Post
226
Dropping the domain-specific downstream image classification content moderation models, including the anime image type classification, GeoSceneNet, indoor-outdoor scene classification, and black-and-white vs. colored image classification models, along with the datasets. 🔥
╰┈➤Models :
+ GeoSceneNet : prithivMLmods/Multilabel-GeoSceneNet
+ IndoorOutdoorNet : prithivMLmods/IndoorOutdoorNet
+ B&W vs Colored : prithivMLmods/BnW-vs-Colored-Detection
+ Anime Image Type : prithivMLmods/Anime-Classification-v1.0
+ Multilabel Portrait : prithivMLmods/Multilabel-Portrait-SigLIP2
╰┈➤Datasets :
- GeoSceneNet : prithivMLmods/Multilabel-GeoSceneNet-16K
- IndoorOutdoorNet : prithivMLmods/IndoorOutdoorNet-20K
- BnW vs Colored : prithivMLmods/BnW-vs-Colored-10K
- Multilabel Portrait : prithivMLmods/Multilabel-Portrait-18K
╰┈➤Collections :
> Multilabel Image Classification Datasets : prithivMLmods/multilabel-image-classification-datasets-6809aa64637f45d4c47fa6ca
> Model Collection : prithivMLmods/siglip2-content-filters-models-v2-68053a958c42ef17a3a3f4d1
For raw ZIP files or more information about the datasets, visit: https://www.kaggle.com/prithivsakthiur/datasets
╰┈➤Models :
+ GeoSceneNet : prithivMLmods/Multilabel-GeoSceneNet
+ IndoorOutdoorNet : prithivMLmods/IndoorOutdoorNet
+ B&W vs Colored : prithivMLmods/BnW-vs-Colored-Detection
+ Anime Image Type : prithivMLmods/Anime-Classification-v1.0
+ Multilabel Portrait : prithivMLmods/Multilabel-Portrait-SigLIP2
╰┈➤Datasets :
- GeoSceneNet : prithivMLmods/Multilabel-GeoSceneNet-16K
- IndoorOutdoorNet : prithivMLmods/IndoorOutdoorNet-20K
- BnW vs Colored : prithivMLmods/BnW-vs-Colored-10K
- Multilabel Portrait : prithivMLmods/Multilabel-Portrait-18K
╰┈➤Collections :
> Multilabel Image Classification Datasets : prithivMLmods/multilabel-image-classification-datasets-6809aa64637f45d4c47fa6ca
> Model Collection : prithivMLmods/siglip2-content-filters-models-v2-68053a958c42ef17a3a3f4d1
Note: The anime scene type dataset is not mentioned in the list because it is private and only accessible to members of the DeepGHS organization.
For raw ZIP files or more information about the datasets, visit: https://www.kaggle.com/prithivsakthiur/datasets