
iface = gr.Interface(
|
100 |
+
fn=classify_image,
|
101 |
+
inputs=gr.Image(type="numpy"),
|
102 |
+
outputs=gr.Label(num_top_classes=3, label="Forest Fire Detection"),
|
103 |
+
title="Forest-Fire-Detection",
|
104 |
+
description="Upload an image to detect whether the scene contains fire, smoke, or is normal."
|
105 |
+
)
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
iface.launch()
|
109 |
+
```
|
110 |
+
|
111 |
+
---
|
112 |
+
|
113 |
+
## Intended Use
|
114 |
+
|
115 |
+
`Forest-Fire-Detection` is designed for:
|
116 |
+
|
117 |
+
* **Wildfire Monitoring** – Rapid identification of forest fire and smoke zones.
|
118 |
+
* **Environmental Protection** – Surveillance of forest areas for early fire warning.
|
119 |
+
* **Disaster Management** – Support in emergency response and evacuation decisions.
|
120 |
+
* **Smart Surveillance** – Integrate with drones or camera feeds for automated fire detection.
|
121 |
+
* **Research and Analysis** – Analyze visual datasets for fire-prone region identification.
|