--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103-mlm-multi-emails-hq-x2bs results: [] datasets: - postbot/multi-emails-hq language: - en pipeline_tag: fill-mask widget: - text: Can you please send me the by the end of the day? example_title: end of day - text: >- I hope this email finds you well. I wanted to follow up on our yesterday. example_title: follow-up - text: The meeting has been rescheduled to . example_title: reschedule - text: Please let me know if you need any further regarding the project. example_title: further help - text: >- I appreciate your prompt response to my previous email. Can you provide an update on the by tomorrow? example_title: provide update - text: Paris is the of France. example_title: paris (default) - text: The goal of life is . example_title: goal of life (default) --- # MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103-mlm-multi-emails-hq-x2bs This model is a fine-tuned version of [saghar/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103](https://huggingface.co/saghar/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0371 - Accuracy: 0.6450 ## Model description - masked language model - mini version of RoBERTa - does support uppercase text ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 16.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.2947 | 1.0 | 308 | 3.0832 | 0.5122 | | 2.8727 | 2.0 | 616 | 2.6722 | 0.5662 | | 2.6339 | 3.0 | 924 | 2.4797 | 0.5878 | | 2.5053 | 4.0 | 1232 | 2.3833 | 0.6025 | | 2.4531 | 5.0 | 1540 | 2.3085 | 0.6106 | | 2.2852 | 6.0 | 1848 | 2.2451 | 0.6175 | | 2.228 | 7.0 | 2156 | 2.1937 | 0.6244 | | 2.2013 | 8.0 | 2464 | 2.1446 | 0.6310 | | 2.1463 | 9.0 | 2772 | 2.1062 | 0.6357 | | 2.0882 | 10.0 | 3080 | 2.0847 | 0.6370 | | 2.1669 | 11.0 | 3388 | 2.0687 | 0.6399 | | 2.0983 | 12.0 | 3696 | 2.0629 | 0.6423 | | 2.1215 | 13.0 | 4004 | 2.0259 | 0.6476 | | 2.1255 | 14.0 | 4312 | 2.0378 | 0.6461 | | 2.1751 | 15.0 | 4620 | 2.0257 | 0.6458 | | 1.9516 | 16.0 | 4928 | 2.0371 | 0.6450 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 2.0.0.dev20230212+cu118 - Datasets 2.9.0 - Tokenizers 0.13.2