Update README.md
Browse files
README.md
CHANGED
@@ -8,9 +8,9 @@ pipeline_tag: sentence-similarity
|
|
8 |
library_name: sentence-transformers
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
This is a
|
14 |
|
15 |
## Model Details
|
16 |
|
@@ -20,24 +20,6 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [d
|
|
20 |
- **Maximum Sequence Length:** 512 tokens
|
21 |
- **Output Dimensionality:** 768 dimensions
|
22 |
- **Similarity Function:** Cosine Similarity
|
23 |
-
<!-- - **Training Dataset:** Unknown -->
|
24 |
-
<!-- - **Language:** Unknown -->
|
25 |
-
<!-- - **License:** Unknown -->
|
26 |
-
|
27 |
-
### Model Sources
|
28 |
-
|
29 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
30 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
31 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
32 |
-
|
33 |
-
### Full Model Architecture
|
34 |
-
|
35 |
-
```
|
36 |
-
SentenceTransformer(
|
37 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
38 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
39 |
-
)
|
40 |
-
```
|
41 |
|
42 |
## Usage
|
43 |
|
|
|
8 |
library_name: sentence-transformers
|
9 |
---
|
10 |
|
11 |
+
# Mini-GTE
|
12 |
|
13 |
+
This is a distillbert-based model trained from GTE-base. It can be used as a faster query encoder for the GTE series or as a standalone unit (MTEB scores are for standalone).
|
14 |
|
15 |
## Model Details
|
16 |
|
|
|
20 |
- **Maximum Sequence Length:** 512 tokens
|
21 |
- **Output Dimensionality:** 768 dimensions
|
22 |
- **Similarity Function:** Cosine Similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Usage
|
25 |
|