prdev commited on
Commit
2fe98b3
·
verified ·
1 Parent(s): 3c04406

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -20
README.md CHANGED
@@ -8,9 +8,9 @@ pipeline_tag: sentence-similarity
8
  library_name: sentence-transformers
9
  ---
10
 
11
- # SentenceTransformer based on distilbert/distilbert-base-uncased
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
14
 
15
  ## Model Details
16
 
@@ -20,24 +20,6 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [d
20
  - **Maximum Sequence Length:** 512 tokens
21
  - **Output Dimensionality:** 768 dimensions
22
  - **Similarity Function:** Cosine Similarity
23
- <!-- - **Training Dataset:** Unknown -->
24
- <!-- - **Language:** Unknown -->
25
- <!-- - **License:** Unknown -->
26
-
27
- ### Model Sources
28
-
29
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
30
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
31
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
32
-
33
- ### Full Model Architecture
34
-
35
- ```
36
- SentenceTransformer(
37
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
38
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
39
- )
40
- ```
41
 
42
  ## Usage
43
 
 
8
  library_name: sentence-transformers
9
  ---
10
 
11
+ # Mini-GTE
12
 
13
+ This is a distillbert-based model trained from GTE-base. It can be used as a faster query encoder for the GTE series or as a standalone unit (MTEB scores are for standalone).
14
 
15
  ## Model Details
16
 
 
20
  - **Maximum Sequence Length:** 512 tokens
21
  - **Output Dimensionality:** 768 dimensions
22
  - **Similarity Function:** Cosine Similarity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  ## Usage
25