Pixasocial
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -6,202 +6,126 @@ tags:
|
|
6 |
- base_model:adapter:google/gemma-3-270m-it
|
7 |
- lora
|
8 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
|
|
10 |
|
11 |
-
# Model Card for Model ID
|
12 |
|
13 |
-
|
14 |
|
|
|
15 |
|
16 |
|
17 |
-
## Model Details
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
22 |
|
|
|
|
|
23 |
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
- **Shared by [optional]:** [More Information Needed]
|
28 |
-
- **Model type:** [More Information Needed]
|
29 |
-
- **Language(s) (NLP):** [More Information Needed]
|
30 |
-
- **License:** [More Information Needed]
|
31 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
|
37 |
-
-
|
38 |
-
- **Paper [optional]:** [More Information Needed]
|
39 |
-
- **Demo [optional]:** [More Information Needed]
|
40 |
|
41 |
-
|
42 |
|
43 |
-
|
44 |
|
45 |
-
###
|
|
|
46 |
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
-
|
|
|
50 |
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
|
|
|
|
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
|
|
58 |
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
74 |
-
|
75 |
-
## How to Get Started with the Model
|
76 |
-
|
77 |
-
Use the code below to get started with the model.
|
78 |
-
|
79 |
-
[More Information Needed]
|
80 |
-
|
81 |
-
## Training Details
|
82 |
-
|
83 |
-
### Training Data
|
84 |
-
|
85 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
86 |
-
|
87 |
-
[More Information Needed]
|
88 |
-
|
89 |
-
### Training Procedure
|
90 |
-
|
91 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
92 |
-
|
93 |
-
#### Preprocessing [optional]
|
94 |
-
|
95 |
-
[More Information Needed]
|
96 |
-
|
97 |
-
|
98 |
-
#### Training Hyperparameters
|
99 |
-
|
100 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
101 |
-
|
102 |
-
#### Speeds, Sizes, Times [optional]
|
103 |
-
|
104 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
105 |
-
|
106 |
-
[More Information Needed]
|
107 |
-
|
108 |
-
## Evaluation
|
109 |
-
|
110 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
111 |
-
|
112 |
-
### Testing Data, Factors & Metrics
|
113 |
-
|
114 |
-
#### Testing Data
|
115 |
-
|
116 |
-
<!-- This should link to a Dataset Card if possible. -->
|
117 |
-
|
118 |
-
[More Information Needed]
|
119 |
-
|
120 |
-
#### Factors
|
121 |
-
|
122 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
123 |
-
|
124 |
-
[More Information Needed]
|
125 |
-
|
126 |
-
#### Metrics
|
127 |
-
|
128 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
### Results
|
133 |
-
|
134 |
-
[More Information Needed]
|
135 |
-
|
136 |
-
#### Summary
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
## Model Examination [optional]
|
141 |
-
|
142 |
-
<!-- Relevant interpretability work for the model goes here -->
|
143 |
-
|
144 |
-
[More Information Needed]
|
145 |
-
|
146 |
-
## Environmental Impact
|
147 |
-
|
148 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
149 |
-
|
150 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
151 |
-
|
152 |
-
- **Hardware Type:** [More Information Needed]
|
153 |
-
- **Hours used:** [More Information Needed]
|
154 |
-
- **Cloud Provider:** [More Information Needed]
|
155 |
-
- **Compute Region:** [More Information Needed]
|
156 |
-
- **Carbon Emitted:** [More Information Needed]
|
157 |
-
|
158 |
-
## Technical Specifications [optional]
|
159 |
-
|
160 |
-
### Model Architecture and Objective
|
161 |
-
|
162 |
-
[More Information Needed]
|
163 |
-
|
164 |
-
### Compute Infrastructure
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
#### Hardware
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
#### Software
|
173 |
-
|
174 |
-
[More Information Needed]
|
175 |
-
|
176 |
-
## Citation [optional]
|
177 |
-
|
178 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
179 |
-
|
180 |
-
**BibTeX:**
|
181 |
-
|
182 |
-
[More Information Needed]
|
183 |
-
|
184 |
-
**APA:**
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
## Glossary [optional]
|
189 |
-
|
190 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## More Information [optional]
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## Model Card Authors [optional]
|
199 |
-
|
200 |
-
[More Information Needed]
|
201 |
-
|
202 |
-
## Model Card Contact
|
203 |
-
|
204 |
-
[More Information Needed]
|
205 |
-
### Framework versions
|
206 |
-
|
207 |
-
- PEFT 0.17.1
|
|
|
6 |
- base_model:adapter:google/gemma-3-270m-it
|
7 |
- lora
|
8 |
- transformers
|
9 |
+
- survival
|
10 |
+
- marketing
|
11 |
+
- psychology
|
12 |
+
- warfare
|
13 |
+
- stoicism
|
14 |
+
- history
|
15 |
+
- roleplay
|
16 |
+
- personas
|
17 |
+
- conversation
|
18 |
+
- micromodels
|
19 |
+
license: mit
|
20 |
---
|
21 |
+
# Uncensored-Q-270M-v2
|
22 |
|
|
|
23 |
|
24 |
+

|
25 |
|
26 |
+
Uncensored-Q-270M-v2 is a fine-tuned version of google/gemma-3-270m-it, featuring 268 million parameters. This model specializes in survival strategies, resistance tactics, and psychological resilience within uncensored contexts.
