pig4431 commited on
Commit
74d65d6
·
1 Parent(s): 356fac9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: CR_XLNet_5E
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # CR_XLNet_5E
16
+
17
+ This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6034
20
+ - Accuracy: 0.9067
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 3e-05
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 5
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
51
+ | 0.5384 | 0.33 | 50 | 0.4165 | 0.8533 |
52
+ | 0.3633 | 0.66 | 100 | 0.3059 | 0.8867 |
53
+ | 0.2642 | 0.99 | 150 | 0.2582 | 0.9267 |
54
+ | 0.2626 | 1.32 | 200 | 0.3324 | 0.9 |
55
+ | 0.1859 | 1.66 | 250 | 0.4076 | 0.9067 |
56
+ | 0.2631 | 1.99 | 300 | 0.4334 | 0.8867 |
57
+ | 0.1449 | 2.32 | 350 | 0.4264 | 0.9 |
58
+ | 0.1815 | 2.65 | 400 | 0.4334 | 0.8933 |
59
+ | 0.1316 | 2.98 | 450 | 0.4436 | 0.9 |
60
+ | 0.0725 | 3.31 | 500 | 0.6165 | 0.9 |
61
+ | 0.0708 | 3.64 | 550 | 0.6737 | 0.8933 |
62
+ | 0.0821 | 3.97 | 600 | 0.5777 | 0.9067 |
63
+ | 0.0381 | 4.3 | 650 | 0.6052 | 0.9 |
64
+ | 0.0441 | 4.64 | 700 | 0.5853 | 0.9133 |
65
+ | 0.0237 | 4.97 | 750 | 0.6034 | 0.9067 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.24.0
71
+ - Pytorch 1.13.0
72
+ - Datasets 2.3.2
73
+ - Tokenizers 0.13.1