--- library_name: transformers license: gemma base_model: google/gemma-3-1b-it tags: - llama-factory - full - generated_from_trainer model-index: - name: gemma-3-1b-it_MED_NLI results: [] --- # gemma-3-1b-it_MED_NLI This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) on the zero_shot dataset. It achieves the following results on the evaluation set: - Loss: 0.0177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0331 | 0.1176 | 1000 | 0.0379 | | 0.0299 | 0.2352 | 2000 | 0.0262 | | 0.0251 | 0.3528 | 3000 | 0.0284 | | 0.0213 | 0.4704 | 4000 | 0.0252 | | 0.0264 | 0.5880 | 5000 | 0.0222 | | 0.0183 | 0.7056 | 6000 | 0.0191 | | 0.0171 | 0.8232 | 7000 | 0.0179 | | 0.0185 | 0.9408 | 8000 | 0.0177 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.0