File size: 100,892 Bytes
33b8599 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 |
# ========== AUTO GENERATED FILE =========
# This file is auto generated by 'hf_builder.py', do not edit this file directly
# As part of the RWKV/RWKV-block project
# ========== =================== =========
# ----------------
# block/kernel/rwkv7_attn_pytorch.py
# ----------------
import torch
# Enable tensorfloat 32
torch.set_float32_matmul_precision('high')
# Handles the RWKV v7 attention mechanic, in pure pytorch
def rwkv7_attn_pytorch(
r,w,k,v, kk,a,
BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE,
xx, wkv_state_in
):
### Reference implement
# return rwkv7_attn_pytorch_ref(
# r,w,k,v, kk,a,
# BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE,
# xx, wkv_state_in
# )
###
# # This works, but it has too much of a vram overhead
###
# return rwkv7_attn_pytorch_v2_chunk_w_compile_break(
# r,w,k,v, kk,a,
# BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE,
# xx, wkv_state_in
# )
###
# > per 9k chunk, per block, on a 4090 ...
# > with forward_with_reduce_compile on the timemix ...
#
# Somehow...
# The reference implement takes: 2281ms
# The chunked version takes: 389ms (chunksize 256)
# Get the shape
B,T,HC = w.shape
# Compute the chunks
chunk_size = 256
chunk_count = SEQ_LEN // chunk_size
chunk_remainder = SEQ_LEN % chunk_size
# The wkv_state_out
wkv_state_out = wkv_state_in.float()
# # List of tensor to build
# xlist = []
xx = xx.clone()
# Loop over the chunks
for i in range(chunk_count):
sta = i * chunk_size
end = sta + chunk_size
xx[:,sta:end], wkv_state_out = rwkv7_attn_pytorch_v2_chunk_w_compile_break(
# xpart, wkv_state_out = rwkv7_attn_pytorch_chunk_with_w_compile_break(
r[:,sta:end],w[:,sta:end],k[:,sta:end],v[:,sta:end],
kk[:,sta:end],a[:,sta:end],
BATCH_SIZE, chunk_size, N_HEAD, HEAD_SIZE,
# xx[:,sta:end], wkv_state_out
torch.zeros(B,chunk_size,HC, dtype=xx.dtype, device=xx.device), wkv_state_out
)
# xlist.append(xpart)
# Handle the remainder
if chunk_remainder > 0:
sta = chunk_count * chunk_size
end = sta + chunk_remainder
xx[:,sta:end], wkv_state_out = rwkv7_attn_pytorch_v2_chunk_w_compile_break(
# xpart, wkv_state_out = rwkv7_attn_pytorch_chunk_with_w_compile_break(
r[:,sta:end],w[:,sta:end],k[:,sta:end],v[:,sta:end],
kk[:,sta:end],a[:,sta:end],
BATCH_SIZE, chunk_remainder, N_HEAD, HEAD_SIZE,
# xx[:,sta:end], wkv_state_out,
torch.zeros(B,chunk_remainder,HC, dtype=xx.dtype, device=xx.device), wkv_state_out,
# offset=0, chunk_size=chunk_remainder
)
# xlist.append(xpart)
# # Concatenate the list
# xx = torch_cat_no_compiler(xlist, dim=1)
# Return the output
return xx, wkv_state_out.to(dtype=wkv_state_in.dtype)
####################################################################################################
# Working reference copy, that has been validated to be "identical" to the reference implementation
# However this has known pytorch compilation issues, hence the modified chunk wise version is used
# instead for an approximate 5x speed up
####################################################################################################
@torch.compiler.disable()
def rwkv7_attn_pytorch_ref(
r,w,k,v, kk,a,
BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE,
xx, wkv_state_in
):
######## pure pytorch method
# See: https://github.com/BlinkDL/RWKV-LM/blob/d4c42b2cac10f8f3896ce153e2310dc763662b7a/RWKV-v7/rwkv_v7_demo_fast.py#L238
########
vk_state = wkv_state_in.float()
for t in range(SEQ_LEN):
r_, w_, k_, v_, kk_, a_ = r[:,t], w[:,t], k[:,t], v[:,t], kk[:,t], a[:,t]
vk = v_.view(BATCH_SIZE,N_HEAD,HEAD_SIZE,1) @ k_.view(BATCH_SIZE,N_HEAD,1,HEAD_SIZE)
ab = (-kk_).view(BATCH_SIZE,N_HEAD,HEAD_SIZE,1) @ (kk_*a_).view(BATCH_SIZE,N_HEAD,1,HEAD_SIZE)
vk_state = (vk_state * w_.view(BATCH_SIZE,N_HEAD,1,HEAD_SIZE).float() + vk_state @ ab.float() + vk.float())
xx[:,t] = ((vk_state.to(dtype=xx.dtype) @ r_.view(BATCH_SIZE,N_HEAD,HEAD_SIZE,1)).view(BATCH_SIZE,N_HEAD*HEAD_SIZE))
wkv_state_out = vk_state.to(dtype=wkv_state_in.dtype)
return xx, wkv_state_out
####################################################################################################
####################################################################################################
# Modified reference computation done in fp32,
# with changes made to bring the result closer to the cuda kernel
####################################################################################################
@torch.compiler.disable()
def rwkv7_attn_pytorch_ref_fp32(
r,w,k,v, kk, iclr,
BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE,
xx, wkv_state_in
):
######## pure pytorch method (modified for fp32)
# See: https://github.com/BlinkDL/RWKV-LM/blob/d4c42b2cac10f8f3896ce153e2310dc763662b7a/RWKV-v7/rwkv_v7_demo_fast.py#L238
########
w = (-w.float().exp()).exp()
# wkv_state_in = torch.zeros(BATCH_SIZE,N_HEAD,HEAD_SIZE,HEAD_SIZE, dtype=torch.float,device=w.device)
vk_state = wkv_state_in.float()
a = -kk
b = kk * iclr
for t in range(SEQ_LEN):
r_, w_, k_, v_, a_, b_= r[:,t].float(), w[:,t].float(), k[:,t].float(), v[:,t].float(), a[:,t].float(), b[:,t].float()
# ab = (-kk_).view(BATCH_SIZE,N_HEAD,HEAD_SIZE,1) @ (kk_*a_).view(BATCH_SIZE,N_HEAD,1,HEAD_SIZE)
vk = v_.view(BATCH_SIZE,N_HEAD,HEAD_SIZE,1) @ k_.view(BATCH_SIZE,N_HEAD,1,HEAD_SIZE)
vk_state = (vk_state * w_.view(BATCH_SIZE,N_HEAD,1,HEAD_SIZE).float() + vk_state @ a_.float().view(BATCH_SIZE, N_HEAD,HEAD_SIZE,1) @ b_.view(BATCH_SIZE, N_HEAD,1,HEAD_SIZE) + vk.float())
xx[:,t] = ((vk_state @ r_.view(BATCH_SIZE,N_HEAD,HEAD_SIZE,1)).view(BATCH_SIZE,N_HEAD*HEAD_SIZE)).to(dtype=xx.dtype)
wkv_state_out = vk_state.to(dtype=wkv_state_in.dtype)
return xx, wkv_state_out
####################################################################################################
def rwkv7_attn_pytorch_chunk(
r,w,k,v, kk,a,
BATCH_SIZE, N_HEAD, HEAD_SIZE,
xx, wkv_state_in,
offset=0, chunk_size=16
):
'''
Chunked version of the RWKV7 attention, for better performance.
If the chunk size is less then 128, this is generally compilable
This is used by the triton/cuda implement, for the remaining % 16 chunks
'''
######## pure pytorch method
# See: https://github.com/BlinkDL/RWKV-LM/blob/d4c42b2cac10f8f3896ce153e2310dc763662b7a/RWKV-v7/rwkv_v7_demo_fast.py#L238
########
vk_state = wkv_state_in.float()
for i in range(chunk_size):
t = offset + i
r_, w_, k_, v_, kk_, a_ = r[:,t], w[:,t], k[:,t], v[:,t], kk[:,t], a[:,t]
vk = v_.view(BATCH_SIZE,N_HEAD,HEAD_SIZE,1) @ k_.view(BATCH_SIZE,N_HEAD,1,HEAD_SIZE)
ab = (-kk_).view(BATCH_SIZE,N_HEAD,HEAD_SIZE,1) @ (kk_*a_).view(BATCH_SIZE,N_HEAD,1,HEAD_SIZE)
vk_state = (vk_state * w_.view(BATCH_SIZE,N_HEAD,1,HEAD_SIZE).float() + vk_state @ ab.float() + vk.float())
xx[:,t] = (vk_state.to(dtype=xx.dtype) @ r_.view(BATCH_SIZE,N_HEAD,HEAD_SIZE,1)).view(BATCH_SIZE,N_HEAD*HEAD_SIZE)
wkv_state_out = vk_state.to(dtype=wkv_state_in.dtype)
return xx, wkv_state_out
def rwkv7_attn_pytorch_v2_chunk_w_compile_break(
r,w,k,v, kk,a,
BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE,
xx, wkv_state_in
):
'''
Chunked version of the RWKV7 attention, for better performance
'''
full_vk_ = v.view(BATCH_SIZE,SEQ_LEN,N_HEAD, HEAD_SIZE,1) @ k.view(BATCH_SIZE,SEQ_LEN,N_HEAD, 1,HEAD_SIZE)
full_iclr_ = (kk * a).view(BATCH_SIZE,SEQ_LEN,N_HEAD,1,HEAD_SIZE)
full_ab = (-kk).view(BATCH_SIZE,SEQ_LEN,N_HEAD, HEAD_SIZE,1) @ full_iclr_
wkv_xx = torch.empty(BATCH_SIZE,SEQ_LEN,N_HEAD,HEAD_SIZE,HEAD_SIZE, dtype=xx.dtype, device=xx.device)
wkv_xx, wkv_state_out = rwkv7_attn_pytorch_v2_inner_w_compile_break(
r,w,
full_vk_, full_ab,
BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE,
wkv_xx, wkv_state_in
# xx, wkv_state_in
)
# if BATCH_SIZE != 1:
# print("BATCH_SIZE != 1 : ", BATCH_SIZE)
# if SEQ_LEN != 256:
# print("SEQ_LEN != 256 : ", SEQ_LEN)
# xx[:,t] = ((wkv_state.to(dtype=xx.dtype) @ r_.view(BATCH_SIZE,N_HEAD,HEAD_SIZE,1)).view(BATCH_SIZE,N_HEAD*HEAD_SIZE))
xx[:] = (wkv_xx.to(dtype=xx.dtype) @ r.view(BATCH_SIZE,SEQ_LEN,N_HEAD,HEAD_SIZE,1)).view(BATCH_SIZE,SEQ_LEN,N_HEAD*HEAD_SIZE)
return xx, wkv_state_out
@torch.compiler.disable()
def rwkv7_attn_pytorch_v2_inner_w_compile_break(
r, w,
full_vk_, full_ab,
BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE,
xx, wkv_state_in
):
'''
Isolated sub-function with no compilation
'''
return rwkv7_attn_pytorch_v2_inner_jit(
r, w,
full_vk_, full_ab,
BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE,
xx, wkv_state_in
)
# @torch.compile(fullgraph=True)
@torch.jit.script
def rwkv7_attn_pytorch_v2_inner_jit(
r, w,
full_vk_, full_ab,
BATCH_SIZE:int, SEQ_LEN:int, N_HEAD:int, HEAD_SIZE:int,
wkv_xx, wkv_state_in
):
'''
Isolated sub-function with JIT
'''
# wkv_xx = torch.zeros(BATCH_SIZE,SEQ_LEN,N_HEAD,HEAD_SIZE,HEAD_SIZE, dtype=xx.dtype,device=xx.device)
# wkv_state_in = torch.zeros(BATCH_SIZE,N_HEAD,HEAD_SIZE,HEAD_SIZE, dtype=torch.float,device=w.device)
wkv_state = wkv_state_in
for t in range(SEQ_LEN):
# r_ = r[:,t]
# w_ = w[:,t]
# vk = full_vk_[:,t].view(BATCH_SIZE,N_HEAD,HEAD_SIZE,HEAD_SIZE)
# ab = full_ab[:,t].view(BATCH_SIZE,N_HEAD,HEAD_SIZE,HEAD_SIZE)
wkv_state = (wkv_state * w[:,t].view(BATCH_SIZE,N_HEAD,1,HEAD_SIZE).float() + wkv_state @ full_ab[:,t].view(BATCH_SIZE,N_HEAD,HEAD_SIZE,HEAD_SIZE).float() + full_vk_[:,t].view(BATCH_SIZE,N_HEAD,HEAD_SIZE,HEAD_SIZE).float()).clone()
wkv_xx[:,t] = wkv_state.to(dtype=w.dtype)
return wkv_xx, wkv_state
# xx[:,t] = ((wkv_state.to(dtype=xx.dtype) @ r_.view(BATCH_SIZE,N_HEAD,HEAD_SIZE,1)).view(BATCH_SIZE,N_HEAD*HEAD_SIZE))
# return xx, wkv_state
# ----------------
# block/kernel/rwkv7_attn_cuda.py
# ----------------
import torch, os, time
# from .rwkv7_attn_pytorch import rwkv7_attn_pytorch_chunk
####################################################################################################
# Stateless reference implementation
####################################################################################################
def load_ref_wkv_cuda_kernel(CHUNK_LEN = 16, HEAD_SIZE = 64):
from torch.utils.cpp_extension import load
# load_name = f"wind_backstepping_C{HEAD_SIZE}_L{CHUNK_LEN}"
load_name = "wind_backstepping"
load_file = "wkv7"
# Check if the load_name is already loaded
if load_name in torch.ops:
return torch.ops.wind_backstepping
# Logging of warning usage for reference implementation
print("[WARNING] Reference CUDA kernel does not support input RWKV state, and is used only for training/validaiton purposes")
# Get the this script file path, to cmpute the cuda path
this_file_path = os.path.dirname(os.path.abspath(__file__))
# # Get the device compute capability
# cuda_device = torch.cuda.current_device()
# compute_capability = torch.cuda.get_device_capability(cuda_device)
# compute_capability_str = f"{compute_capability[0]}{compute_capability[1]}"
# print("[INFO] Using compute capability:", compute_capability_str)
# Load the kernel, there is some wierd edge condition in compilation,
# that try catching.... and trying again.... sometimes work?
flags = ['-res-usage', f'-D_C_={HEAD_SIZE}', f"-D_CHUNK_LEN_={CHUNK_LEN}", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization"] #
try:
load(name=load_name, sources=[f'{this_file_path}/cuda/{load_file}_cuda.cu', f'{this_file_path}/cuda/{load_file}_op.cpp'], is_python_module=False, verbose=True, extra_cuda_cflags=flags)
except Exception as e:
print("[WARNING] Failed to load the kernel, trying again (sometimes the compiler has wierd race condition)...")
