philipp-zettl commited on
Commit
562fbd8
·
verified ·
1 Parent(s): 53b3a59

Training in progress, step 1000

Browse files
final/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
final/README.md ADDED
@@ -0,0 +1,652 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2839738
8
+ - loss:CoSENTLoss
9
+ base_model: Mihaiii/gte-micro-v4
10
+ widget:
11
+ - source_sentence: 314d5e89-55f7-42b4-af19-d4d0f499a265_c808a8ec-895c-4777-9e11-e83ce34eddef
12
+ sentences:
13
+ - https://cards.scryfall.io/normal/front/3/1/314d5e89-55f7-42b4-af19-d4d0f499a265.jpg?1710406384
14
+ - https://cards.scryfall.io/normal/front/c/8/c808a8ec-895c-4777-9e11-e83ce34eddef.jpg?1593272714
15
+ - 'Title: Killer Instinct
16
+
17
+ Cost: {4}{R}{G}
18
+
19
+ Colors: [''G'', ''R'']
20
+
21
+ Type: Enchantment
22
+
23
+ Desc: At the beginning of your upkeep, reveal the top card of your library. If
24
+ it''s a creature card, put it onto the battlefield. That creature gains haste
25
+ until end of turn. Sacrifice it at the beginning of the next end step.'
26
+ - 'Title: Ixidor, Reality Sculptor
27
+
28
+ Cost: {3}{U}{U}
29
+
30
+ Colors: [''U'']
31
+
32
+ Type: Legendary Creature — Human Wizard
33
+
34
+ Desc: Face-down creatures get +1/+1.
35
+
36
+ {2}{U}: Turn target face-down creature face up.'
37
+ - source_sentence: a252a1f5-bba5-4525-8141-57caea9624e9_5fd29cd7-9950-49c0-9e71-d6b0f944292c
38
+ sentences:
39
+ - https://cards.scryfall.io/normal/front/5/f/5fd29cd7-9950-49c0-9e71-d6b0f944292c.jpg?1637627823
40
+ - 'Title: Celestial Judgment
41
+
42
+ Cost: {4}{W}{W}
43
+
44
+ Colors: [''W'']
45
+
46
+ Type: Sorcery
47
+
48
+ Desc: For each different power among creatures on the battlefield, choose a creature
49
+ with that power. Destroy each creature not chosen this way.'
50
+ - 'Title: Gibbering Hyenas
51
+
52
+ Cost: {2}{G}
53
+
54
+ Colors: [''G'']
55
+
56
+ Type: Creature — Hyena
57
+
58
+ Desc: This creature can''t block black creatures.'
59
+ - https://cards.scryfall.io/normal/front/a/2/a252a1f5-bba5-4525-8141-57caea9624e9.jpg?1562720953
60
+ - source_sentence: 0d09c2c8-526b-4693-bbaa-109911ce5281_1a47da7c-80f3-4b98-aaac-778c34a35cb6
61
+ sentences:
62
+ - https://cards.scryfall.io/normal/front/1/a/1a47da7c-80f3-4b98-aaac-778c34a35cb6.jpg?1561817948
63
+ - 'Title: Corpse Harvester
64
+
65
+ Cost: {3}{B}{B}
66
+
67
+ Colors: [''B'']
68
+
69
+ Type: Creature — Zombie Wizard
70
+
71
+ Desc: {1}{B}, {T}, Sacrifice a creature: Search your library for a Zombie card
72
+ and a Swamp card, reveal them, put them into your hand, then shuffle.'
73
+ - https://cards.scryfall.io/normal/front/0/d/0d09c2c8-526b-4693-bbaa-109911ce5281.jpg?1562897662
74
+ - 'Title: Master Biomancer
75
+
76
+ Cost: {2}{G}{U}
77
+
78
+ Colors: [''G'', ''U'']
79
+
80
+ Type: Creature — Elf Wizard
81
+
82
+ Desc: Each other creature you control enters with a number of additional +1/+1
83
+ counters on it equal to this creature''s power and as a Mutant in addition to
84
+ its other types.'
