--- license: apache-2.0 language: - en base_model: - prithivMLmods/Eta-Aurigae-0.6B-Echelon1 pipeline_tag: text-generation library_name: transformers tags: - text-generation-inference - science --- # **Eta-Aurigae-0.6B-Echelon1-GGUF** > **Eta-Aurigae-0.6B-Echelon1** is a compact, efficient model specialized in **science, factual accuracy**, and **structured reasoning**. Fine-tuned on **Qwen3-0.6B** using the **MoT (Mixture of Thoughts)** dataset—focused on scientific understanding and expert factual domains—it delivers high-precision outputs for STEM education, tutoring, and analytical thinking in resource-constrained environments. ## Model File | File Name | Size | Format | Description | |--------------------------------------------|--------|---------------|------------------------------------------| | Eta-Aurigae-0.6B-Echelon1.BF16.gguf | 1.2 GB | GGUF (BF16) | BFloat16 precision model file | | Eta-Aurigae-0.6B-Echelon1.F32.gguf | 2.39 GB| GGUF (F32) | Float32 precision model file | | Eta-Aurigae-0.6B-Echelon1.Q4_K_M.gguf | 397 MB | GGUF (Q4_K_M) | 4-bit quantized model file | | Eta-Aurigae-0.6B-Echelon1.Q5_K_M.gguf | 444 MB | GGUF (Q5_K_M) | 5-bit quantized model file | | Eta-Aurigae-0.6B-Echelon1.Q8_0.gguf | 639 MB | GGUF (Q8_0) | 8-bit quantized model file | | config.json | 31 B | JSON | Configuration file | | .gitattributes | 1.88 kB| Text | Git attributes configuration | ## Quants Usage (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)