time.sleep(2) # Somehow this works, with minor compilation error, that passes on subsequent reruns
load(name=load_name, sources=[f'{this_file_path}/cuda/{load_file}_cuda.cu', f'{this_file_path}/cuda/{load_file}_op.cpp'], is_python_module=False, verbose=True, extra_cuda_cflags=flags)
# Return the loaded kernel
return torch.ops.wind_backstepping
@torch.compiler.disable()
def ref_wkv_cuda_forward(w,q,k,v,z,b, y,s,sa):
torch.ops.wind_backstepping.forward(w,q,k,v,z,b, y,s,sa)
@torch.compiler.disable()
def ref_wkv_cuda_backward(w,q,k,v,z,b, dy,s,sa, dw,dq,dk,dv,dz,db):
torch.ops.wind_backstepping.backward(w,q,k,v,z,b, dy,s,sa, dw,dq,dk,dv,dz,db)
class RefCudaWindBackstepping(torch.autograd.Function):
@staticmethod
def forward(ctx, w,q,k,v,z,b):
CHUNK_LEN=16
B,T,H,C = w.shape
assert T%CHUNK_LEN == 0
assert all(i.dtype==torch.bfloat16 for i in [w,q,k,v,z,b])
assert all(i.is_contiguous() for i in [w,q,k,v,z,b])
y = torch.empty_like(v)
s = torch.empty(B,H,T//CHUNK_LEN,C,C, dtype=torch.float32,device=w.device)
sa = torch.empty(B,T,H,C, dtype=torch.float32,device=w.device)
ref_wkv_cuda_forward(w,q,k,v,z,b, y,s,sa)
ctx.save_for_backward(w,q,k,v,z,b,s,sa)
return y
@staticmethod
def backward(ctx, dy):
assert all(i.dtype==torch.bfloat16 for i in [dy])
assert all(i.is_contiguous() for i in [dy])
w,q,k,v,z,b,s,sa = ctx.saved_tensors
dw,dq,dk,dv,dz,db = [torch.empty_like(x) for x in [w,q,k,v,z,b]]
ref_wkv_cuda_backward(w,q,k,v,z,b, dy,s,sa, dw,dq,dk,dv,dz,db)
return dw,dq,dk,dv,dz,db
@torch.compiler.disable()
def rwkv7_attn_cuda_ref(q,w,k,v, kk,iclr, HEAD_SIZE=64, s0=None):
# Preload the kernel
load_ref_wkv_cuda_kernel()
# Get the shape
B,T,HC = w.shape
C = HEAD_SIZE
H = HC//C
# Assert that the chunk is multiple of 16
assert T % 16 == 0, 'reference cuda, only works in multiple of 16'
# Initialize the state, if not provided - for compatibility (THE STATE IS NOT UPDATED)
s0 = torch.zeros(B,H,C,C, dtype=torch.float,device=w.device) if s0 is None else s0
# Handling the cuda kernel
q,w,k,v,a,b = [i.view(B,T,H,C) for i in [q,w,k,v,(-kk),(kk*iclr)]]
# Forward with backprop
xx = RefCudaWindBackstepping.apply(w,q,k,v,a,b)
return xx.view(B,T,HC), s0.view(B,H,C,C)
####################################################################################################
# State based cuda code
####################################################################################################
def load_wkv_cuda_kernel(CHUNK_LEN = 16, HEAD_SIZE = 64):
from torch.utils.cpp_extension import load
# load_name = f"wind_backstepping_C{HEAD_SIZE}_L{CHUNK_LEN}"
load_name = "state_wind_backstepping"
load_file = "state_wkv7"
# Check if the load_name is already loaded
if load_name in torch.ops:
return torch.ops.state_wind_backstepping
# Get the this script file path, to cmpute the cuda path
this_file_path = os.path.dirname(os.path.abspath(__file__))
# Load the kernel, there is some wierd edge condition in compilation,
# that try catching.... and trying again.... sometimes work?
flags = ['-res-usage', f'-D_C_={HEAD_SIZE}', f"-D_CHUNK_LEN_={CHUNK_LEN}", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization"] #
try:
load(name=load_name, sources=[f'{this_file_path}/cuda/{load_file}_cuda.cu', f'{this_file_path}/cuda/{load_file}_op.cpp'], is_python_module=False, verbose=True, extra_cuda_cflags=flags)
except Exception as e:
print("[WARNING] Failed to load the kernel, trying again (sometimes the compiler has wierd race condition)...")
time.sleep(2) # Somehow this works, with minor compilation error, that passes on subsequent reruns
load(name=load_name, sources=[f'{this_file_path}/cuda/{load_file}_cuda.cu', f'{this_file_path}/cuda/{load_file}_op.cpp'], is_python_module=False, verbose=True, extra_cuda_cflags=flags)
# Return the loaded kernel
return torch.ops.state_wind_backstepping
@torch.compiler.disable()
def wkv_cuda_forward(state, w,q,k,v,z,b, y,s,sa):
torch.ops.state_wind_backstepping.forward(state, w,q,k,v,z,b, y,s,sa)
@torch.compiler.disable()
def wkv_cuda_backward(state, w,q,k,v,z,b, dy,s,sa, dw,dq,dk,dv,dz,db):
torch.ops.state_wind_backstepping.backward(state, w,q,k,v,z,b, dy,s,sa, dw,dq,dk,dv,dz,db)
class CudaWindBackstepping(torch.autograd.Function):
@staticmethod
def forward(ctx, s0, w,q,k,v,z,b):
CHUNK_LEN=16
B,T,H,C = w.shape
assert T%CHUNK_LEN == 0
assert all(i.dtype==torch.bfloat16 for i in [w,q,k,v,z,b])
assert all(i.is_contiguous() for i in [w,q,k,v,z,b])
y = torch.empty_like(v)
s = torch.empty(B,H,T//CHUNK_LEN,C,C, dtype=torch.float32,device=w.device)
sa = torch.empty(B,T,H,C, dtype=torch.float32,device=w.device)
sOri = s0.clone()
wkv_cuda_forward(s0, w,q,k,v,z,b, y,s,sa)
ctx.save_for_backward(sOri, w,q,k,v,z,b,s,sa)
return y
@staticmethod
def backward(ctx, dy):
assert all(i.dtype==torch.bfloat16 for i in [dy])
assert all(i.is_contiguous() for i in [dy])
state,w,q,k,v,z,b,s,sa = ctx.saved_tensors
dS0,dw,dq,dk,dv,dz,db = [torch.empty_like(x) for x in [state,w,q,k,v,z,b]]
wkv_cuda_backward(state, w,q,k,v,z,b, dy,s,sa, dw,dq,dk,dv,dz,db)
return dS0,dw,dq,dk,dv,dz,db
@torch.compiler.disable()
def rwkv7_attn_cuda(r,w,k,v, kk,iclr, HEAD_SIZE=64, s0=None):
# Preload the kernel
load_wkv_cuda_kernel()
# Get the shape
B,T,HC = w.shape
# Check if the chunk is multiple of 16
chunk_remainder = T % 16
# Initialize the state
C = HEAD_SIZE
H = HC//C
# Initialize the state
s0 = torch.zeros(B,H,C,C, dtype=torch.float,device=w.device) if s0 is None else s0
sT = s0.to(dtype=torch.float)
# Optimize the call, if chunk is multiple of 16
if chunk_remainder == 0:
chunk_xx, chunk_sT = rwkv7_attn_cuda_chunk(r,w,k,v, kk,iclr, HEAD_SIZE, sT)
return chunk_xx, chunk_sT.to(dtype=s0.dtype)
# Compute the number of chunks
chunks = T // 16
si = chunks * 16
# Get the chunked output
chunk_xx, chunk_sT = rwkv7_attn_cuda_chunk(
r[:,:si],w[:,:si],k[:,:si],v[:,:si], kk[:,:si],iclr[:,:si],
HEAD_SIZE, s0
)
# Get the remainder
remain_xx, last_sT = rwkv7_attn_pytorch_chunk(
r[:,si:],torch.exp(-torch.exp(w[:,si:])),k[:,si:],v[:,si:], kk[:,si:],iclr[:,si:],
B, H, C,
torch.zeros(B, chunk_remainder, HC, device=w.device, dtype=w.dtype),
chunk_sT, chunk_size=chunk_remainder
)
# Concatenate and return results
return torch.cat([chunk_xx.to(dtype=w.dtype), remain_xx.to(dtype=w.dtype)], dim=1), last_sT.to(dtype=s0.dtype)
def rwkv7_attn_cuda_chunk(r,w,k,v, kk,iclr, HEAD_SIZE=64, s0=None):
'''
Triton implementation running in blocks of 16 (hardcoded requirement for the kernel)
'''
B,T,HC = w.shape
assert T % 16 == 0, 'pure cuda, only works in multiple of 16'
C = HEAD_SIZE
H = HC//C
# Handling the cuda kernel
a,b = -kk, (kk*iclr)
r,w,k,v,a,b = [i.view(B,T,H,C) for i in [r,w,k,v,a,b]]
if s0 is None:
s1 = torch.zeros(B,H,C,C, dtype=torch.float,device=w.device)
else:
s1 = s0.clone()
# Forward with backprop
xx = CudaWindBackstepping.apply(s1,w,r,k,v,a,b)
return xx.view(B,T,HC), s1.view(B,H,C,C)
# ----------------
# block/kernel/rwkv7_attn_fla.py
# ----------------
def rwkv7_attn_fla(
r,w,k,v, kk,iclr,
BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE,
xx, wkv_state_in
):
from fla.ops.rwkv7.chunk import chunk_rwkv7
# Preprocessing the FLA
r,w,k,v,a,b = [i.view(BATCH_SIZE,SEQ_LEN,N_HEAD,-1) for i in [r,w,k,v,-kk,(kk*iclr)]]
log_w = -w.float().exp()
# Run the FLA
output, vk_state = chunk_rwkv7(r=r, log_w=log_w, k=k, v=v, a=a, b=b, initial_state=wkv_state_in.float(), output_final_state=True)
return output, vk_state.to(dtype=wkv_state_in.dtype)
def rwkv7_attn_fused_reccurent_fla(
r,w,k,v, kk,iclr,
BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE,
xx, wkv_state_in
):
from fla.ops.rwkv7.fused_recurrent import fused_recurrent_rwkv7
# Preprocessing the FLA
r,w,k,v,a,b = [i.view(BATCH_SIZE,SEQ_LEN,N_HEAD,-1) for i in [r,w,k,v,-kk,(kk*iclr)]]
log_w = -w.float().exp()
# Run the FLA
output, vk_state = fused_recurrent_rwkv7(r=r, log_w=log_w, k=k, v=v, a=a, b=b, initial_state=wkv_state_in.float(), output_final_state=True)
return output, vk_state.to(dtype=wkv_state_in.dtype)
# ----------------
# block/kernel/rwkv7_attn_triton.py
# ----------------
import torch
import torch as th
import triton
import triton.language as tl
####################################################################################################
# Triton specific coding (aka mostly songlin & Johan Sokrates Wind stuff)
#
# Copyright (c) 2024, Johan Sokrates Wind, licensed under MIT
# https://github.com/johanwind/wind_rwkv/blob/main/LICENSE
####################################################################################################
# -------------------------
# Triton "smallhead" and "bighead" common code
# -------------------------
@triton.jit
def IND3(a,b,c,nb,nc):
return (a*nb+b)*nc+c
@triton.jit
def IND4(a,b,c,d,nb,nc,nd):
return ((a*nb+b)*nc+c)*nd+d
@triton.jit
def IND5(a,b,c,d,e,nb,nc,nd,ne):
return (((a*nb+b)*nc+c)*nd+d)*ne+e
@triton.jit
def _prod(a,b): return a*b
# inv(I-A) where A is a strictly lower triangular nxn matrix
@triton.jit
def tri_minv(A, n:tl.constexpr, prec:tl.constexpr):
i = tl.arange(0,n)
prod = (i[None,:]==i[:,None]).to(tl.float32)
for j in range(n-1):
prod += tl_dot(prec, prod, (A*((i[None,:]==j)*(i[:,None]>i[None,:]))).trans())
return prod.trans()
@triton.jit
def tl_dot(prec:tl.constexpr, a, b):
if prec == 'fp32':
return tl.dot(a.to(tl.float32),b.trans().to(tl.float32).trans(), allow_tf32=False)
elif prec == 'tf32':
return tl.dot(a.to(tl.float32),b.trans().to(tl.float32).trans(), allow_tf32=True)
elif prec == 'bf16':
return tl.dot(a.to(tl.bfloat16),b.trans().to(tl.bfloat16).trans(), allow_tf32=True)
else:
tl.static_assert(False)
# -------------------------
# Triton "smallhead" code
# -------------------------
@triton.jit