85
+ - source_sentence: 938d5157-154c-4300-82d4-0e23d934d436_10be9a82-4008-45ae-a739-fdee95e39619
86
+ sentences:
87
+ - https://cards.scryfall.io/normal/front/9/3/938d5157-154c-4300-82d4-0e23d934d436.jpg?1562922364
88
+ - https://cards.scryfall.io/normal/front/1/0/10be9a82-4008-45ae-a739-fdee95e39619.jpg?1711892785
89
+ - 'Title: Shadow of Doubt
90
+
91
+ Cost: {U/B}{U/B}
92
+
93
+ Colors: [''B'', ''U'']
94
+
95
+ Type: Instant
96
+
97
+ Desc: ({U/B} can be paid with either {U} or {B}.)
98
+
99
+ Players can''t search libraries this turn.
100
+
101
+ Draw a card.'
102
+ - 'Title: Stone-Tongue Basilisk
103
+
104
+ Cost: {4}{G}{G}{G}
105
+
106
+ Colors: [''G'']
107
+
108
+ Type: Creature — Basilisk
109
+
110
+ Desc: Whenever this creature deals combat damage to a creature, destroy that creature
111
+ at end of combat.
112
+
113
+ Threshold — As long as seven or more cards are in your graveyard, all creatures
114
+ able to block this creature do so.'
115
+ - source_sentence: 141a031d-f899-497b-adf7-4af142078085_0367fac8-6990-4544-ac7d-ed363b55a9cf
116
+ sentences:
117
+ - 'Title: Quirion Explorer
118
+
119
+ Cost: {1}{G}
120
+
121
+ Colors: [''G'']
122
+
123
+ Type: Creature — Elf Druid Scout
124
+
125
+ Desc: {T}: Add one mana of any color that a land an opponent controls could produce.'
126
+ - https://cards.scryfall.io/normal/front/1/4/141a031d-f899-497b-adf7-4af142078085.jpg?1562899241
127
+ - 'Title: Savage Hunger
128
+
129
+ Cost: {2}{G}
130
+
131
+ Colors: [''G'']
132
+
133
+ Type: Enchantment — Aura
134
+
135
+ Desc: Enchant creature
136
+
137
+ Enchanted creature gets +1/+0 and has trample.
138
+
139
+ Cycling {2} ({2}, Discard this card: Draw a card.)'
140
+ - https://cards.scryfall.io/normal/front/0/3/0367fac8-6990-4544-ac7d-ed363b55a9cf.jpg?1562700664
141
+ pipeline_tag: sentence-similarity
142
+ library_name: sentence-transformers
143
+ metrics:
144
+ - pearson_cosine
145
+ - spearman_cosine
146
+ model-index:
147
+ - name: SentenceTransformer based on Mihaiii/gte-micro-v4
148
+ results:
149
+ - task:
150
+ type: semantic-similarity
151
+ name: Semantic Similarity
152
+ dataset:
153
+ name: sts dev
154
+ type: sts-dev
155
+ metrics:
156
+ - type: pearson_cosine
157
+ value: 0.3217344770453035
158
+ name: Pearson Cosine
159
+ - type: spearman_cosine
160
+ value: 0.33145577598581166
161
+ name: Spearman Cosine
162
+ - type: pearson_cosine
163
+ value: 0.43782959181274894
164
+ name: Pearson Cosine
165
+ - type: spearman_cosine
166
+ value: 0.4808140058026093
167
+ name: Spearman Cosine
168
+ - task:
169
+ type: semantic-similarity
170
+ name: Semantic Similarity
171
+ dataset:
172
+ name: sts test
173
+ type: sts-test
174
+ metrics:
175
+ - type: pearson_cosine
176
+ value: 0.5782060287197249
177
+ name: Pearson Cosine
178
+ - type: spearman_cosine
179
