Improve language tag
Browse filesHi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.
README.md
CHANGED
@@ -1,222 +1,234 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
base_model:
|
4 |
-
- Qwen/Qwen2.5-14B-Instruct
|
5 |
-
language:
|
6 |
-
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
-
|
11 |
-
-
|
12 |
-
-
|
13 |
-
-
|
14 |
-
|
15 |
-
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
type:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
type:
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
type:
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
type:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
name:
|
93 |
-
|
94 |
-
|
95 |
-
name:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
name:
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
# **
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
tokenizer
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
)
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- Qwen/Qwen2.5-14B-Instruct
|
5 |
+
language:
|
6 |
+
- zho
|
7 |
+
- eng
|
8 |
+
- fra
|
9 |
+
- spa
|
10 |
+
- por
|
11 |
+
- deu
|
12 |
+
- ita
|
13 |
+
- rus
|
14 |
+
- jpn
|
15 |
+
- kor
|
16 |
+
- vie
|
17 |
+
- tha
|
18 |
+
- ara
|
19 |
+
pipeline_tag: text-generation
|
20 |
+
library_name: transformers
|
21 |
+
tags:
|
22 |
+
- qwen2.5
|
23 |
+
- Cot
|
24 |
+
- elite
|
25 |
+
- calcium
|
26 |
+
model-index:
|
27 |
+
- name: Calcium-Opus-14B-Elite3
|
28 |
+
results:
|
29 |
+
- task:
|
30 |
+
type: text-generation
|
31 |
+
name: Text Generation
|
32 |
+
dataset:
|
33 |
+
name: IFEval (0-Shot)
|
34 |
+
type: wis-k/instruction-following-eval
|
35 |
+
split: train
|
36 |
+
args:
|
37 |
+
num_few_shot: 0
|
38 |
+
metrics:
|
39 |
+
- type: inst_level_strict_acc and prompt_level_strict_acc
|
40 |
+
value: 54.28
|
41 |
+
name: averaged accuracy
|
42 |
+
source:
|
43 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
|
44 |
+
name: Open LLM Leaderboard
|
45 |
+
- task:
|
46 |
+
type: text-generation
|
47 |
+
name: Text Generation
|
48 |
+
dataset:
|
49 |
+
name: BBH (3-Shot)
|
50 |
+
type: SaylorTwift/bbh
|
51 |
+
split: test
|
52 |
+
args:
|
53 |
+
num_few_shot: 3
|
54 |
+
metrics:
|
55 |
+
- type: acc_norm
|
56 |
+
value: 47.07
|
57 |
+
name: normalized accuracy
|
58 |
+
source:
|
59 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
|
60 |
+
name: Open LLM Leaderboard
|
61 |
+
- task:
|
62 |
+
type: text-generation
|
63 |
+
name: Text Generation
|
64 |
+
dataset:
|
65 |
+
name: MATH Lvl 5 (4-Shot)
|
66 |
+
type: lighteval/MATH-Hard
|
67 |
+
split: test
|
68 |
+
args:
|
69 |
+
num_few_shot: 4
|
70 |
+
metrics:
|
71 |
+
- type: exact_match
|
72 |
+
value: 29.38
|
73 |
+
name: exact match
|
74 |
+
source:
|
75 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
|
76 |
+
name: Open LLM Leaderboard
|
77 |
+
- task:
|
78 |
+
type: text-generation
|
79 |
+
name: Text Generation
|
80 |
+
dataset:
|
81 |
+
name: GPQA (0-shot)
|
82 |
+
type: Idavidrein/gpqa
|
83 |
+
split: train
|
84 |
+
args:
|
85 |
+
num_few_shot: 0
|
86 |
+
metrics:
|
87 |
+
- type: acc_norm
|
88 |
+
value: 16.11
|
89 |
+
name: acc_norm
|
90 |
+
source:
|
91 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
|
92 |
+
name: Open LLM Leaderboard
|
93 |
+
- task:
|
94 |
+
type: text-generation
|
95 |
+
name: Text Generation
|
96 |
+
dataset:
|
97 |
+
name: MuSR (0-shot)
|
98 |
+
type: TAUR-Lab/MuSR
|
99 |
+
args:
|
100 |
+
num_few_shot: 0
|
101 |
+
metrics:
|
102 |
+
- type: acc_norm
|
103 |
+
value: 20.13
|
104 |
+
name: acc_norm
|
105 |
+
source:
|
106 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
|
107 |
+
name: Open LLM Leaderboard
|
108 |
+
- task:
|
109 |
+
type: text-generation
|
110 |
+
name: Text Generation
|
111 |
+
dataset:
|
112 |
+
name: MMLU-PRO (5-shot)
|
113 |
+
type: TIGER-Lab/MMLU-Pro
|
114 |
+
config: main
|
115 |
+
split: test
|
116 |
+
args:
|
117 |
+
num_few_shot: 5
|
118 |
+
metrics:
|
119 |
+
- type: acc
|
120 |
+
value: 48.17
|
121 |
+
name: accuracy
|
122 |
+
source:
|
123 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite3
|
124 |
+
name: Open LLM Leaderboard
|
125 |
+
---
|
126 |
+
|
127 |
+

|
128 |
+
|
129 |
+
# **Calcium-Opus-14B-Elite3**
|
130 |
+
|
131 |
+
Calcium-Opus-14B-Elite3 is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. These models have proven effective in context understanding, reasoning, and mathematical problem-solving. It has been fine-tuned using a long chain-of-thought reasoning model and specialized datasets, with a focus on chain-of-thought (CoT) reasoning for problem-solving. This model is optimized for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and complex reasoning tasks.