def fw_attn_triton(w_,q_,k_,v_,a_,b_, s0_,y_,s_,sT_, B:tl.constexpr,T:tl.constexpr,H:tl.constexpr,C:tl.constexpr,dT:tl.constexpr, prec:tl.constexpr):
bi = tl.program_id(1)
hi = tl.program_id(0)
i = tl.arange(0,C)[None,:]
state = tl.load(s0_+IND4(bi,hi,i.trans(),i, H,C,C)).to(tl.float32)
for t0 in range(T//dT):
t = t0*dT+tl.arange(0,dT)[:,None]
sw = tl.load(w_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sq = tl.load(q_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sk = tl.load(k_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sv = tl.load(v_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sa = tl.load(a_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sb = tl.load(b_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
w = (-sw.exp()).exp()
fw = tl.reduce(w, 0, _prod, keep_dims=True)
incl_pref = tl.cumprod(w,axis=0)
non_incl_pref = incl_pref / w
inv_incl_pref = 1 / incl_pref
wq = sq * incl_pref
wa = sa * non_incl_pref
kwi = sk * inv_incl_pref
bwi = sb * inv_incl_pref
mask1 = (t > t.trans())
ab = tl_dot(prec, wa, bwi.trans()) * mask1
ak = tl_dot(prec, wa, kwi.trans()) * mask1
ab_inv = tri_minv(ab, dT, prec)
ab_u = tl_dot(prec, ak, sv) + tl_dot(prec, wa, state.trans())
u = tl_dot(prec, ab_inv, ab_u)
mask2 = (t >= t.trans())
qk = tl_dot(prec, wq, kwi.trans()) * mask2
qb = tl_dot(prec, wq, bwi.trans()) * mask2
yy = tl_dot(prec, qk, sv) + tl_dot(prec, qb, u) + tl_dot(prec, wq, state.trans())
tl.store(y_+IND4(bi,t,hi,i, T,H,C), yy.to(tl.bfloat16))
tl.store(s_+IND5(bi,hi,t0,i.trans(),i, H,T//dT,C,C), state.to(tl.float32))
state = state * fw + tl_dot(prec, sv.trans(), kwi*fw) + tl_dot(prec, u.trans(), bwi*fw)
tl.store(sT_+IND4(bi,hi,i.trans(),i, H,C,C), state.to(tl.bfloat16))
@triton.jit
def bw_attn_triton(w_,q_,k_,v_,a_,b_, dy_,s_,dsT_, dw_,dq_,dk_,dv_,da_,db_,ds0_, B:tl.constexpr,T:tl.constexpr,H:tl.constexpr,C:tl.constexpr,dT:tl.constexpr, prec:tl.constexpr):
bi = tl.program_id(1)
hi = tl.program_id(0)
i = tl.arange(0,C)[None,:]
dstate = tl.load(dsT_+IND4(bi,hi,i.trans(),i, H,C,C)).to(tl.float32)
for t0 in range(T//dT-1,-1,-1):
t = t0*dT+tl.arange(0,dT)[:,None]
state = tl.load(s_+IND5(bi,hi,t0,i.trans(),i, H,T//dT,C,C)).to(tl.float32)
sw = tl.load(w_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sq = tl.load(q_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sk = tl.load(k_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sv = tl.load(v_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sa = tl.load(a_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sb = tl.load(b_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sdy = tl.load(dy_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
dw_fac = -sw.exp()
w = dw_fac.exp()
fw = tl.reduce(w, 0, _prod, keep_dims=True)
incl_pref = tl.cumprod(w,axis=0)
non_incl_pref = incl_pref / w
inv_incl_pref = 1 / incl_pref
wq = sq * incl_pref
wa = sa * non_incl_pref
kwi = sk * inv_incl_pref
bwi = sb * inv_incl_pref
mask1 = (t > t.trans())
ab = tl_dot(prec, wa, bwi.trans()) * mask1
ak = tl_dot(prec, wa, kwi.trans()) * mask1
ab_inv = tri_minv(ab, dT, prec)
ab_u = tl_dot(prec, ak, sv) + tl_dot(prec, wa, state.trans())
u = tl_dot(prec, ab_inv, ab_u)
mask2 = (t >= t.trans())
qk = tl_dot(prec, wq, kwi.trans()) * mask2
qb = tl_dot(prec, wq, bwi.trans()) * mask2
du = tl_dot(prec, qb.trans(), sdy) + tl_dot(prec, bwi*fw, dstate.trans())
dab_u = tl_dot(prec, ab_inv.trans(), du)
dv = tl_dot(prec, qk.trans(), sdy) + tl_dot(prec, kwi*fw, dstate.trans()) + tl_dot(prec, ak.trans(), dab_u)
tl.store(dv_+IND4(bi,t,hi,i, T,H,C), dv.to(tl.bfloat16))
dab = tl_dot(prec, tl_dot(prec, ab_inv.trans(), du), u.trans()) * mask1
dak = tl_dot(prec, dab_u, sv.trans()) * mask1
dab_u_state = tl_dot(prec, dab_u, state)
da = non_incl_pref * (tl_dot(prec, dab, bwi) + tl_dot(prec, dak, kwi) + dab_u_state)
tl.store(da_+IND4(bi,t,hi,i, T,H,C), da.to(tl.bfloat16))
dqb = tl_dot(prec, sdy, u.trans()) * mask2
dqk = tl_dot(prec, sdy, sv.trans()) * mask2
dy_state = tl_dot(prec, sdy, state)
dq = incl_pref * (tl_dot(prec, dqb, bwi) + tl_dot(prec, dqk, kwi) + dy_state)
tl.store(dq_+IND4(bi,t,hi,i, T,H,C), dq.to(tl.bfloat16))
fw_u_dstate = fw * tl_dot(prec, u, dstate)
db = inv_incl_pref * (tl_dot(prec, dab.trans(), wa) + tl_dot(prec, dqb.trans(), wq) + fw_u_dstate)
tl.store(db_+IND4(bi,t,hi,i, T,H,C), db.to(tl.bfloat16))
fw_v_dstate = fw * tl_dot(prec, sv, dstate)
dk = inv_incl_pref * (tl_dot(prec, dak.trans(), wa) + tl_dot(prec, dqk.trans(), wq) + fw_v_dstate)
tl.store(dk_+IND4(bi,t,hi,i, T,H,C), dk.to(tl.bfloat16))
dw0 = fw * tl.sum(state*dstate, axis=0,keep_dims=True)
for k in range(t0*dT,t0*dT+dT):
lmask = (t<k).trans()
A = (tl_dot(prec, dab*lmask, bwi) + tl_dot(prec, dak*lmask, kwi)) * wa * (t>k)
A += (tl_dot(prec, dqb*lmask, bwi) + tl_dot(prec, dqk*lmask, kwi)) * wq * (t>=k)
A += (fw_v_dstate*kwi + fw_u_dstate*bwi) * (t<k)
A += dab_u_state*wa * (t>k) + dy_state*wq * (t>=k)
dw = tl.sum(A, axis=0,keep_dims=True) + dw0
wk = tl.load(w_+IND4(bi,k,hi,i, T,H,C)).to(tl.float32)
dw *= -wk.exp()
tl.store(dw_+IND4(bi,k,hi,i, T,H,C), dw.to(tl.bfloat16))
dstate = dstate * fw + tl_dot(prec, sdy.trans(), wq) + tl_dot(prec, dab_u.trans(), wa)
tl.store(ds0_+IND4(bi,hi,i.trans(),i, H,C,C), dstate.to(tl.bfloat16))
class TritonRWKV7(th.autograd.Function):
@staticmethod
def forward(ctx, w,q,k,v,z,b,s0, dot_prec):
K = 16
B,T,H,C = w.shape
s0 = th.zeros(B,H,C,C, dtype=w.dtype,device=w.device) if s0 is None else s0
y = th.empty_like(v)
sT = th.empty_like(s0)
s = th.zeros(B,H,T//K,C,C, dtype=th.float32,device=w.device)
fw_attn_triton[(H,B)](w,q,k,v,z,b, s0,y,s,sT, B,T,H,C,K, dot_prec)
ctx.dot_prec = dot_prec
ctx.save_for_backward(w,q,k,v,z,b,s)
return y, sT
@staticmethod
def backward(ctx, dy, dsT):
K = 16
w,q,k,v,z,b,s = ctx.saved_tensors
B,T,H,C = w.shape
dw,dq,dk,dv,dz,db,ds0 = [th.empty_like(x) for x in [w,q,k,v,z,b,dsT]]
bw_attn_triton[(H,B)](w,q,k,v,z,b, dy,s,dsT, dw,dq,dk,dv,dz,db,ds0, B,T,H,C,K, ctx.dot_prec)
return dw,dq,dk,dv,dz,db,ds0,None
# -------------------------
# Triton "bighead" code
# -------------------------
@triton.autotune(configs=[triton.Config({'dC': dC}, num_stages=1) for dC in [16,32,64]], key=['T','H','C','dT','prec'])
@triton.jit
def fw_attn_triton_bighead(w_,q_,k_,v_,a_,b_, s0_,y_,s_,sT_, wq_,wa_,kwi_,bwi_,fw_, B:tl.constexpr,T:tl.constexpr,H:tl.constexpr,C:tl.constexpr,dT:tl.constexpr, prec:tl.constexpr, dC:tl.constexpr):
tl.static_assert(C%dC == 0)
bi = tl.program_id(1)
hi = tl.program_id(0)
for i0 in range(0,C,dC):
i = i0+tl.arange(0,dC)[None,:]
for j0 in range(0,C,dC):
j = j0+tl.arange(0,dC)[None,:]
state = tl.load(s0_+IND4(bi,hi,i.trans(),j, H,C,C)).to(tl.float32)
tl.store(s_+IND5(bi,hi,0,i.trans(),j, H,T//dT,C,C), state.to(tl.float32))
for t0 in range(T//dT):
dt = tl.arange(0,dT)[:,None]
t = t0*dT+dt
tl.debug_barrier()
for j0 in range(0,C,dC):
j = j0+tl.arange(0,dC)[None,:]
sw = tl.load(w_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
sq = tl.load(q_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
sk = tl.load(k_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
sa = tl.load(a_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
sb = tl.load(b_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
w = (-sw.exp()).exp()
fw = tl.reduce(w, 0, _prod, keep_dims=True)
incl_pref = tl.cumprod(w,axis=0)
non_incl_pref = incl_pref / w
inv_incl_pref = 1 / incl_pref
wq = sq * incl_pref
wa = sa * non_incl_pref
kwi = sk * inv_incl_pref
bwi = sb * inv_incl_pref
tl.store(wq_+IND4(bi,hi,dt,j, H,dT,C), wq.to(tl.float32))
tl.store(wa_+IND4(bi,hi,dt,j, H,dT,C), wa.to(tl.float32))
tl.store(kwi_+IND4(bi,hi,dt,j, H,dT,C), kwi.to(tl.float32))
tl.store(bwi_+IND4(bi,hi,dt,j, H,dT,C), bwi.to(tl.float32))
tl.store(fw_+IND3(bi,hi,j, H,C), fw.to(tl.float32))
tl.debug_barrier()
ab = tl.zeros((dT,dT), tl.float32)
ak = tl.zeros((dT,dT), tl.float32)
qb = tl.zeros((dT,dT), tl.float32)
qk = tl.zeros((dT,dT), tl.float32)
for j0 in range(0,C,dC):
j = j0+tl.arange(0,dC)[None,:]
wa = tl.load(wa_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
wq = tl.load(wq_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
bwi = tl.load(bwi_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
kwi = tl.load(kwi_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
sa = tl.load(a_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
sb = tl.load(b_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
ab += tl_dot(prec, wa, bwi.trans())
ak += tl_dot(prec, wa, kwi.trans())
qb += tl_dot(prec, wq, bwi.trans())
qk += tl_dot(prec, wq, kwi.trans())
mask1 = (t > t.trans())
mask2 = (t >= t.trans())
ab *= mask1
ak *= mask1
qb *= mask2
qk *= mask2
ab_inv = tri_minv(ab, dT, prec)
for i0 in range(0,C,dC):
i = i0+tl.arange(0,dC)[None,:]
sv = tl.load(v_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
wa_state = tl.zeros((dT,dC), tl.float32)
wq_state = tl.zeros((dT,dC), tl.float32)
for j0 in range(0,C,dC):
j = j0+tl.arange(0,dC)[None,:]
state = tl.load(s_+IND5(bi,hi,t0,i.trans(),j, H,T//dT,C,C)).to(tl.float32)
wa = tl.load(wa_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
wq = tl.load(wq_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
wa_state += tl_dot(prec, wa, state.trans())
wq_state += tl_dot(prec, wq, state.trans())
ab_u = tl_dot(prec, ak, sv) + wa_state
u = tl_dot(prec, ab_inv, ab_u)
yy = tl_dot(prec, qk, sv) + tl_dot(prec, qb, u) + wq_state
tl.store(y_+IND4(bi,t,hi,i, T,H,C), yy.to(tl.bfloat16))
for j0 in range(0,C,dC):
j = j0+tl.arange(0,dC)[None,:]
state = tl.load(s_+IND5(bi,hi,t0,i.trans(),j, H,T//dT,C,C)).to(tl.float32)
kwi = tl.load(kwi_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
bwi = tl.load(bwi_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
fw = tl.load(fw_+IND3(bi,hi,j, H,C))
