--- license: apache-2.0 datasets: - akahana/Driver-Drowsiness-Dataset language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - SigLIP2 - Driver-Drowsiness-Detection - biology - chemistry --- ![2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/yVIGKlu5LDDCbAHCOemKh.png) # DOZE-GUARD-RLDD > DOZE-GUARD-RLDD [Real-Time Distracted Driver Detection] is a vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for binary image classification. It is trained to detect whether a person in the image is drowsy or non-drowsy using the SiglipForImageClassification architecture. > [!note] > DOZE GUARD RLDD detection works best with crisp and high-quality images. Noisy images are not recommended for validation. > [!note] *SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786 > [!note] *Detection and Prediction of Driver Drowsiness for the Prevention of Road Accidents Using Deep Neural Networks Techniques* https://www.researchgate.net/publication/353397807_Detection_and_Prediction_of_Driver_Drowsiness_for_the_Prevention_of_Road_Accidents_Using_Deep_Neural_Networks_Techniques ```py Classification Report: precision recall f1-score support Drowsy 0.9818 0.9952 0.9885 17868 Non Drowsy 0.9945 0.9788 0.9866 15566 accuracy 0.9876 33434 macro avg 0.9881 0.9870 0.9875 33434 weighted avg 0.9877 0.9876 0.9876 33434 ``` ![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/wW9HP_Ad5VBslP0FEG-Yq.png) --- ## Label Space: 2 Classes The model classifies an image as either: ``` Class 0: Drowsy Class 1: Non Drowsy ``` --- ## Install Dependencies ```bash pip install -q transformers torch pillow gradio hf_xet ``` --- ## Inference Code ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/DOZE-GUARD-RLDD" # Replace with your model path model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Label mapping id2label = { "0": "Drowsy", "1": "Non Drowsy" } def classify_drowsiness(image): image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = { id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) } return prediction # Gradio Interface iface = gr.Interface( fn=classify_drowsiness, inputs=gr.Image(type="numpy"), outputs=gr.Label(num_top_classes=2, label="Drowsiness Detection"), title="DOZE-GUARD-RLDD", description="Upload an image to classify whether the person is drowsy or non-drowsy." ) if __name__ == "__main__": iface.launch() ``` --- ## Demo Inference ![Screenshot 2025-05-14 at 19-20-23 DOZE-GUARD-RLDD.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/DbJ7FDMBoUtJqJwZUamuq.png) ![Screenshot 2025-05-14 at 19-05-19 DOZE-GUARD-RLDD.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ddSxiC_PI_RNxY88_HNv4.png) ![Screenshot 2025-05-14 at 19-06-47 DOZE-GUARD-RLDD.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/nqKuxGZPysUPH5Jy87A2B.png) ## Intended Use **DOZE-GUARD-RLDD** is useful in scenarios such as: * **Driver Monitoring** – Detect drowsiness in drivers to prevent accidents. * **Workplace Safety** – Monitor employee alertness to improve safety in high-risk environments. * **Healthcare** – Assist in diagnosing conditions related to sleep deprivation or drowsiness. * **Surveillance** – Real-time monitoring of individuals for drowsiness detection in critical areas.