+ value: 0.6348407516031069
180
+ name: Spearman Cosine
181
+ ---
182
+
183
+ # SentenceTransformer based on Mihaiii/gte-micro-v4
184
+
185
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Mihaiii/gte-micro-v4](https://huggingface.co/Mihaiii/gte-micro-v4) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
186
+
187
+ ## Model Details
188
+
189
+ ### Model Description
190
+ - **Model Type:** Sentence Transformer
191
+ - **Base model:** [Mihaiii/gte-micro-v4](https://huggingface.co/Mihaiii/gte-micro-v4) <!-- at revision 78e1a4b348f8524c3ab2e3e3475788f5adb8c98f -->
192
+ - **Maximum Sequence Length:** 512 tokens
193
+ - **Output Dimensionality:** 384 dimensions
194
+ - **Similarity Function:** Cosine Similarity
195
+ - **Training Dataset:**
196
+ - json
197
+ <!-- - **Language:** Unknown -->
198
+ <!-- - **License:** Unknown -->
199
+
200
+ ### Model Sources
201
+
202
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
203
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
204
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
205
+
206
+ ### Full Model Architecture
207
+
208
+ ```
209
+ SentenceTransformer(
210
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
211
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
212
+ )
213
+ ```
214
+
215
+ ## Usage
216
+
217
+ ### Direct Usage (Sentence Transformers)
218
+
219
+ First install the Sentence Transformers library:
220
+
221
+ ```bash
222
+ pip install -U sentence-transformers
223
+ ```
224
+
225
+ Then you can load this model and run inference.
226
+ ```python
227
+ from sentence_transformers import SentenceTransformer
228
+
229
+ # Download from the 🤗 Hub
230
+ model = SentenceTransformer("sentence_transformers_model_id")
231
+ # Run inference
232
+ sentences = [
233
+ '141a031d-f899-497b-adf7-4af142078085_0367fac8-6990-4544-ac7d-ed363b55a9cf',
234
+ "Title: Quirion Explorer\nCost: {1}{G}\nColors: ['G']\nType: Creature — Elf Druid Scout\nDesc: {T}: Add one mana of any color that a land an opponent controls could produce.",
235
+ "Title: Savage Hunger\nCost: {2}{G}\nColors: ['G']\nType: Enchantment — Aura\nDesc: Enchant creature\nEnchanted creature gets +1/+0 and has trample.\nCycling {2} ({2}, Discard this card: Draw a card.)",
236
+ ]
237
+ embeddings = model.encode(sentences)
238
+ print(embeddings.shape)
239
+ # [3, 384]
240
+
241
+ # Get the similarity scores for the embeddings
242
+ similarities = model.similarity(embeddings, embeddings)
243
+ print(similarities.shape)
244
+ # [3, 3]
245
+ ```
246
+
247
+ <!--
248
+ ### Direct Usage (Transformers)
249
+
250
+ <details><summary>Click to see the direct usage in Transformers</summary>
251
+
252
+ </details>
253
+ -->
254
+
255
+ <!--
256
+ ### Downstream Usage (Sentence Transformers)
257
+
258
+ You can finetune this model on your own dataset.
