Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up
Kseniase 
posted an update 4 days ago
Post
1727
9 Multimodal Chain-of-Thought methods

How Chain-of-Thought (CoT) prompting can unlock models' full potential across images, video, audio and more? Finding special multimodal CoT techniques is the answer.

Here are 9 methods of Multimodal Chain-of-Thought (MCoT). Most of them are open-source:

1. KAM-CoT -> KAM-CoT: Knowledge Augmented Multimodal Chain-of-Thoughts Reasoning (2401.12863)
This lightweight framework combines CoT prompting with knowledge graphs (KGs) and achieves 93.87% accuracy

2. Multimodal Visualization-of-Thought (MVoT) -> Imagine while Reasoning in Space: Multimodal Visualization-of-Thought (2501.07542)
Lets models generate visual reasoning traces, using a token discrepancy loss to improve visual quality

3. Compositional CoT (CCoT) -> Compositional Chain-of-Thought Prompting for Large Multimodal Models (2311.17076)
Uses scene graph (SG) representations generated by the LMM itself to improve performance on compositional and general multimodal benchmarks

4. URSA -> URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics (2501.04686)
Brings System 2-style thinking to multimodal math reasoning, using a 3-module CoT data synthesis process with CoT distillation, trajectory-format rewriting and format unification

5. MM-Verify -> MM-Verify: Enhancing Multimodal Reasoning with Chain-of-Thought Verification (2502.13383)
Introduces a verification mechanism with MM-Verifier and MM-Reasoner that implements synthesized high-quality CoT data for multimodal reasoning

6. Duty-Distinct CoT (DDCoT) -> DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning in Language Models (2310.16436)
Divides the reasoning responsibilities between LMs and visual models, integrating the visual recognition capabilities into the joint reasoning process

7. Multimodal-CoT from Amazon Web Services -> Multimodal Chain-of-Thought Reasoning in Language Models (2302.00923)
A two-stage framework separates rationale generation from answer prediction, allowing the model to reason more effectively using multimodal inputs

8. Graph-of-Thought (GoT) -> Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Large Language Models (2305.16582)
This two-stage framework models reasoning as a graph of interconnected ideas, improving performance on text-only and multimodal tasks

More in the comments👇
  1. Hypergraph-of-Thought (HoT) -> https://huggingface.co/papers/2308.06207
    Uses textual and visual hypergraphs with cross-modal co-attention to model high-order multi-hop reasoning.

Also, we recommend you to read this recent comprehensive survey on Multimodal CoT: https://huggingface.co/papers/2503.12605

In this post