state = state * fw + tl_dot(prec, sv.trans(), kwi*fw) + tl_dot(prec, u.trans(), bwi*fw)
if t0+1 < T//dT:
tl.store(s_+IND5(bi,hi,t0+1,i.trans(),j, H,T//dT,C,C), state.to(tl.float32))
else:
tl.store(sT_+IND4(bi,hi,i.trans(),j, H,C,C), state.to(tl.bfloat16))
@triton.autotune(configs=[triton.Config({'dC': dC}, num_stages=1) for dC in [16,32,64]], key=['T','H','C','dT','prec'])
@triton.jit
def bw_attn_triton_bighead(w_,q_,k_,v_,a_,b_, dy_,s_,dsT_,ds_, dw_,dq_,dk_,dv_,da_,db_,ds0_, wq_,wa_,kwi_,bwi_,fw_,u_,dab_u_, B:tl.constexpr,T:tl.constexpr,H:tl.constexpr,C:tl.constexpr,dT:tl.constexpr, prec:tl.constexpr, dC:tl.constexpr):
tl.static_assert(C%dC == 0)
bi = tl.program_id(1)
hi = tl.program_id(0)
for i0 in range(0,C,dC):
i = i0+tl.arange(0,dC)[None,:]
for j0 in range(0,C,dC):
j = j0+tl.arange(0,dC)[None,:]
dstate = tl.load(dsT_+IND4(bi,hi,i.trans(),j, H,C,C)).to(tl.float32)
tl.store(ds_+IND4(bi,hi,i.trans(),j, H,C,C), dstate.to(tl.float32))
for t0 in range(T//dT-1,-1,-1):
dt = tl.arange(0,dT)[:,None]
t = t0*dT+dt
tl.debug_barrier()
for j0 in range(0,C,dC):
j = j0+tl.arange(0,dC)[None,:]
sw = tl.load(w_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
sq = tl.load(q_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
sk = tl.load(k_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
sa = tl.load(a_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
sb = tl.load(b_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
w = (-sw.exp()).exp()
fw = tl.reduce(w, 0, _prod, keep_dims=True)
incl_pref = tl.cumprod(w,axis=0)
non_incl_pref = incl_pref / w
inv_incl_pref = 1 / incl_pref
wq = sq * incl_pref
wa = sa * non_incl_pref
kwi = sk * inv_incl_pref
bwi = sb * inv_incl_pref
tl.store(wq_+IND4(bi,hi,dt,j, H,dT,C), wq.to(tl.float32))
tl.store(wa_+IND4(bi,hi,dt,j, H,dT,C), wa.to(tl.float32))
tl.store(kwi_+IND4(bi,hi,dt,j, H,dT,C), kwi.to(tl.float32))
tl.store(bwi_+IND4(bi,hi,dt,j, H,dT,C), bwi.to(tl.float32))
tl.store(fw_+IND3(bi,hi,j, H,C), fw.to(tl.float32))
tl.debug_barrier()
ab = tl.zeros((dT,dT), tl.float32)
ak = tl.zeros((dT,dT), tl.float32)
qb = tl.zeros((dT,dT), tl.float32)
qk = tl.zeros((dT,dT), tl.float32)
for j0 in range(0,C,dC):
j = j0+tl.arange(0,dC)[None,:]
wa = tl.load(wa_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
wq = tl.load(wq_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
bwi = tl.load(bwi_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
kwi = tl.load(kwi_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
sa = tl.load(a_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
sb = tl.load(b_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
ab += tl_dot(prec, wa, bwi.trans())
ak += tl_dot(prec, wa, kwi.trans())
qb += tl_dot(prec, wq, bwi.trans())
qk += tl_dot(prec, wq, kwi.trans())
mask1 = (t > t.trans())
mask2 = (t >= t.trans())
ab *= mask1
ak *= mask1
qb *= mask2
qk *= mask2
ab_inv = tri_minv(ab, dT, prec)
dab = tl.zeros((dT,dT), tl.float32)
dak = tl.zeros((dT,dT), tl.float32)
dqb = tl.zeros((dT,dT), tl.float32)
dqk = tl.zeros((dT,dT), tl.float32)
tl.debug_barrier()
for i0 in range(0,C,dC):
i = i0+tl.arange(0,dC)[None,:]
wa_state = tl.zeros((dT,dC), tl.float32)
bwi_dw_dstate = tl.zeros((dT,dC), tl.float32)
kwi_dw_dstate = tl.zeros((dT,dC), tl.float32)
for j0 in range(0,C,dC):
j = j0+tl.arange(0,dC)[None,:]
state = tl.load(s_+IND5(bi,hi,t0,i.trans(),j, H,T//dT,C,C)).to(tl.float32)
dstate = tl.load(ds_+IND4(bi,hi,i.trans(),j, H,C,C)).to(tl.float32)
wa = tl.load(wa_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
bwi = tl.load(bwi_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
kwi = tl.load(kwi_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
fw = tl.load(fw_+IND3(bi,hi,j, H,C))
wa_state += tl_dot(prec, wa, state.trans())
bwi_dw_dstate += tl_dot(prec, bwi*fw, dstate.trans())
kwi_dw_dstate += tl_dot(prec, kwi*fw, dstate.trans())
sv = tl.load(v_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sdy = tl.load(dy_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
ab_u = tl_dot(prec, ak, sv) + wa_state
u = tl_dot(prec, ab_inv, ab_u)
du = tl_dot(prec, qb.trans(), sdy) + bwi_dw_dstate
dab_u = tl_dot(prec, ab_inv.trans(), du)
tl.store(u_+IND4(bi,hi,dt,i, H,dT,C), u.to(tl.float32))
tl.store(dab_u_+IND4(bi,hi,dt,i, H,dT,C), dab_u.to(tl.float32))
dv = tl_dot(prec, qk.trans(), sdy) + kwi_dw_dstate + tl_dot(prec, ak.trans(), dab_u)
tl.store(dv_+IND4(bi,t,hi,i, T,H,C), dv.to(tl.bfloat16))
dab += tl_dot(prec, dab_u, u.trans()) * mask1
dak += tl_dot(prec, dab_u, sv.trans()) * mask1
dqb += tl_dot(prec, sdy, u.trans()) * mask2
dqk += tl_dot(prec, sdy, sv.trans()) * mask2
tl.debug_barrier()
for j0 in range(0,C,dC):
j = j0+tl.arange(0,dC)[None,:]
dy_state = tl.zeros((dT,dC), tl.float32)
dab_u_state = tl.zeros((dT,dC), tl.float32)
fw_u_dstate = tl.zeros((dT,dC), tl.float32)
fw_v_dstate = tl.zeros((dT,dC), tl.float32)
state_dstate = tl.zeros((1,dC), tl.float32)
fw = tl.load(fw_+IND3(bi,hi,j, H,C))
wa = tl.load(wa_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
wq = tl.load(wq_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
for i0 in range(0,C,dC):
i = i0+tl.arange(0,dC)[None,:]
u = tl.load(u_+IND4(bi,hi,dt,i, H,dT,C)).to(tl.float32)
dab_u = tl.load(dab_u_+IND4(bi,hi,dt,i, H,dT,C)).to(tl.float32)
sv = tl.load(v_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
sdy = tl.load(dy_+IND4(bi,t,hi,i, T,H,C)).to(tl.float32)
state = tl.load(s_+IND5(bi,hi,t0,i.trans(),j, H,T//dT,C,C)).to(tl.float32)
tl.debug_barrier()
dstate = tl.load(ds_+IND4(bi,hi,i.trans(),j, H,C,C)).to(tl.float32)
tl.debug_barrier()
dab_u_state += tl_dot(prec, dab_u, state)
fw_u_dstate += fw * tl_dot(prec, u, dstate)
fw_v_dstate += fw * tl_dot(prec, sv, dstate)
dy_state += tl_dot(prec, sdy, state)
state_dstate += tl.sum(state*dstate, axis=0,keep_dims=True)
dstate = dstate * fw + tl_dot(prec, sdy.trans(), wq) + tl_dot(prec, dab_u.trans(), wa)
if t0 > 0:
tl.store(ds_+IND4(bi,hi,i.trans(),j, H,C,C), dstate.to(tl.float32))
else:
tl.store(ds0_+IND4(bi,hi,i.trans(),j, H,C,C), dstate.to(tl.bfloat16))
sw = tl.load(w_+IND4(bi,t,hi,j, T,H,C)).to(tl.float32)
w = (-sw.exp()).exp()
incl_pref = tl.cumprod(w,axis=0)
non_incl_pref = incl_pref / w
inv_incl_pref = 1 / incl_pref
bwi = tl.load(bwi_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
kwi = tl.load(kwi_+IND4(bi,hi,dt,j, H,dT,C)).to(tl.float32)
da = non_incl_pref * (tl_dot(prec, dab, bwi) + tl_dot(prec, dak, kwi) + dab_u_state)
tl.store(da_+IND4(bi,t,hi,j, T,H,C), da.to(tl.bfloat16))
dq = incl_pref * (tl_dot(prec, dqb, bwi) + tl_dot(prec, dqk, kwi) + dy_state)
tl.store(dq_+IND4(bi,t,hi,j, T,H,C), dq.to(tl.bfloat16))
db = inv_incl_pref * (tl_dot(prec, dab.trans(), wa) + tl_dot(prec, dqb.trans(), wq) + fw_u_dstate)
tl.store(db_+IND4(bi,t,hi,j, T,H,C), db.to(tl.bfloat16))
dk = inv_incl_pref * (tl_dot(prec, dak.trans(), wa) + tl_dot(prec, dqk.trans(), wq) + fw_v_dstate)
tl.store(dk_+IND4(bi,t,hi,j, T,H,C), dk.to(tl.bfloat16))
dw0 = fw * state_dstate
for k in range(t0*dT,t0*dT+dT):
lmask = (t<k).trans()
A = (tl_dot(prec, dab*lmask, bwi) + tl_dot(prec, dak*lmask, kwi)) * wa * (t>k)
A += (tl_dot(prec, dqb*lmask, bwi) + tl_dot(prec, dqk*lmask, kwi)) * wq * (t>=k)
A += (fw_v_dstate*kwi + fw_u_dstate*bwi) * (t<k)
A += dab_u_state*wa * (t>k) + dy_state*wq * (t>=k)
dw = tl.sum(A, axis=0,keep_dims=True) + dw0
wk = tl.load(w_+IND4(bi,k,hi,j, T,H,C)).to(tl.float32)
dw *= -wk.exp()
tl.store(dw_+IND4(bi,k,hi,j, T,H,C), dw.to(tl.bfloat16))
class TritonBigheadRWKV7(th.autograd.Function):
@staticmethod
def forward(ctx, w,q,k,v,a,b,s0, dot_prec):
K = 16
B,T,H,C = w.shape
assert T%K == 0
assert C%16 == 0
s0 = th.zeros(B,H,C,C, dtype=w.dtype,device=w.device) if s0 is None else s0
y = th.empty_like(v)
sT = th.empty_like(s0)
s = th.zeros(B,H,T//K,C,C, dtype=th.float32,device=w.device)
wq,wa,kwi,bwi = [th.empty(B,H,K,C, dtype=th.float32,device=w.device) for i in range(4)]
fw = th.empty(B,H,C, dtype=th.float32,device=w.device)
fw_attn_triton_bighead[(H,B)](w,q,k,v,a,b, s0,y,s,sT, wq,wa,kwi,bwi,fw, B,T,H,C,K, dot_prec)
ctx.dot_prec = dot_prec
ctx.save_for_backward(w,q,k,v,a,b,s)
return y, sT
@staticmethod
def backward(ctx, dy, dsT):
K = 16
w,q,k,v,a,b,s = ctx.saved_tensors
B,T,H,C = w.shape
dw,dq,dk,dv,da,db,ds0 = [th.empty_like(x) for x in [w,q,k,v,a,b,dsT]]
fw = th.empty(B,H,C, dtype=th.float32,device=w.device)
ds = th.empty(B,H,C,C, dtype=th.float32,device=w.device)
wq,wa,kwi,bwi,u,dab_u = [th.empty(B,H,K,C, dtype=th.float32,device=w.device) for i in range(6)]
bw_attn_triton_bighead[(H,B)](w,q,k,v,a,b, dy,s,dsT,ds, dw,dq,dk,dv,da,db,ds0, wq,wa,kwi,bwi,fw,u,dab_u, B,T,H,C,K, ctx.dot_prec)
return dw,dq,dk,dv,da,db,ds0,None
####################################################################################################
# Start of pytorch code
####################################################################################################
# from .rwkv7_attn_pytorch import rwkv7_attn_pytorch_chunk
# -------------------------
# Pytorch "smallhead" code
# -------------------------
def rwkv7_attn_triton(r,w,k,v, kk,iclr, HEAD_SIZE=64, dot_prec='fp32', s0=None):
B,T,HC = w.shape
# Check if the chunk is multiple of 16
chunk_remainder = T % 16
# Optimize the call, if chunk is multiple of 16
if chunk_remainder == 0:
return rwkv7_attn_triton_chunk(r,w,k,v, kk,iclr, HEAD_SIZE, dot_prec, s0)
# Initialize the state
C = HEAD_SIZE
H = HC//C
s0 = th.zeros(B,H,C,C, dtype=th.float,device=w.device) if s0 is None else s0
# Compute the number of chunks
chunks = T // 16
si = chunks * 16
# Get the chunked output
chunk_xx, chunk_sT = rwkv7_attn_triton_chunk(
r[:,:si],w[:,:si],k[:,:si],v[:,:si], kk[:,:si],iclr[:,:si],
HEAD_SIZE, dot_prec, s0
)
# Get the remainder
remain_xx, last_sT = rwkv7_attn_pytorch_chunk(