259
+
260
+ <details><summary>Click to expand</summary>
261
+
262
+ </details>
263
+ -->
264
+
265
+ <!--
266
+ ### Out-of-Scope Use
267
+
268
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
269
+ -->
270
+
271
+ ## Evaluation
272
+
273
+ ### Metrics
274
+
275
+ #### Semantic Similarity
276
+
277
+ * Datasets: `sts-dev` and `sts-test`
278
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
279
+
280
+ | Metric | sts-dev | sts-test |
281
+ |:--------------------|:-----------|:-----------|
282
+ | pearson_cosine | 0.3217 | 0.5782 |
283
+ | **spearman_cosine** | **0.3315** | **0.6348** |
284
+
285
+ #### Semantic Similarity
286
+
287
+ * Dataset: `sts-dev`
288
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
289
+
290
+ | Metric | Value |
291
+ |:--------------------|:-----------|
292
+ | pearson_cosine | 0.4378 |
293
+ | **spearman_cosine** | **0.4808** |
294
+
295
+ <!--
296
+ ## Bias, Risks and Limitations
297
+
298
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
299
+ -->
300
+
301
+ <!--
302
+ ### Recommendations
303
+
304
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
305
+ -->
306
+
307
+ ## Training Details
308
+
309
+ ### Training Dataset
310
+
311
+ #### json
312
+
313
+ * Dataset: json
314
+ * Size: 2,839,738 training samples
315
+ * Columns: <code>uuid</code>, <code>sentence_1</code>, <code>sentence_2</code>, <code>image_1</code>, <code>image_2</code>, and <code>score</code>
316
+ * Approximate statistics based on the first 1000 samples:
317
+ | | uuid | sentence_1 | sentence_2 | image_1 | image_2 | score |
318
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
319
+ | type | string | string | string | string | string | float |
320
+ | details | <ul><li>min: 49 tokens</li><li>mean: 56.99 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 69.4 tokens</li><li>max: 180 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 68.59 tokens</li><li>max: 166 tokens</li></ul> | <ul><li>min: 53 tokens</li><li>mean: 58.17 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 52 tokens</li><li>mean: 58.28 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.13</li><li>max: 0.5</li></ul> |
321
+ * Samples:
322
+ | uuid | sentence_1 | sentence_2 | image_1 | image_2 | score |
323
+ |:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:------------------|
324
+ | <code>08f9b863-10b7-46d6-badd-97381e6c7c5e_4330efa7-a11b-4776-9fb0-1cae8aed67b1</code> | <code>Title: Blast Zone<br>Type: Land<br>Desc: This land enters with a charge counter on it.<br>{T}: Add {C}.<br>{X}{X}, {T}: Put X charge counters on this land.<br>{3}, {T}, Sacrifice this land: Destroy each nonland permanent with mana value equal to the number of charge counters on this land.</code> | <code>Title: Tom van de Logt Bio (2000)<br>Type: Card<br>Desc: Quarterfinalist Tom van de Logt posted a perfect 6—0 record during the Standard portion of this year's World Championships. The 19-year-old Groesbeek, Holland native was playing a deck that had a big impact on the metagame this year, "Replenish." This deck used cards like Attunement and Frantic Search to put powerful enchantments, such as Parallax Wave and Opalescence, into the graveyard and then used Replenish to put them all back into play at once.</code> | <code>https://cards.scryfall.io/normal/front/0/8/08f9b863-10b7-46d6-badd-97381e6c7c5e.jpg?1674423042</code> | <code>https://cards.scryfall.io/normal/front/4/3/4330efa7-a11b-4776-9fb0-1cae8aed67b1.jpg?1562767017</code> | <code>0.25</code> |