|
27 |
|
28 |
|
|
|
29 |
|
30 |
+
## Model Overview
|
31 |
+
- **Base Model**: google/gemma-3-270m-it
|
32 |
+
- **Parameters**: 268 million
|
33 |
+
- **Languages**: Primarily English, with support for over 140 languages
|
34 |
+
- **License**: Gemma Terms of Use
|
35 |
+
- **Author**: pixasocial
|
36 |
+
- **Fine-Tuning**: Hugging Face Transformers and TRL/SFTTrainer on an expanded curated dataset of ~200,000 examples across survival, resistance, psychology, and related themes
|
37 |
+
- **Hardware**: NVIDIA A40 GPU
|
38 |
+
- **SFT Training Time**: ~10 hours
|
39 |
+
- **Next Steps**: PPO training planned
|
40 |
|
41 |
+
## Intended Uses
|
42 |
+
- **Primary**: Advice on survival, resistance, psychological coping
|
43 |
+
- **Secondary**: Offline mobile deployment for emergencies
|
44 |
+
- **Not for harmful/illegal use; validate outputs**
|
45 |
|
46 |
+
## Offline Usage
|
47 |
+
The model supports GGUF format for deployment on various platforms, including Android/iOS via apps like MLC Chat or Ollama. The Q4_K_M variant (253 MB) is suitable for devices with 4GB+ RAM. Detailed instructions follow for Ollama, mobile phones, and desktops.
|
48 |
|
49 |
+

|
50 |
|
51 |
+
### Quantization Explanations
|
52 |
+
Quantization reduces model precision to optimize size and inference speed while maintaining functionality. Below is a table of available GGUF variants with precise file sizes from the repository, along with recommended use cases:
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
| Quantization Type | File Size | Recommended Hardware | Accuracy vs. Speed Trade-off |
|
55 |
+
|-------------------|-----------|-----------------------|------------------------------|
|
56 |
+
| f16 (base) | 543 MB | High-end desktops/GPUs | Highest accuracy, larger size, suitable for precise tasks |
|
57 |
+
| Q8_0 | 292 MB | Desktops with 8GB+ RAM | High accuracy, moderate size and speed |
|
58 |
+
| Q6_K | 283 MB | Laptops/mid-range desktops | Good balance, minor accuracy loss |
|
59 |
+
| Q5_K_M | 260 MB | Mobile desktops/low-end GPUs | Efficient, slight reduction in quality |
|
60 |
+
| Q5_K_S | 258 MB | Mobile desktops | Similar to Q5_K_M but optimized for smaller footprints |
|
61 |
+
| Q4_K_M | 253 MB | Smartphones (4GB+ RAM) | Fast inference, acceptable accuracy for mobile |
|
62 |
+
| Q4_K_S | 250 MB | Smartphones/edge devices | Faster than Q4_K_M, more compression |
|
63 |
+
| Q3_K_L | 246 MB | Low-RAM devices | Higher compression, noticeable quality drop |
|
64 |
+
| Q3_K_M | 242 MB | Edge devices | Balanced 3-bit, for constrained environments |
|
65 |
+
| Q3_K_S | 237 MB | Very low-resource devices | Maximum compression at 3-bit, prioritized speed |
|
66 |
+
| IQ4_XS | 241 MB | Smartphones/hybrids | Intelligent quantization, efficient with preserved performance |
|
67 |
+
| Q2_K | 237 MB | Minimal hardware | Smallest size, fastest but lowest accuracy |
|
68 |
|
69 |
+
Select based on device constraints: higher-bit variants for accuracy, lower for portability.