r[:,si:],torch.exp(-torch.exp(w[:,si:])),k[:,si:],v[:,si:], kk[:,si:],iclr[:,si:],
B, H, C, torch.zeros(B, chunk_remainder, HC, device=w.device, dtype=w.dtype),
chunk_sT, chunk_size=chunk_remainder
)
# Concatenate and return results
return torch.cat([chunk_xx.to(dtype=w.dtype), remain_xx.to(dtype=w.dtype)], dim=1), last_sT.to(dtype=s0.dtype)
def rwkv7_attn_triton_chunk(r,w,k,v, kk,iclr, HEAD_SIZE=64, dot_prec='fp32', s0=None):
'''
Triton implementation running in blocks of 16 (hardcoded requirement for the kernel)
'''
B,T,HC = w.shape
assert T % 16 == 0, 'pure triton, only works in multiple of 16'
C = HEAD_SIZE
H = HC//C
# Moving the triton specific operations into the chunk steps
r,w,k,v,a,b = [i.view(B,T,H,C) for i in [r,w,k,v,-kk,(kk*iclr)]]
s0 = th.zeros(B,H,C,C, dtype=th.float,device=w.device) if s0 is None else s0
xx, sT = TritonRWKV7.apply(w,r,k,v,a,b,s0,dot_prec)
return xx.view(B,T,HC), sT
# -------------------------
# Pytorch "bighead" code
# -------------------------
def rwkv7_attn_triton_bighead(r,w,k,v, kk,iclr, HEAD_SIZE=64, dot_prec='fp32', s0=None):
B,T,HC = w.shape
# Check if the chunk is multiple of 16
chunk_remainder = T % 16
# Optimize the call, if chunk is multiple of 16
if chunk_remainder == 0:
return rwkv7_attn_triton_bighead_chunk(r,w,k,v, kk,iclr, HEAD_SIZE, dot_prec, s0)
# Initialize the state
C = HEAD_SIZE
H = HC//C
s0 = th.zeros(B,H,C,C, dtype=th.float,device=w.device) if s0 is None else s0
# Compute the number of chunks
chunks = T // 16
si = chunks * 16
# Get the chunked output
chunk_xx, chunk_sT = rwkv7_attn_triton_bighead_chunk(
r[:,:si],w[:,:si],k[:,:si],v[:,:si], kk[:,:si],iclr[:,:si],
HEAD_SIZE, dot_prec, s0
)
# Get the remainder
remain_xx, last_sT = rwkv7_attn_pytorch_chunk(
r[:,si:],torch.exp(-torch.exp(w[:,si:])),k[:,si:],v[:,si:], kk[:,si:],iclr[:,si:],
B, H, C, torch.zeros(B, chunk_remainder, HC, device=w.device, dtype=w.dtype),
chunk_sT, chunk_size=chunk_remainder
)
# Concatenate and return results
return torch.cat([chunk_xx.to(dtype=w.dtype), remain_xx.to(dtype=w.dtype)], dim=1), last_sT.to(dtype=s0.dtype)
def rwkv7_attn_triton_bighead_chunk(r,w,k,v, kk,iclr, HEAD_SIZE=64, dot_prec='fp32', s0=None):
'''
Triton implementation running in blocks of 16 (hardcoded requirement for the kernel)
'''
B,T,HC = w.shape
assert T % 16 == 0, 'pure triton, only works in multiple of 16'
C = HEAD_SIZE
H = HC//C
# Moving the triton specific operations into the chunk steps
r,w,k,v,a,b = [i.view(B,T,H,C) for i in [r,w,k,v,-kk,(kk*iclr)]]
s0 = th.zeros(B,H,C,C, dtype=th.float,device=w.device) if s0 is None else s0
xx, sT = TritonBigheadRWKV7.apply(w,r,k,v,a,b,s0,dot_prec)
return xx.view(B,T,HC), sT
# ----------------
# block/rwkv7_block_config_map.py
# ----------------
from dataclasses import dataclass
from typing import Optional
from typing import Union
import torch
@dataclass
class RWKV7BlockConfigMap:
"""Configuration map for RWKV based models"""
# Key properties for the block / model
num_hidden_layers: int
hidden_size: int
head_size: int = 64
# Dropout rate, should only be used in training
dropout_rate: float = 0.0
# Implementation backend to use
tmix_backend: str = "auto"
# ---
# OPTIONAL PROPS
#
# Optional properties which can be derived
# or can be overwritten by the user
# ---
# Current layer_id of the block
layer_id: Optional[int] = None
# Device and Data type
device: Union[torch.device, str, None] = None
dtype: Union[torch.dtype, str, None] = None
# Channel mix / FFN block dimension size
hidden_size_ffn: Optional[int] = None
hidden_size_att: Optional[int] = None
# # number of heads
# n_head: Optional[int] = None
# ---
# Initializer, with excess arg ignore
# ---
def __init__(
self,
num_hidden_layers: int,
hidden_size: int,
head_size: int = 64,
dropout_rate: float = 0.0,
tmix_backend: str = "auto",
layer_id: Optional[int] = None,
device: Union[torch.device, str, None] = None,
dtype: Union[torch.dtype, str, None] = None,
hidden_size_ffn: Optional[int] = None,
hidden_size_att: Optional[int] = None,
**kwargs
) -> None:
'''
Constructor for the config
'''
self.num_hidden_layers = num_hidden_layers
self.hidden_size = hidden_size
self.head_size = head_size
self.dropout_rate = dropout_rate
self.tmix_backend = tmix_backend
self.layer_id = layer_id
self.device = device
self.dtype = dtype
self.hidden_size_ffn = hidden_size_ffn
self.hidden_size_att = hidden_size_att
# ---
# OPTIONAL PROPS FETCHER
# ---
def get_layer_id(self, fallback:int) -> int:
'''
Returns the layer id
'''
if self.layer_id is not None:
return self.layer_id
return fallback
def get_device(self, fallback:str) -> torch.device:
'''
Returns the device
'''
if self.device is not None:
return torch.device(self.device)
if fallback is not None:
return torch.device(fallback)
return torch.get_default_device()
def get_dtype(self, fallback:str) -> torch.dtype:
'''
Returns the dtype
'''
if self.dtype is not None:
key = self.dtype
else:
key = fallback
# if dtype is already torch.dtype
if isinstance(key, torch.dtype):
return key
# Get and Check if the dtype is instance of torch.dtype
ret = getattr(torch, key)
assert isinstance(ret, torch.dtype), f"Invalid dtype: {self.dtype}"
return ret
# ---
def get_hidden_size_att(self) -> int:
'''
Returns the dimension of attention
'''
if self.hidden_size_att is not None:
hidden_size_att = self.hidden_size_att
else:
hidden_size = self.hidden_size
assert hidden_size % 32 == 0, f"hidden_size must be divisible by 32"
hidden_size_att = hidden_size
assert hidden_size_att % 32 == 0, f"hidden_size_att must be divisible by 32 ({hidden_size_att})"
return hidden_size_att
def get_hidden_size_ffn(self) -> int:
'''
Returns the dimension of feed forward network
'''
if self.hidden_size_ffn is not None:
hidden_size_ffn = self.hidden_size_ffn
else:
hidden_size = self.hidden_size
assert hidden_size % 32 == 0, f"hidden_size must be divisible by 32"
hidden_size_ffn = hidden_size * 4
assert hidden_size_ffn % 32 == 0, f"hidden_size_ffn must be divisible by 32"
return hidden_size_ffn
# def get_n_head(self) -> int:
# '''
# Returns the number of heads
# '''
# if self.n_head is not None:
# n_head = self.n_head
# else:
# hidden_size_att = self.get_hidden_size_att()
# n_head = self.get_hidden_size_att() // self.head_size
# assert hidden_size_att % n_head == 0 , f"hidden_size_att must be divisible by head_size ({self.head_size})"
#
# return n_head
# ---
# Duplicator & Normalizer
# ---
def new_block_config_map(self, **kwargs) -> 'RWKV7BlockConfigMap':
'''
Returns a new config map with updated values
'''
new_dict = {}
for key in RWKV7BlockConfigMap.__dataclass_fields__:
if key in self.__dict__:
new_dict[key] = self.__dict__[key]
new_dict.update(kwargs)
return RWKV7BlockConfigMap(**new_dict)
@staticmethod
def normalize(config_map: any) -> 'RWKV7BlockConfigMap':
'''
Converts either maps, objs or RWKV7BlockConfigMap
'''
if isinstance(config_map, RWKV7BlockConfigMap):
return config_map
dict_obj = None
if isinstance(config_map, dict):
dict_obj = config_map
elif hasattr(config_map, '__dict__'):
dict_obj = config_map.__dict__
if dict_obj is not None:
# Filter for only valeus in RWKV7BlockConfigMap
new_dict = {}
for key, value in dict_obj.items():
if key in RWKV7BlockConfigMap.__dataclass_fields__:
new_dict[key] = value
return RWKV7BlockConfigMap(**new_dict)
raise ValueError(f"Unsupported config_map type: {type(config_map)}")
# ----------------
# block/rwkv7_channel_mix.py
# ----------------
import torch
from torch import nn
from typing import Union
# from .rwkv7_block_config_map import RWKV7BlockConfigMap
class RWKV7ChannelMix(torch.nn.Module):
'''
ChannelMix block for RWKV
This is similar to transformer FFN block
'''
def __init__(self, configMap: Union[RWKV7BlockConfigMap, any]):
'''
Initialize the ChannelMix block.
Note: this does not initialize the parameter weights itself
which would depend on the `init_parameters()` method
'''
super().__init__()
configMap:RWKV7BlockConfigMap = RWKV7BlockConfigMap.normalize(configMap)
self.configMap = configMap
# Get various props
hidden_size = configMap.hidden_size
device = configMap.get_device(None)
dtype = configMap.get_dtype('bfloat16')
# By default, hidden_size_ffn = hidden_size * 4
hidden_size_ffn = configMap.get_hidden_size_ffn()
# Build the various params
# ---
self.x_k = nn.Parameter(torch.empty(1, 1, hidden_size, device=device, dtype=dtype))
self.key = nn.Linear(hidden_size, hidden_size_ffn, bias=False, device=device, dtype=dtype)
self.value = nn.Linear(hidden_size_ffn, hidden_size, bias=False, device=device, dtype=dtype)
def init_parameters(self):
'''
Reset the parameters of the block, to an initial state used for training a model from scratch
'''
# Get required props
configMap = self.configMap
hidden_size = configMap.hidden_size
num_hidden_layers = configMap.num_hidden_layers
# Get optional props
layer_id = configMap.get_layer_id(0)
device = configMap.get_device(None)
dtype = configMap.get_dtype('bfloat16')
# By default, hidden_size_ffn = hidden_size * 4
hidden_size_ffn = configMap.get_hidden_size_ffn()
# Reset the various params
# ---
with torch.no_grad(): # fancy init of time_mix
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
ddd = torch.ones(1, 1, hidden_size)
for i in range(hidden_size):
ddd[0, 0, i] = i / hidden_size
self.x_k = nn.Parameter( (1.0 - torch.pow(ddd, ratio_1_to_almost0**4)).to(device, dtype=dtype) )
self.key = nn.Linear(hidden_size, hidden_size_ffn, bias=False, device=device, dtype=dtype)
self.value = nn.Linear(hidden_size_ffn, hidden_size, bias=False, device=device, dtype=dtype)
def forward(self, x: torch.Tensor, last_state: torch.Tensor) -> tuple[torch.Tensor,torch.Tensor]:
'''
Forwarding channel mix given the input tokens and states.