325
+ | <code>abe9cf1e-d398-41e0-8b11-afe1015e4fd9_40cb67f7-b4e1-423b-8f55-d44ed383e778</code> | <code>Title: Coral Net<br>Cost: {U}<br>Colors: ['U']<br>Type: Enchantment — Aura<br>Desc: Enchant green or white creature<br>Enchanted creature has "At the beginning of your upkeep, sacrifice this creature unless you discard a card."</code> | <code>Title: Silumgar Butcher<br>Cost: {4}{B}<br>Colors: ['B']<br>Type: Creature — Zombie Djinn<br>Desc: Exploit (When this creature enters, you may sacrifice a creature.)<br>When this creature exploits a creature, target creature gets -3/-3 until end of turn.</code> | <code>https://cards.scryfall.io/normal/front/a/b/abe9cf1e-d398-41e0-8b11-afe1015e4fd9.jpg?1562631469</code> | <code>https://cards.scryfall.io/normal/front/4/0/40cb67f7-b4e1-423b-8f55-d44ed383e778.jpg?1562785294</code> | <code>0.0</code> |
326
+ | <code>3dd13408-b4db-42e7-bf3c-d46716538a7c_05a6dc90-3997-4911-8bd6-854c85eca35b</code> | <code>Title: Rishadan Brigand<br>Cost: {4}{U}<br>Colors: ['U']<br>Type: Creature — Human Pirate<br>Desc: Flying<br>When this creature enters, each opponent sacrifices a permanent of their choice unless they pay {3}.<br>This creature can block only creatures with flying.</code> | <code>Title: Banishing Stroke<br>Cost: {5}{W}<br>Colors: ['W']<br>Type: Instant<br>Desc: Put target artifact, creature, or enchantment on the bottom of its owner's library.<br>Miracle {W} (You may cast this card for its miracle cost when you draw it if it's the first card you drew this turn.)</code> | <code>https://cards.scryfall.io/normal/front/3/d/3dd13408-b4db-42e7-bf3c-d46716538a7c.jpg?1632145390</code> | <code>https://cards.scryfall.io/normal/front/0/5/05a6dc90-3997-4911-8bd6-854c85eca35b.jpg?1723433851</code> | <code>0.0</code> |
327
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
328
+ ```json
329
+ {
330
+ "scale": 20.0,
331
+ "similarity_fct": "pairwise_cos_sim"
332
+ }
333
+ ```
334
+
335
+ ### Evaluation Dataset
336
+
337
+ #### json
338
+
339
+ * Dataset: json
340
+ * Size: 74,730 evaluation samples
341
+ * Columns: <code>uuid</code>, <code>sentence_1</code>, <code>sentence_2</code>, <code>image_1</code>, <code>image_2</code>, and <code>score</code>
342
+ * Approximate statistics based on the first 1000 samples:
343
+ | | uuid | sentence_1 | sentence_2 | image_1 | image_2 | score |
344
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
345
+ | type | string | string | string | string | string | float |
346
+ | details | <ul><li>min: 50 tokens</li><li>mean: 56.9 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 68.44 tokens</li><li>max: 181 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 69.49 tokens</li><li>max: 179 tokens</li></ul> | <ul><li>min: 52 tokens</li><li>mean: 58.22 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 52 tokens</li><li>mean: 58.21 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.12</li><li>max: 0.75</li></ul> |
347
+ * Samples:
348
+ | uuid | sentence_1 | sentence_2 | image_1 | image_2 | score |
349
+ |:---------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:------------------|
350