|
132 |
+
|
133 |
+
Key improvements include:
|
134 |
+
|
135 |
+
1. **Enhanced Knowledge and Expertise**: The model demonstrates significantly more knowledge and greatly improved capabilities in coding and mathematics, thanks to specialized expert models in these domains.
|
136 |
+
2. **Improved Instruction Following**: It shows significant advancements in following instructions, generating long texts (over 8K tokens), understanding structured data (e.g., tables), and producing structured outputs, especially in JSON format.
|
137 |
+
3. **Better Adaptability**: The model is more resilient to diverse system prompts, enabling enhanced role-playing implementations and condition-setting for chatbots.
|
138 |
+
4. **Long-Context Support**: It offers long-context support of up to 128K tokens and can generate up to 8K tokens in a single output.
|
139 |
+
5. **Multilingual Proficiency**: The model supports over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
|
140 |
+
|
141 |
+
# **Quickstart with transformers**
|
142 |
+
|
143 |
+
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
144 |
+
|
145 |
+
```python
|
146 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
147 |
+
|
148 |
+
model_name = "prithivMLmods/Calcium-Opus-14B-Elite3"
|
149 |
+
|
150 |
+
model = AutoModelForCausalLM.from_pretrained(
|
151 |
+
model_name,
|
152 |
+
torch_dtype="auto",
|
153 |
+
device_map="auto"
|
154 |
+
)
|
155 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
156 |
+
|
157 |
+
prompt = "Give me a short introduction to large language model."
|
158 |
+
messages = [
|
159 |
+
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
160 |
+
{"role": "user", "content": prompt}
|
161 |
+
]
|
162 |
+
text = tokenizer.apply_chat_template(
|
163 |
+
messages,
|
164 |
+
tokenize=False,
|
165 |
+
add_generation_prompt=True
|
166 |
+
)
|
167 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
168 |
+
|
169 |
+
generated_ids = model.generate(
|
170 |
+
**model_inputs,
|
171 |
+
max_new_tokens=512
|
172 |
+
)
|
173 |
+
generated_ids = [
|
174 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
175 |
+
]
|
176 |
+
|
177 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
178 |
+
```
|
179 |
+
|
180 |
+
# **Intended Use**
|
181 |
+
|
182 |
+
1. **Reasoning and Context Understanding**:\
|
183 |
+
Designed to assist with complex reasoning tasks, contextual understanding, and solving problems requiring logical deduction and critical thinking.
|
184 |
+
|
185 |
+
2. **Mathematical Problem-Solving**:\
|
186 |
+
Specialized for performing advanced mathematical reasoning and calculations, making it suitable for educational, scientific, and research-oriented applications.
|
187 |
+
|
188 |
+
3. **Code Generation and Debugging**:\
|
189 |
+
Offers robust support for coding tasks, including writing, debugging, and optimizing code in various programming languages, ideal for developers and software engineers.
|
190 |
+
|
191 |
+
4. **Structured Data Analysis**:\
|
192 |
+
Excels in processing and analyzing structured data, such as tables and JSON, and generating structured outputs, which is useful for data analysts and automation workflows.
|
193 |
+
|
194 |
+
5. **Multilingual Applications**:\
|
195 |
+
Supports over 29 languages, making it versatile for global applications like multilingual chatbots, content generation, and translations.
|
196 |
+
|
197 |
+
6. **Extended Content Generation**:\
|
198 |
+
Capable of generating long-form content (over 8K tokens), useful for writing reports, articles, and creating detailed instructional guides.
|
199 |
+
|
200 |
+
# **Limitations**
|
201 |
+
|
202 |
+
1. **Hardware Requirements**:\
|
203 |
+
Due to its 20B parameter size and support for long-context inputs, running the model requires significant computational resources, including high-memory GPUs or TPUs.
|
204 |
+
|
205 |
+
2. **Potential Bias in Multilingual Outputs**:\
|
206 |
+
While it supports 29 languages, the quality and accuracy of outputs may vary depending on the language, especially for less-resourced languages.
|
207 |
+
|
208 |
+
3. **Inconsistent Outputs for Creative Tasks**:\
|
209 |
+
The model may occasionally produce inconsistent or repetitive results in creative writing, storytelling, or highly subjective tasks.
|
210 |
+
|
211 |
+
4. **Limited Real-World Awareness**:\
|
212 |
+
It lacks real-time knowledge of current events beyond its training cutoff, which may limit its ability to respond accurately to the latest information.
|
213 |
+
|
214 |
+
5. **Error Propagation in Long-Text Outputs**:\
|
215 |
+
In generating long texts, minor errors in early outputs can sometimes propagate, reducing the overall coherence and accuracy of the response.
|
216 |
+
|
217 |
+
6. **Dependency on High-Quality Prompts**:\
|
218 |
+
Performance may depend on the quality and specificity of the input prompt, requiring users to carefully design queries for optimal results.
|
219 |
+
|
220 |
+
|
221 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
222 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Calcium-Opus-14B-Elite3-details)!
|
223 |
+
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FCalcium-Opus-14B-Elite3&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
|
224 |
+
|
225 |
+
| Metric |Value (%)|
|
226 |
+
|-------------------|--------:|
|
227 |
+
|**Average** | 35.86|
|
228 |
+
|IFEval (0-Shot) | 54.28|
|
229 |
+
|BBH (3-Shot) | 47.07|
|
230 |
+
|MATH Lvl 5 (4-Shot)| 29.38|
|
231 |
+
|GPQA (0-shot) | 16.11|
|
232 |
+
|MuSR (0-shot) | 20.13|
|
233 |
+
|MMLU-PRO (5-shot) | 48.17|
|
234 |
+
|