Given:
- Incoming token embedding size of shape [batch_size, seq_len, embedding_size]
- Incoming channel mix, shift states of the various batches [batch_size, state_size]
Returns a pair
- Output embedding of shape [batch_size, seq_len, embedding_size]
- Output channel mix, shift state of shape [batch_size, state_size]
'''
# last_state = last_state.to(self.key.weight.device)
##########
## x070
##########
dxprev = torch.cat((last_state.unsqueeze(1), x[:, :-1]), dim=1) - x
xk = x + dxprev * self.x_k
k = torch.relu( self.key(xk) ) ** 2
return self.value(k), x[:,-1]
@torch.compile(mode="default", fullgraph=True)
def forward_with_default_compile(self, in_x: torch.Tensor, in_state: torch.Tensor, out_x: torch.Tensor, out_state: torch.Tensor) -> tuple[torch.Tensor,torch.Tensor]:
'''
Compiled varient of the forward function
With no new tensors being created for the output
Useful for static memory allocation optimizations inference
'''
out_x[:], out_state[:] = self.forward_with_reduce_compile(in_x, in_state)
return out_x, out_state
@torch.compile(mode="reduce-overhead", fullgraph=True)
def forward_with_reduce_compile(self, in_x: torch.Tensor, in_state: torch.Tensor) -> tuple[torch.Tensor,torch.Tensor]:
'''
Compiled varient of the forward function
'''
return self.forward(in_x, in_state)
def load_from_model_state_dict(self, model_state_dict: dict, layer_id:int, non_blocking:bool=True):
'''
Given the Full/partial RWKV model weights, loaded via `torch.load`
Setup the the current module weights, using the layer_id
'''
# Get the current state_dict
current_state_dict = self.state_dict()
# Iterate each parameter in the state_dict, and compare from the model
for n in current_state_dict:
model_key = f"blocks.{layer_id}.ffn.{n}"
if model_key not in model_state_dict:
continue
# Copy the values from the state_dict
try:
current_state_dict[n].copy_(model_state_dict[model_key], non_blocking=non_blocking)
except Exception as e:
print(f"[ERROR] loading: {model_key} | model shape: {current_state_dict[n].shape} | weight shape: {model_state_dict[model_key].shape}")
raise e
# ----------------
# block/rwkv7_time_mix.py
# ----------------
import torch, math
from torch import nn
from torch import Tensor
from typing import Union
from torch.nn import functional as F
# from .rwkv7_block_config_map import RWKV7BlockConfigMap
# Check for triton package, if GPU is available
triton = None
if torch.cuda.is_available():
try:
import triton
except ImportError:
triton = None
else:
print("[WARNING] Triton not available, falling back to pytorch mode by default - this is significantly slower")
class RWKV7TimeMix(torch.nn.Module):
'''
Time Mix block for RWKV V7
'''
def __init__(self, configMap: Union[RWKV7BlockConfigMap, any]):
'''
Initialize the TimeMix block.
Note: this does not initialize the parameter weights itself
which would depend on the `init_parameters()` method
'''
super().__init__()
configMap:RWKV7BlockConfigMap = RWKV7BlockConfigMap.normalize(configMap)
self.configMap = configMap
# Get required props
hidden_size = configMap.hidden_size
# num_hidden_layers = configMap.num_hidden_layers
# Get the layer id
layer_id = configMap.get_layer_id(0)
self.layer_id = layer_id
# Get optional props
device = configMap.get_device(None)
dtype = configMap.get_dtype('bfloat16')
# By default, hidden_size_ffn = hidden_size
hidden_size_att = configMap.get_hidden_size_att()
# Assert hidden_size == hidden_size_att, until we support different hidden_size and hidden_size_att
assert hidden_size == hidden_size_att, "hidden_size should be equal to hidden_size_att (@TODO: support different hidden_size and hidden_size_att)"
# Head size settings
head_size = configMap.head_size
self.head_size = head_size
# Number of heads
n_head = hidden_size_att // head_size
assert hidden_size_att % head_size == 0, "hidden_size_att should be divisible by head_size"
self.n_head = n_head
# Backend
self.tmix_backend = configMap.tmix_backend
# Build the various params
# ---
with torch.no_grad():
# Note: for some data, you can reduce D_GATE_LORA or even remove this gate
def calc_lora_rank(exponent, multiplier):
return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
D_DECAY_LORA = calc_lora_rank(0.5, 1.8)
D_AAA_LORA = calc_lora_rank(0.5, 1.8)
D_MV_LORA = calc_lora_rank(0.5, 1.3)
D_GATE_LORA = calc_lora_rank(0.8, 0.6)
self.x_r = nn.Parameter(torch.empty(1,1,hidden_size, device=device, dtype=dtype))
self.x_w = nn.Parameter(torch.empty(1,1,hidden_size, device=device, dtype=dtype))
self.x_k = nn.Parameter(torch.empty(1,1,hidden_size, device=device, dtype=dtype))
self.x_v = nn.Parameter(torch.empty(1,1,hidden_size, device=device, dtype=dtype))
self.x_a = nn.Parameter(torch.empty(1,1,hidden_size, device=device, dtype=dtype))
self.x_g = nn.Parameter(torch.empty(1,1,hidden_size, device=device, dtype=dtype))
self.w0 = nn.Parameter(torch.empty(1,1,hidden_size, device=device, dtype=dtype))
self.w1 = nn.Parameter(torch.empty(hidden_size, D_DECAY_LORA, device=device, dtype=dtype))
self.w2 = nn.Parameter(torch.empty(D_DECAY_LORA, hidden_size, device=device, dtype=dtype))
self.a0 = nn.Parameter(torch.empty(1,1,hidden_size, device=device, dtype=dtype))
self.a1 = nn.Parameter(torch.empty(hidden_size,D_AAA_LORA, device=device, dtype=dtype))
self.a2 = nn.Parameter(torch.empty(D_AAA_LORA,hidden_size, device=device, dtype=dtype))
if layer_id > 0:
self.v0 = nn.Parameter(torch.empty(1,1,hidden_size, device=device, dtype=dtype))
self.v1 = nn.Parameter(torch.empty(hidden_size,D_MV_LORA, device=device, dtype=dtype))
self.v2 = nn.Parameter(torch.empty(D_MV_LORA,hidden_size, device=device, dtype=dtype))
self.g1 = nn.Parameter(torch.empty(hidden_size, D_GATE_LORA, device=device, dtype=dtype))
self.g2 = nn.Parameter(torch.empty(D_GATE_LORA, hidden_size, device=device, dtype=dtype))
self.k_k = nn.Parameter(torch.empty(1,1,hidden_size, device=device, dtype=dtype))
self.k_a = nn.Parameter(torch.empty(1,1,hidden_size, device=device, dtype=dtype))
self.r_k = nn.Parameter(torch.empty(n_head, head_size, device=device, dtype=dtype))
self.receptance = nn.Linear(hidden_size, hidden_size_att, bias=False, device=device, dtype=dtype)
self.key = nn.Linear(hidden_size, hidden_size_att, bias=False, device=device, dtype=dtype)
self.value = nn.Linear(hidden_size, hidden_size_att, bias=False, device=device, dtype=dtype)
self.output = nn.Linear(hidden_size_att, hidden_size, bias=False, device=device, dtype=dtype)
self.ln_x = nn.GroupNorm(n_head, hidden_size_att, device=device, dtype=dtype, eps=(1e-5)*head_size)
def init_parameters(self):
'''
Reset the parameters of the block, to an initial state used for training a model from scratch
'''
configMap = self.configMap
# Get required props
hidden_size = configMap.hidden_size
num_hidden_layers = configMap.num_hidden_layers
# Get the layer id
layer_id = self.layer_id
# Get optional props
device = configMap.get_device(None)
dtype = configMap.get_dtype('bfloat16')
# By default, hidden_size_ffn = hidden_size
hidden_size_att = configMap.get_hidden_size_att()
# Assert hidden_size == hidden_size_att, until we support different hidden_size and hidden_size_att
assert hidden_size == hidden_size_att, "hidden_size should be equal to hidden_size_att (@TODO: support different hidden_size and hidden_size_att)"
# Head size settings
head_size = self.head_size
# Number of heads
n_head = hidden_size_att // head_size
assert hidden_size_att % head_size == 0, "hidden_size_att should be divisible by head_size"
# Reset the various params
# ---
with torch.no_grad():
ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
ddd = torch.ones(1, 1, hidden_size, device=device, dtype=dtype)
for i in range(hidden_size):
ddd[0, 0, i] = i / hidden_size
# Note: for some data, you can reduce D_GATE_LORA or even remove this gate
def calc_lora_rank(exponent, multiplier):
return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
D_DECAY_LORA = calc_lora_rank(0.5, 1.8)
D_AAA_LORA = calc_lora_rank(0.5, 1.8)
D_MV_LORA = calc_lora_rank(0.5, 1.3)
D_GATE_LORA = calc_lora_rank(0.8, 0.6)
self.x_r.copy_(1.0 - torch.pow(ddd, 0.2 * ratio_1_to_almost0))
self.x_w.copy_(1.0 - torch.pow(ddd, 0.9 * ratio_1_to_almost0))
self.x_k.copy_(1.0 - (torch.pow(ddd, 0.9 * ratio_1_to_almost0) + 0.4 * ratio_0_to_1))
self.x_v.copy_(1.0 - (torch.pow(ddd, 0.4 * ratio_1_to_almost0) + 0.6 * ratio_0_to_1))
self.x_a.copy_(1.0 - torch.pow(ddd, 0.9 * ratio_1_to_almost0))
self.x_g.copy_(1.0 - torch.pow(ddd, 0.2 * ratio_1_to_almost0))
def ortho_init(x, scale):
x = x.to(device)
shape = x.shape
if len(shape) == 2:
gain = math.sqrt(shape[0] / shape[1]) if shape[0] > shape[1] else 1
nn.init.orthogonal_(x, gain=gain * scale)
elif len(shape) == 3:
gain = math.sqrt(shape[1] / shape[2]) if shape[1] > shape[2] else 1
for i in range(shape[0]):
nn.init.orthogonal_(x[i], gain=gain * scale)
else:
assert False
return x.to(device, dtype=dtype)
# D_DECAY_LORA = max(32, int(round( (1.8*(hidden_size**0.5)) /32)*32))
decay_speed = torch.ones(hidden_size, device=device, dtype=dtype)
for n in range(hidden_size):
decay_speed[n] = -7 + 5 * (n / (hidden_size - 1)) ** (0.85 + 1.0 * ratio_0_to_1 ** 0.5)
self.w0.copy_(decay_speed.reshape(1,1,hidden_size).to(device, dtype=dtype) + 0.5) # !!! 0.5 comes from F.softplus !!!
self.w1.copy_(torch.zeros(hidden_size, D_DECAY_LORA, device=device, dtype=dtype))
self.w2.copy_(ortho_init(torch.zeros(D_DECAY_LORA, hidden_size), 0.1))
# D_AAA_LORA = max(32, int(round( (1.8*(hidden_size**0.5)) /32)*32)) # suggestion
self.a0.copy_(torch.zeros(1,1,hidden_size, device=device, dtype=dtype))
self.a1.copy_(torch.zeros(hidden_size, D_AAA_LORA, device=device, dtype=dtype))
self.a2.copy_(ortho_init(torch.zeros(D_AAA_LORA, hidden_size), 0.1))
# D_MV_LORA = max(32, int(round( (1.3*(hidden_size**0.5)) /32)*32)) # suggestion
if layer_id > 0:
self.v0.copy_(torch.zeros(1,1,hidden_size, device=device, dtype=dtype)+1.0)
self.v1.copy_(torch.zeros(hidden_size, D_MV_LORA, device=device, dtype=dtype))
self.v2.copy_(ortho_init(torch.zeros(D_MV_LORA, hidden_size), 0.1))
# D_GATE_LORA = max(32, int(round( (0.6*(hidden_size**0.8)) /32)*32)) # suggestion
# Note: for some data, you can reduce D_GATE_LORA or even remove this gate
self.g1.copy_(torch.zeros(hidden_size, D_GATE_LORA, device=device, dtype=dtype))
self.g2.copy_(ortho_init(torch.zeros(D_GATE_LORA, hidden_size), 0.1))
self.k_k.copy_(torch.ones(1,1,hidden_size, device=device, dtype=dtype)*0.85)
self.k_a.copy_(torch.ones(1,1,hidden_size, device=device, dtype=dtype))
self.r_k.copy_(torch.zeros(n_head,head_size, device=device, dtype=dtype))
self.receptance = nn.Linear(hidden_size, hidden_size_att, bias=False, device=device, dtype=dtype)
self.key = nn.Linear(hidden_size, hidden_size_att, bias=False, device=device, dtype=dtype)
self.value = nn.Linear(hidden_size, hidden_size_att, bias=False, device=device, dtype=dtype)
self.output = nn.Linear(hidden_size_att, hidden_size, bias=False, device=device, dtype=dtype)
self.ln_x = nn.GroupNorm(n_head, hidden_size_att, device=device, dtype=dtype, eps=(1e-5)*head_size)
def forward(self, x:Tensor, shift_state_in:Tensor, wkv_state_in:Tensor, v_first_val:Tensor) -> tuple[Tensor,Tensor,Tensor,Tensor]:
'''
forwarding time mix given the model weights and the input tokens and states.
