--- license: apache-2.0 datasets: - competitions/aiornot language: - en library_name: transformers base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification tags: - SigLIP2 - AI-vs-Real - art --- ![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/KhTM3MJls_zbF4q2EqxUO.png) # AIorNot-SigLIP2 > AIorNot-SigLIP2 is a vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for binary image classification. It is trained to detect whether an image is generated by AI or is a real photograph using the SiglipForImageClassification architecture. > [!note] *SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786 ```py Classification Report: precision recall f1-score support Real 0.9215 0.8842 0.9025 8288 AI 0.9100 0.9396 0.9246 10330 accuracy 0.9149 18618 macro avg 0.9158 0.9119 0.9135 18618 weighted avg 0.9151 0.9149 0.9147 18618 ``` ![download (2).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/AtUeLO-22whnmrN-mJZDr.png) --- ## Label Space: 2 Classes The model classifies an image as either: ``` Class 0: Real Class 1: AI ``` --- ## Install Dependencies ```bash pip install -q transformers torch pillow gradio hf_xet ``` --- ## Inference Code ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/AIorNot-SigLIP2" # Replace with your model path model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Label mapping id2label = { "0": "Real", "1": "AI" } def classify_image(image): image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = { id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) } return prediction # Gradio Interface iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="numpy"), outputs=gr.Label(num_top_classes=2, label="AI or Real Detection"), title="AIorNot-SigLIP2", description="Upload an image to classify whether it is AI-generated or Real." ) if __name__ == "__main__": iface.launch() ``` --- ## Intended Use AIorNot-SigLIP2 is useful in scenarios such as: * AI Content Detection – Identify AI-generated images for social platforms or media verification. * Digital Media Forensics – Assist in distinguishing synthetic from real-world imagery. * Dataset Filtering – Clean datasets by separating real photographs from AI-synthesized ones. * Research & Development – Benchmark performance of image authenticity detectors.