+ | <code>6bdd8645-aee9-44cb-acaa-2674f55cdf2f_b34bb149-2e50-462e-8b83-5c8339bb3aff</code> | <code>Title: Syr Cadian, Knight Owl<br>Cost: {3}{W}{W}<br>Colors: ['W']<br>Type: Legendary Creature — Bird Knight<br>Desc: Knightlifelink (Damage dealt by Knights you control also causes you to gain that much life.)<br>{W}: Syr Cadian gains vigilance until end of turn. Activate only from sunrise to sunset.<br>{B}: Syr Cadian gains flying until end of turn. Activate only from sunset to sunrise.</code> | <code>Title: Non-Human Cannonball<br>Cost: {2}{R}<br>Colors: ['R']<br>Type: Artifact Creature — Clown Robot<br>Desc: When this creature dies, roll a six-sided die. If the result is 4 or less, this creature deals that much damage to you.</code> | <code>https://cards.scryfall.io/normal/front/6/b/6bdd8645-aee9-44cb-acaa-2674f55cdf2f.jpg?1664317187</code> | <code>https://cards.scryfall.io/normal/front/b/3/b34bb149-2e50-462e-8b83-5c8339bb3aff.jpg?1673917877</code> | <code>0.25</code> |
351
+ | <code>860f4304-38f1-4c2f-a122-2590619522fd_08d6db9b-b2da-4148-aa49-8c2fecac6e32</code> | <code>Title: Hindering Light<br>Cost: {W}{U}<br>Colors: ['U', 'W']<br>Type: Instant<br>Desc: Counter target spell that targets you or a permanent you control.<br>Draw a card.</code> | <code>Title: Gleam of Resistance<br>Cost: {4}{W}<br>Colors: ['W']<br>Type: Instant<br>Desc: Creatures you control get +1/+2 until end of turn. Untap those creatures.<br>Basic landcycling {1}{W} ({1}{W}, Discard this card: Search your library for a basic land card, reveal it, put it into your hand, then shuffle.)</code> | <code>https://cards.scryfall.io/normal/front/8/6/860f4304-38f1-4c2f-a122-2590619522fd.jpg?1712353583</code> | <code>https://cards.scryfall.io/normal/front/0/8/08d6db9b-b2da-4148-aa49-8c2fecac6e32.jpg?1573505575</code> | <code>0.25</code> |
352
+ | <code>91b448f4-aa0c-42c7-a771-e8dd20e0520c_46f810c2-310e-42f5-ab1f-d56396cf5124</code> | <code>Title: Practiced Tactics<br>Cost: {W}<br>Colors: ['W']<br>Type: Instant<br>Desc: Choose target attacking or blocking creature. Practiced Tactics deals damage to that creature equal to twice the number of creatures in your party. (Your party consists of up to one each of Cleric, Rogue, Warrior, and Wizard.)</code> | <code>Title: Anointer Priest<br>Cost: {1}{W}<br>Colors: ['W']<br>Type: Creature — Human Cleric<br>Desc: Whenever a creature token you control enters, you gain 1 life.<br>Embalm {3}{W} ({3}{W}, Exile this card from your graveyard: Create a token that's a copy of it, except it's a white Zombie Human Cleric with no mana cost. Embalm only as a sorcery.)</code> | <code>https://cards.scryfall.io/normal/front/9/1/91b448f4-aa0c-42c7-a771-e8dd20e0520c.jpg?1604192922</code> | <code>https://cards.scryfall.io/normal/front/4/6/46f810c2-310e-42f5-ab1f-d56396cf5124.jpg?1599769231</code> | <code>0.25</code> |
353
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
354
+ ```json
355
+ {
356
+ "scale": 20.0,
357
+ "similarity_fct": "pairwise_cos_sim"
358
+ }
359
+ ```
360
+
361
+ ### Training Hyperparameters
362
+ #### Non-Default Hyperparameters
363
+
364
+ - `eval_strategy`: steps
365
+ - `per_device_train_batch_size`: 64
366
+ - `per_device_eval_batch_size`: 64
367
+ - `learning_rate`: 2e-05
368
+ - `num_train_epochs`: 1
369
+ - `warmup_ratio`: 0.1
370
+ - `log_level_replica`: passive
371
+ - `log_on_each_node`: False
372
+ - `logging_nan_inf_filter`: False
373
+ - `fp16`: True
374
+ - `batch_sampler`: no_duplicates
375
+
376
+ #### All Hyperparameters
377
+ <details><summary>Click to expand</summary>
378
+
379
+ - `overwrite_output_dir`: False
380
+ - `do_predict`: False
381
+ - `eval_strategy`: steps
382
+ - `prediction_loss_only`: True
383
+ - `per_device_train_batch_size`: 64
384
+ - `per_device_eval_batch_size`: 64