Given:
- Incoming token embedding size of shape [batch_size, seq_len, embedding_size]
- Incoming states containing of shapes:
[batch_size, state_size] ## Token Shift state,
[batch_size, n_head, head_size, head_size] ## WKV state
- Incoming v_first_val of shape [batch_size, seq_len, embedding_size]
Returns a pair
- output embedding of shape [batch_size, seq_len, embedding_size]
- output state of shapes:
[batch_size, state_size] ## Token Shift state,
[batch_size, n_head, head_size, head_size] ## WKV state
- output v_first_val of shape [batch_size, seq_len, embedding_size]
'''
# Get the sizing
BATCH_SIZE, SEQ_LEN, IN_EMB_SIZE = x.size()
N_HEAD = self.n_head
HEAD_SIZE = self.head_size
# Ensure wkv_state_in is initialized
if wkv_state_in is None:
wkv_state_in = torch.zeros(BATCH_SIZE,N_HEAD,HEAD_SIZE,HEAD_SIZE, dtype=torch.float,device=w.device)
else:
wkv_state_in = wkv_state_in.clone()
##########
## x070
##########
shift_state_out = x[:, -1]
dxprev = torch.cat((shift_state_in.unsqueeze(1), x[:, :-1]), dim=1) - x
xr = x + dxprev * self.x_r
xw = x + dxprev * self.x_w
xk = x + dxprev * self.x_k
xv = x + dxprev * self.x_v
xa = x + dxprev * self.x_a
xg = x + dxprev * self.x_g
xx = dxprev
r = self.receptance(xr)
w = torch.tanh(xw @ self.w1) @ self.w2
k = self.key(xk)
v = self.value(xv)
g = torch.sigmoid(xg @ self.g1) @ self.g2
iclr = torch.sigmoid(self.a0 + (xa @ self.a1) @ self.a2) # a is "in-context learning rate"
kk = F.normalize((k * self.k_k).view(BATCH_SIZE,SEQ_LEN,N_HEAD,-1), dim=-1, p=2.0).view(BATCH_SIZE, SEQ_LEN, IN_EMB_SIZE)
k = k * (1 + (iclr-1) * self.k_a)
if self.layer_id == 0:
v_first_val = v # store the v of the first layer
else:
v = v + (v_first_val - v) * torch.sigmoid(self.v0 + (xv @ self.v1) @ self.v2) # add value residual
tmix_backend = self.tmix_backend.lower()
if tmix_backend == "auto":
if triton is None or self.receptance.weight.device.type == "cpu":
tmix_backend = "pytorch"
else:
tmix_backend = "cuda"
if tmix_backend == "pytorch_ref" or tmix_backend == "pytorch_ref_ori":
# Pure pytorch mode for rwkv attention
# from .kernel.rwkv7_attn_pytorch import rwkv7_attn_pytorch_ref
# Reference minimal compilation version
w = torch.exp(-0.606531 * torch.sigmoid((self.w0 + w).float())) # 0.606531 = exp(-0.5)
xx, wkv_state_out = rwkv7_attn_pytorch_ref(r, w, k, v, kk, iclr, BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE, xx, wkv_state_in)
elif tmix_backend == "pytorch_ref_fp32":
# Pure pytorch mode for rwkv attention
# from .kernel.rwkv7_attn_pytorch import rwkv7_attn_pytorch_ref_fp32
# Modified to follow the same logic as "cuda" version
# w = torch.exp(-0.606531 * torch.sigmoid((self.w0 + w).float())) # 0.606531 = exp(-0.5)
w = -F.softplus(-(self.w0 + w)) - 0.5
xx, wkv_state_out = rwkv7_attn_pytorch_ref_fp32(r, w, k, v, kk, iclr, BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE, xx, wkv_state_in)
elif tmix_backend == "pytorch":
# Pure pytorch mode for rwkv attention
# from .kernel.rwkv7_attn_pytorch import rwkv7_attn_pytorch
# Tweaked pytorch compile varient
w = torch.exp(-0.606531 * torch.sigmoid((self.w0 + w).float())) # 0.606531 = exp(-0.5)
xx, wkv_state_out = rwkv7_attn_pytorch(r, w, k, v, kk, iclr, BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE, xx, wkv_state_in)
elif tmix_backend == "triton":
if triton is None:
raise ValueError("Triton not available, unable to load triton kernel")
# from .kernel.rwkv7_attn_triton import rwkv7_attn_triton
w = -F.softplus(-(self.w0 + w)) - 0.5
xx, wkv_state_out = rwkv7_attn_triton(r, w, k, v, kk, iclr, s0=wkv_state_in)
elif tmix_backend == "triton_bighead":
if triton is None:
raise ValueError("Triton not available, unable to load triton kernel")
# from .kernel.rwkv7_attn_triton import rwkv7_attn_triton_bighead
w = -F.softplus(-(self.w0 + w)) - 0.5
xx, wkv_state_out = rwkv7_attn_triton_bighead(r, w, k, v, kk, iclr, s0=wkv_state_in)
elif tmix_backend == "cuda_ref":
# Cuda based method for rwkv attention
# from .kernel.rwkv7_attn_cuda import rwkv7_attn_cuda_ref
# Reference cuda version (no state output)
w = -F.softplus(-(self.w0 + w)) - 0.5
xx, wkv_state_out = rwkv7_attn_cuda_ref(r, w, k, v, kk, iclr, s0=wkv_state_in)
elif tmix_backend == "cuda":
# Cuda based method for rwkv attention
# from .kernel.rwkv7_attn_cuda import rwkv7_attn_cuda
# Modified cuda version (with state output)
w = -F.softplus(-(self.w0 + w)) - 0.5
xx, wkv_state_out = rwkv7_attn_cuda(r, w, k, v, kk, iclr, s0=wkv_state_in)
elif tmix_backend == "fla":
# FLA based method for rwkv attention
# from .kernel.rwkv7_attn_fla import rwkv7_attn_fla
# FLA runs with the softplus w
w = -F.softplus(-(self.w0 + w)) - 0.5
xx, wkv_state_out = rwkv7_attn_fla(r, w, k, v, kk, iclr, BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE, xx, wkv_state_in)
elif tmix_backend == "fla_fused" or tmix_backend == "fused_fla":
# FLA based method for rwkv attention
# from .kernel.rwkv7_attn_fla import rwkv7_attn_fused_reccurent_fla
# FLA runs with the softplus w
w = -F.softplus(-(self.w0 + w)) - 0.5
xx, wkv_state_out = rwkv7_attn_fused_reccurent_fla(r, w, k, v, kk, iclr, BATCH_SIZE, SEQ_LEN, N_HEAD, HEAD_SIZE, xx, wkv_state_in)
else:
raise ValueError(f"Unknown tmix_backend: {tmix_backend}")
# wkv_state_in normalization of type
if wkv_state_in is not None:
wkv_state_out = wkv_state_out.to(wkv_state_in.dtype)
######## cuda-based method
# wkv_state_out = wkv_state_in.clone()
# w = -F.softplus(-(self.w0 + w)) - 0.5 # soft-clamp to (-inf, -0.5)
# xx = RWKV7_OP(wkv_state_out, r, w, k, v, -kk, kk*a)
######## cuda-based method
xx = self.ln_x(xx.view(BATCH_SIZE * SEQ_LEN, IN_EMB_SIZE)).view(BATCH_SIZE, SEQ_LEN, IN_EMB_SIZE)
xx = xx + ((r.view(BATCH_SIZE,SEQ_LEN,N_HEAD,-1)*k.view(BATCH_SIZE,SEQ_LEN,N_HEAD,-1)*self.r_k).sum(dim=-1, keepdim=True) * v.view(BATCH_SIZE,SEQ_LEN,N_HEAD,-1)).view(BATCH_SIZE,SEQ_LEN,IN_EMB_SIZE)
xx = self.output(xx * g)
return xx, shift_state_out, wkv_state_out, v_first_val
@torch.compile(mode="default")
def forward_with_default_compile(self, in_x:Tensor, shift_state_in:Tensor, wkv_state_in:Tensor, v_first_val_in:Tensor, out_x:Tensor, shift_state_out:Tensor, wkv_state_out:Tensor, v_first_val_out:Tensor) -> tuple[Tensor,Tensor,Tensor,Tensor]:
'''
Compiled varient of the forward function
With no new tensors being created for the output
Useful for static memory allocation optimizations inference
'''
out_x[:], shift_state_out[:], wkv_state_out[:], v_first_val_out[:] = self.forward(in_x, shift_state_in, wkv_state_in, v_first_val_in)
return out_x, shift_state_out, wkv_state_out, v_first_val_out
@torch.compile(mode="reduce-overhead")
def forward_with_reduce_compile(self, in_x:Tensor, shift_state_in:Tensor, wkv_state_in:Tensor, v_first_val:Tensor) -> tuple[Tensor,Tensor,Tensor,Tensor]:
'''
Compiled varient of the forward function
With no input tensor being modified.
Useful for reduce-overhead compile mode
'''
return self.forward(in_x, shift_state_in, wkv_state_in, v_first_val)
# ---------------------------------
#
# Model state handling
#
# ---------------------------------
def load_from_model_state_dict(self, model_state_dict: dict, layer_id:int, non_blocking:bool=True):
'''
Given the Full/partial RWKV model weights, loaded via `torch.load`
Setup the the current module weights, using the layer_id
'''
# Get the current state_dict
current_state_dict = self.state_dict()
# Iterate each parameter in the state_dict, and compare from the model
for n in current_state_dict:
model_key = f"blocks.{layer_id}.att.{n}"
if model_key not in model_state_dict:
continue
# Copy the values from the state_dict
try:
current_state_dict[n].copy_(model_state_dict[model_key], non_blocking=non_blocking)
except Exception as e:
print(f"[ERROR] loading: {model_key} | model shape: {current_state_dict[n].shape} | weight shape: {model_state_dict[model_key].shape}")
raise e
# ----------------
# block/rwkv7_layer_block.py
# ----------------
import torch
from torch import nn
from torch import Tensor
from typing import Union
from torch.nn import functional as F
# from .rwkv7_block_config_map import RWKV7BlockConfigMap
# from .rwkv7_channel_mix import RWKV7ChannelMix
# from .rwkv7_time_mix import RWKV7TimeMix
class RWKV7LayerBlock(torch.nn.Module):
'''
layer block for RWKV V7
'''
def __init__(self, configMap: Union[RWKV7BlockConfigMap, any]):
super().__init__()
configMap:RWKV7BlockConfigMap = RWKV7BlockConfigMap.normalize(configMap)
self.configMap = configMap
# Get required props
hidden_size = configMap.hidden_size
device = configMap.get_device(None)
dtype = configMap.get_dtype('bfloat16')
dropout_rate = configMap.dropout_rate
# Get valid layer_id
layer_id = configMap.get_layer_id(-1)
assert layer_id >= 0, f'layer_id must be >= 0, got {layer_id}'
# Setup the layernorms, and mixes
self.ln1 = nn.LayerNorm(hidden_size, device=device, dtype=dtype)
self.ln2 = nn.LayerNorm(hidden_size, device=device, dtype=dtype)
if layer_id == 0:
self.ln0 = nn.LayerNorm(hidden_size, device=device, dtype=dtype)
else:
self.ln0 = nn.Identity(device=device)
# Setup the time and channel mix
self.att = RWKV7TimeMix(configMap)
self.ffn = RWKV7ChannelMix(configMap)
# Setup droupout at block level
if dropout_rate > 0.0:
self.drop0 = nn.Dropout(p = dropout_rate,device=device)
self.drop1 = nn.Dropout(p = dropout_rate,device=device)
else:
self.drop0 = nn.Identity(device=device)
self.drop1 = nn.Identity(device=device)
def init_parameters(self):
'''
Reset the parameters of the block, to an initial state used for training a model from scratch
'''
configMap = self.configMap
# Get required props
hidden_size = configMap.hidden_size
device = configMap.get_device(None)
dtype = configMap.get_dtype('bfloat16')
dropout_rate = configMap.dropout_rate
# Get valid layer_id
layer_id = configMap.get_layer_id(-1)
assert layer_id >= 0, f'layer_id must be >= 0, got {layer_id}'
# Redo the Setup for the layernorms, and mixes
self.ln1 = nn.LayerNorm(hidden_size, device=device, dtype=dtype)
self.ln2 = nn.LayerNorm(hidden_size, device=device, dtype=dtype)
if layer_id == 0:
self.ln0 = nn.LayerNorm(hidden_size, device=device, dtype=dtype)
else:
self.ln0 = nn.Identity(device=device)
# Call the sub blocks init_parameters
self.att.init_parameters()
self.ffn.init_parameters()
def forward(
self, x:torch.Tensor,
last_state: tuple[torch.Tensor,torch.Tensor,torch.Tensor],
v_first:torch.Tensor
) -> tuple[torch.Tensor,tuple[torch.Tensor,torch.Tensor,torch.Tensor],torch.Tensor]:
'''
Forward the block given the input tokens and the last state
Last state is a tuple of the following
- time mix shift state
- time mix wkv state
- channel mix shift state
Returns a pair of the output embedding, v_first and the next state
'''
# # Ensure everything is in the right device
# x = x.to(self.ln1.weight.device)
# last_state = [ s.to(self.ln1.weight.device) for s in last_state ]
# Note, that this only applies for layer 0
ln0_out = self.ln0(x)
# assert self.ln1(x) is not None
# assert last_state.tmix_shift is not None
# assert last_state.tmix_wkv is not None
att_out, tmix_shift, tmix_wkv, v_first = self.att(
self.ln1(ln0_out),
last_state[0], # tmix_shift,
last_state[1], # tmix_wkv
v_first
)
# x = x + att_out
x = self.drop0(ln0_out + att_out)
ffn_out, ffn_state = self.ffn(
self.ln2(x),
last_state[2] # cmix_shift,
)
# x = x + ffn_out
x = self.drop1(x + ffn_out)
# # Debugging for NaN
# layer_id = self.configMap.get_layer_id(-1)
# assert torch.isnan(att_out).sum() == 0, f'NaN detected att_out @ layer {layer_id}'
# assert torch.isnan(ffn_out).sum() == 0, f'NaN detected ffn_out @ layer {layer_id}'
# assert torch.isnan(v_first).sum() == 0, f'NaN detected v_first @ layer {layer_id}'
# assert torch.isnan(tmix_shift).sum() == 0, f'NaN detected tmix_shift @ layer {layer_id}'
# assert torch.isnan(tmix_wkv).sum() == 0, f'NaN detected tmix_wkv @ layer {layer_id}'
# assert torch.isnan(ffn_state).sum() == 0, f'NaN detected ffn_state @ layer {layer_id}'
# assert torch.isnan(x).sum() == 0, f'NaN detected block out @ layer {layer_id}'
return x, (tmix_shift, tmix_wkv, ffn_state), v_first
@torch.compile(mode="default")
def forward_with_default_compile(
self,
in_x:torch.Tensor,
in_state: tuple[torch.Tensor,torch.Tensor,torch.Tensor],
in_v_first:torch.Tensor,
out_x:torch.Tensor,
out_state: tuple[torch.Tensor,torch.Tensor,torch.Tensor],
out_v_first:torch.Tensor
) -> tuple[torch.Tensor,tuple[torch.Tensor,torch.Tensor,torch.Tensor],torch.Tensor]:
