File size: 5,742 Bytes
34b1ad2 38c7a30 34b1ad2 e3b7fa2 34b1ad2 38c7a30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
base_model:
- prithivMLmods/Calcium-Opus-14B-Elite
- prithivMLmods/Calcium-Opus-14B-Elite4
- prithivMLmods/Calcium-Opus-14B-Elite3
- prithivMLmods/Calcium-Opus-14B-Elite2
library_name: transformers
tags:
- mergekit
- merge
model-index:
- name: Calcium-Opus-14B-Elite-Stock
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 61.43
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 46.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 27.19
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 15.77
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 20.06
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.6
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock
name: Open LLM Leaderboard
---
# **Calcium-Opus-14B-Elite-Stock**
Calcium-Opus-14B-Elite is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. These models have proven effective in context understanding, reasoning, and mathematical problem-solving.It has been fine-tuned using a long chain-of-thought reasoning model and specialized datasets, with a focus on chain-of-thought (CoT) reasoning for problem-solving. This model is optimized for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and complex reasoning tasks.
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [prithivMLmods/Calcium-Opus-14B-Elite](https://huggingface.co/prithivMLmods/Calcium-Opus-14B-Elite) as a base.
### Models Merged
The following models were included in the merge:
* [prithivMLmods/Calcium-Opus-14B-Elite4](https://huggingface.co/prithivMLmods/Calcium-Opus-14B-Elite4)
* [prithivMLmods/Calcium-Opus-14B-Elite3](https://huggingface.co/prithivMLmods/Calcium-Opus-14B-Elite3)
* [prithivMLmods/Calcium-Opus-14B-Elite2](https://huggingface.co/prithivMLmods/Calcium-Opus-14B-Elite2)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: prithivMLmods/Calcium-Opus-14B-Elite
- model: prithivMLmods/Calcium-Opus-14B-Elite2
- model: prithivMLmods/Calcium-Opus-14B-Elite3
- model: prithivMLmods/Calcium-Opus-14B-Elite4
merge_method: model_stock
base_model: prithivMLmods/Calcium-Opus-14B-Elite
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
tokenizer_source: "prithivMLmods/Calcium-Opus-14B-Elite"
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Calcium-Opus-14B-Elite-Stock-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FCalcium-Opus-14B-Elite-Stock&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 36.49|
|IFEval (0-Shot) | 61.43|
|BBH (3-Shot) | 46.90|
|MATH Lvl 5 (4-Shot)| 27.19|
|GPQA (0-shot) | 15.77|
|MuSR (0-shot) | 20.06|
|MMLU-PRO (5-shot) | 47.60|
|