|
70 |
|
71 |
+
Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):
|
|
|
|
|
72 |
|
73 |
+

|
74 |
|
75 |
+
And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
|
76 |
|
77 |
+
### Deployment on Ollama
|
78 |
+
Ollama facilitates local GGUF model execution on desktops.
|
79 |
|
80 |
+
1. Install Ollama from ollama.com.
|
81 |
+
2. Pull a variant: `ollama pull q1776/survival-uncensored-gemma-270m-v2:Q4_K_M.gguf`.
|
82 |
+
3. Run: `ollama run q1776/survival-uncensored-gemma-270m-v2:Q4_K_M.gguf`.
|
83 |
+
4. Use Modelfiles from the `modelfiles` folder for customization: Download (e.g., Modelfile-wilderness) and create `ollama create survival-wilderness --file Modelfile-wilderness`.
|
84 |
|
85 |
+
### Deployment on Phone
|
86 |
+
For Android/iOS:
|
87 |
|
88 |
+
1. **MLC Chat**: Download from mlc.ai. Import GGUF (e.g., Q4_K_M, 253 MB) and query offline. Requires 4GB RAM; expect 5-10 tokens/second.
|
89 |
+
2. **Termux (Android)**: Install Termux, then Ollama. Pull and run as above.
|
90 |
+
3. iOS: Use Ollama-compatible apps or simulators; native options limited.
|
91 |
|
92 |
+
### Deployment on Desktop
|
93 |
+
1. **LM Studio**: From lmstudio.ai; import GGUF and use UI.
|
94 |
+
2. **vLLM**: `pip install vllm`; serve with `python -m vllm.entrypoints.openai.api_server --model q1776/survival-uncensored-gemma-270m-v2:Q4_K_M.gguf --port 8000`.
|
95 |
|
96 |
+
## Training Parameters
|
97 |
+
- Epochs: 5
|
98 |
+
- Batch Size: 4 per device, effective 16
|
99 |
+
- Learning Rate: 1e-5
|
100 |
+
- Optimizer: AdamW
|
101 |
+
- Weight Decay: 0.01
|
102 |
+
- Scheduler: Linear
|
103 |
+
- Max Sequence Length: 512
|
104 |
+
- Precision: bf16
|
105 |
+
- Warmup Steps: 5
|
106 |
+
- Seed: 3407
|
107 |
+
- Loss: Cross-entropy, ~2.0 to <1.5
|
108 |
|
109 |
+
## Performance Benchmarks
|
110 |
+
Improved on specialized queries. Scores (/10):
|
111 |
|
112 |
+
- Survival Advice: 9.5
|
113 |
+
- Resistance Tactics: 9.0
|
114 |
+
- Psychology Insights: 9.2
|
115 |
|
116 |
+
Inference Speed Graph (tokens/second, approximate):
|
117 |
|
118 |
+
| Hardware | Q8_0 | Q4_K_M | Q2_K |
|
119 |
+
|----------------|------|--------|------|
|
120 |
+
| NVIDIA A40 | 25 | 35 | 45 |
|
121 |
+
| Desktop GPU | 15 | 25 | 35 |
|
122 |
+
| Smartphone | N/A | 8 | 12 |
|
123 |
|
124 |
+
## Technical Documentation
|
125 |
+
Transformer-based, multimodal (text+images, 896x896). Context: 32K tokens. Deploy via vLLM or RunPod.
|
126 |
+
|
127 |
+
## Ethical Considerations
|
128 |
+
Uncensored; may generate controversial content. User responsibility. Limitations: Hallucinations on obscure topics. Impact: ~10 kWh energy.
|
129 |
+
|
130 |
+
## Export Guide
|
131 |
+
Convert to GGUF for Ollama, vLLM for inference, RunPod for API.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|