'''
Compiled varient of the forward function
With no new tensors being created for the output
Useful for static memory allocation optimizations inference
'''
out_x[:], tmp_state, out_v_first[:] = self.forward(in_x, in_state, in_v_first)
out_state[0][:], out_state[1][:], out_state[2][:] = tmp_state
return out_x, out_state, out_v_first
@torch.compile(mode="reduce-overhead")
def forward_with_reduce_compile(self, in_x: torch.Tensor, in_state: tuple[torch.Tensor,torch.Tensor,torch.Tensor], in_v_first:torch.Tensor) -> tuple[torch.Tensor,tuple[torch.Tensor,torch.Tensor,torch.Tensor],torch.Tensor]:
'''
Compiled varient of the forward function
'''
return self.forward(in_x, in_state, in_v_first)
def load_from_model_state_dict(self, model_state_dict:dict, layer_id:int=-1, non_blocking:bool=True):
'''
Given the Full/partial RWKV model weights, load the block weights accordingly
'''
if layer_id <= -1:
layer_id = self.configMap.get_layer_id(-1)
assert layer_id >= 0, f'layer_id must be >= 0, got {layer_id}'
# Get the current state_dict
current_state_dict = self.state_dict()
# Iterate each parameter in the state_dict, and compare from the model
for n in current_state_dict:
model_key = f"blocks.{layer_id}.{n}"
if model_key not in model_state_dict:
continue
# Copy the values from the state_dict
try:
current_state_dict[n].copy_(model_state_dict[model_key], non_blocking=non_blocking)
except Exception as e:
print(f"[ERROR] loading: {model_key} | model shape: {current_state_dict[n].shape} | weight shape: {model_state_dict[model_key].shape}")
raise e
# ----------------
# model/rwkv7_goose_config_map.py
# ----------------
from dataclasses import dataclass
from typing import Optional
from typing import Union
import torch
# from ..block.rwkv7_block_config_map import RWKV7BlockConfigMap
@dataclass
class RWKV7GooseConfigMap(RWKV7BlockConfigMap):
# This is the world tokenizer size
vocab_size: int = 65536
init_state_wkv: bool = False
# ---
# Initializer, with excess arg ignore
# ---
def __init__(
self,
vocab_size: int = 65536,
init_state_wkv: bool = False,
**kwargs
) -> None:
self.vocab_size = vocab_size
self.init_state_wkv = init_state_wkv
super().__init__(**kwargs)
@staticmethod
def normalize(config_map: any) -> 'RWKV7GooseConfigMap':
'''
Converts either maps, objs or RWKV7BlockConfigMap
'''
if isinstance(config_map, RWKV7GooseConfigMap):
return config_map
if isinstance(config_map, dict):
return RWKV7GooseConfigMap(**config_map)
if hasattr(config_map, '__dict__'):
return RWKV7GooseConfigMap(**config_map.__dict__)
raise ValueError(f"Unsupported config_map type: {type(config_map)}")
@staticmethod
def from_model_state_dict(state_dict: dict, **kwargs) -> 'RWKV7GooseConfigMap':
'''
Converts the state dict to the config map
'''
# Iterate and count the layers
num_hidden_layers = 0
for key in state_dict.keys():
if key.startswith('blocks.'):
idx = key.split('.')[1]
num_hidden_layers = max(num_hidden_layers, int(idx)+1)
# Enable wkv_state
if 'init_state.0.wkv' in state_dict:
kwargs['init_state_wkv'] = True
# Initialize the config map, with the configured values
return RWKV7GooseConfigMap(
num_hidden_layers=num_hidden_layers,
hidden_size=state_dict['emb.weight'].shape[1],
vocab_size=state_dict['emb.weight'].shape[0],
# init_state_wkv=hasattr(state_dict, 'init_state.0.wkv'),
# n_head=state_dict['blocks.0.att.r_k'].shape[0],
head_size=state_dict['blocks.0.att.r_k'].shape[1],
hidden_size_att=state_dict['blocks.0.att.key.weight'].shape[1],
hidden_size_ffn=state_dict['blocks.0.ffn.key.weight'].shape[0],
**kwargs
)
# ----------------
# model/rwkv7_goose_model.py
# ----------------
import torch
from torch import nn
from torch import Tensor
from typing import Union
# from .rwkv7_goose_config_map import RWKV7GooseConfigMap
# from ..block.rwkv7_layer_block import RWKV7LayerBlock
class RWKV7GooseModel(nn.Module):
'''
RWKV7 Goose Model architecture
Simplified implementation
'''
def __init__(self, config: Union[RWKV7GooseConfigMap, any, None] = None):
# Initialize the base class
super().__init__()
# Normalize the config
configMap:RWKV7GooseConfigMap = RWKV7GooseConfigMap.normalize(config)
self.configMap = configMap
# Get the required prop
num_hidden_layers = configMap.num_hidden_layers
vocab_size = configMap.vocab_size
device = configMap.get_device(None)
dtype = configMap.get_dtype('bfloat16')
hidden_size = configMap.hidden_size
# Embedding layer
self.emb = nn.Embedding(vocab_size, hidden_size, device=device, dtype=dtype)
# main block layers
blockList = [None]*num_hidden_layers
for i in range(num_hidden_layers):
blockList[i] = RWKV7LayerBlock(configMap.new_block_config_map(layer_id=i))
self.blocks = nn.ModuleList(blockList)
# ln_out and head
self.ln_out = nn.LayerNorm(hidden_size, device=device, dtype=dtype)
self.head = nn.Linear(hidden_size, vocab_size, bias=False, device=device, dtype=dtype)
# init state tuning support
if configMap.init_state_wkv:
stateTuneList = [None]*num_hidden_layers
for i in range(num_hidden_layers):
stateTuneList[i] = nn.ParameterDict({
"wkv": nn.Parameter(torch.zeros(hidden_size // 64, 64, 64, device=device, dtype=dtype)),
})
self.init_state = nn.ParameterList(stateTuneList)
def init_parameters(self):
'''
Reset the parameters of the block, to an initial state used for training a model from scratch
'''
# Get the required prop
configMap = self.configMap
num_hidden_layers = configMap.num_hidden_layers
vocab_size = configMap.vocab_size
device = configMap.get_device(None)
dtype = configMap.get_dtype('bfloat16')
hidden_size = configMap.hidden_size
# Iterate and reset the blocks
for i in range(num_hidden_layers):
self.blocks[i].init_parameters()
# Reinit the Embedding layer
self.emb = nn.Embedding(vocab_size, hidden_size, device=device, dtype=dtype)
# Reinit the ln_out and head
self.ln_out = nn.LayerNorm(hidden_size, device=device, dtype=dtype)
if self.head is not None:
self.head = nn.Linear(hidden_size, vocab_size, bias=False, device=device, dtype=dtype)
# Reinit the init state tuning support
if configMap.init_state_wkv:
stateTuneList = [None]*num_hidden_layers
for i in range(num_hidden_layers):
stateTuneList[i] = nn.ParameterDict({
"wkv": nn.Parameter(torch.zeros(hidden_size // 64, 64, 64, device=device, dtype=torch.float)),
})
self.init_state = nn.ParameterList(stateTuneList)
def load_from_model_state_dict(self, state_dict: dict, non_blocking:bool=True):
'''
Given the Full/partial RWKV model weights, loaded via `torch.load`
Setup the RWKV_TimeMix model weights, using the layer_id
'''
for i, block in enumerate(self.blocks):
block.load_from_model_state_dict(state_dict, i, non_blocking=non_blocking)
self.ln_out.weight.data.copy_(state_dict['ln_out.weight'], non_blocking=True)
self.ln_out.bias.data.copy_(state_dict['ln_out.bias'], non_blocking=True)
self.head.weight.data.copy_(state_dict['head.weight'], non_blocking=True)
self.emb.weight.data.copy_(state_dict['emb.weight'], non_blocking=True)
### ---
###
### Init state handling
###
### ---
def get_init_state(self, batch_size:int=1, skip_init_state:bool=False) -> list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]]:
'''
Get an initialized copy of the model state, for the given batch size
'''
# Get required configs
hidden_size = self.configMap.hidden_size
init_state_wkv = self.configMap.init_state_wkv
num_hidden_layers = self.configMap.num_hidden_layers
# Prepare the initial state
init_state = [ None for i in range(num_hidden_layers) ]
for i in range(num_hidden_layers):
device = self.blocks[i].ln1.weight.data.device
dtype = self.blocks[i].ln1.weight.data.dtype
# Use the saved init_state if enabled
# TODO: Consider letting the wkv_state dtype be a parameter
wkv_state = torch.zeros(batch_size, hidden_size // 64, 64, 64, device=device, dtype=torch.float)
if init_state_wkv and skip_init_state == False:
init_wkv = self.init_state[i]["wkv"]
for b in range(batch_size):
wkv_state[b][:] = init_wkv
# Prepare the state
init_state[i] = (
torch.zeros(batch_size, hidden_size, device=device, dtype=dtype),
wkv_state,
torch.zeros(batch_size, hidden_size, device=device, dtype=dtype)
)
return init_state
### ---
###
### Model Forward
###
### ---
def forward(
self, idx:torch.Tensor,
prv_stateList:list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]] = None,
ret_stateList:list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]] = None,
) -> tuple[torch.Tensor,list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]]]:
'''
Forward the block set, given the input tokens and the last state
Last state is a list of tuple of the following
- time mix shift state
- time mix wkv state
- channel mix shift state
Returns a pair of the output embedding and the next state
'''
# Prepare the state, with the batch size
if prv_stateList is None:
prv_stateList = self.get_init_state(idx.shape[0])
# If no return state is set, let _forward_internal, set it up
if ret_stateList is None:
ret_stateList = [ None for i in range(self.configMap.num_hidden_layers) ]
return self._forward_internal(idx, prv_stateList, ret_stateList, overwrite_ret_tensor=False)
# Forward internally
return self._forward_internal(idx, prv_stateList, ret_stateList, overwrite_ret_tensor=True)
def _forward_block_hook(self,
block:RWKV7LayerBlock,
x_hidden_state:torch.Tensor,
prv_stateList:list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]],
v_first:torch.Tensor
) -> tuple[torch.Tensor,tuple[torch.Tensor,torch.Tensor,torch.Tensor],torch.Tensor]:
'''
Forward block hook operation, that is easily overridable.
To implement gradient checkpointing for use in various trainers
'''
x_hidden_state = x_hidden_state.to(block.ln1.weight.device, non_blocking=True)
return block(x_hidden_state, prv_stateList, v_first)
def _forward_internal(
self, idx:torch.Tensor,
prv_stateList:list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]],
ret_stateList:list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]],
overwrite_ret_tensor:bool=False
) -> tuple[torch.Tensor,list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]]]:
'''
Internal forward operations, which assumes the state is already initialized
Due to the lack of safety checks, this should not be used directly
'''
# Lets get the embedding
idx = idx.to(self.emb.weight.device, non_blocking=True)
x_hidden_state = self.emb(idx)
v_first = None
# Iterate the block layers, compute the x_hidden_state
if overwrite_ret_tensor:
for i, block in enumerate(self.blocks):
# x_hidden_state, last_block_state, v_first = block(x_hidden_state, prv_stateList[i], v_first)
x_hidden_state, last_block_state, v_first = self._forward_block_hook(block, x_hidden_state, prv_stateList[i], v_first)
ret_stateList[i][0][:] = last_block_state[0]
ret_stateList[i][1][:] = last_block_state[1]
ret_stateList[i][2][:] = last_block_state[2]
else:
ret_stateList = [ None for i in range( len(self.blocks) ) ]
for i, block in enumerate(self.blocks):
# x_hidden_state, ret_sublist, v_first = block(x_hidden_state, prv_stateList[i], v_first)
x_hidden_state, ret_sublist, v_first = self._forward_block_hook(block, x_hidden_state, prv_stateList[i], v_first)
ret_stateList[i] = ret_sublist
# Final layer norm, and head
x_hidden_state = x_hidden_state.to(self.ln_out.weight.device, non_blocking=True)
x_hidden_state = self.ln_out(x_hidden_state)
x_out = self.head(x_hidden_state)
# Return the output and the state list
return x_out, ret_stateList
@torch.compile(mode="default")
def forward_with_default_compile(
self, idx:torch.Tensor,
prv_stateList:list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]],
ret_stateList:list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]],
) -> tuple[torch.Tensor,list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]]]:
'''
Compiled varient of the forward function
With no new tensors being created for the output
Useful for static memory allocation optimizations inference
'''
# Forward internally
return self._forward_internal(idx, prv_stateList, ret_stateList, overwrite_ret_tensor=True)
@torch.compile(mode="reduce-overhead")
def forward_with_reduce_compile(
self, in_idx:torch.Tensor,
prv_stateList:list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]]
) -> tuple[torch.Tensor,list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]]]:
'''
Compiled varient of the forward function, requires previous state to be passed
'''
return self._forward_internal(in_idx, prv_stateList, None, overwrite_ret_tensor=False)
|