385
+ - `per_gpu_train_batch_size`: None
386
+ - `per_gpu_eval_batch_size`: None
387
+ - `gradient_accumulation_steps`: 1
388
+ - `eval_accumulation_steps`: None
389
+ - `torch_empty_cache_steps`: None
390
+ - `learning_rate`: 2e-05
391
+ - `weight_decay`: 0.0
392
+ - `adam_beta1`: 0.9
393
+ - `adam_beta2`: 0.999
394
+ - `adam_epsilon`: 1e-08
395
+ - `max_grad_norm`: 1.0
396
+ - `num_train_epochs`: 1
397
+ - `max_steps`: -1
398
+ - `lr_scheduler_type`: linear
399
+ - `lr_scheduler_kwargs`: {}
400
+ - `warmup_ratio`: 0.1
401
+ - `warmup_steps`: 0
402
+ - `log_level`: passive
403
+ - `log_level_replica`: passive
404
+ - `log_on_each_node`: False
405
+ - `logging_nan_inf_filter`: False
406
+ - `save_safetensors`: True
407
+ - `save_on_each_node`: False
408
+ - `save_only_model`: False
409
+ - `restore_callback_states_from_checkpoint`: False
410
+ - `no_cuda`: False
411
+ - `use_cpu`: False
412
+ - `use_mps_device`: False
413
+ - `seed`: 42
414
+ - `data_seed`: None
415
+ - `jit_mode_eval`: False
416
+ - `use_ipex`: False
417
+ - `bf16`: False
418
+ - `fp16`: True
419
+ - `fp16_opt_level`: O1
420
+ - `half_precision_backend`: auto
421
+ - `bf16_full_eval`: False
422
+ - `fp16_full_eval`: False
423
+ - `tf32`: None
424
+ - `local_rank`: 0
425
+ - `ddp_backend`: None
426
+ - `tpu_num_cores`: None
427
+ - `tpu_metrics_debug`: False
428
+ - `debug`: []
429
+ - `dataloader_drop_last`: False
430
+ - `dataloader_num_workers`: 0
431
+ - `dataloader_prefetch_factor`: None
432
+ - `past_index`: -1
433
+ - `disable_tqdm`: False
434
+ - `remove_unused_columns`: True
435
+ - `label_names`: None
436
+ - `load_best_model_at_end`: False
437
+ - `ignore_data_skip`: False
438
+ - `fsdp`: []
439
+ - `fsdp_min_num_params`: 0
440
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
441
+ - `tp_size`: 0
442
+ - `fsdp_transformer_layer_cls_to_wrap`: None
443
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
444
+ - `deepspeed`: None
445
+ - `label_smoothing_factor`: 0.0
446
+ - `optim`: adamw_torch
447
+ - `optim_args`: None
448
+ - `adafactor`: False
449
+ - `group_by_length`: False
450
+ - `length_column_name`: length
451
+ - `ddp_find_unused_parameters`: None
452
+ - `ddp_bucket_cap_mb`: None
453
+ - `ddp_broadcast_buffers`: False
454
+ - `dataloader_pin_memory`: True
455
+ - `dataloader_persistent_workers`: False
456
+ - `skip_memory_metrics`: True
457
+ - `use_legacy_prediction_loop`: False
458
+ - `push_to_hub`: False
459
+ - `resume_from_checkpoint`: None
460
+ - `hub_model_id`: None
461
+ - `hub_strategy`: every_save
462
+ - `hub_private_repo`: None
463
+ - `hub_always_push`: False
464
+ - `gradient_checkpointing`: False
465
+ - `gradient_checkpointing_kwargs`: None
466
+ - `include_inputs_for_metrics`: False
467
+ - `include_for_metrics`: []
468
+ - `eval_do_concat_batches`: True
469
+ - `fp16_backend`: auto
470
+ - `push_to_hub_model_id`: None
471
+ - `push_to_hub_organization`: None
472
+ - `mp_parameters`:
473
+ - `auto_find_batch_size`: False
474
+ - `full_determinism`: False
475
+ - `torchdynamo`: None
476
+ - `ray_scope`: last
477
+ - `ddp_timeout`: 1800
478
+ - `torch_compile`: False
479
+ - `torch_compile_backend`: None
480
+ - `torch_compile_mode`: None
481
+ - `dispatch_batches`: None
482
+ - `split_batches`: None
483
+ - `include_tokens_per_second`: False
484
+ - `include_num_input_tokens_seen`: False
485
+ - `neftune_noise_alpha`: None
486
+ - `optim_target_modules`: None
487
+ - `batch_eval_metrics`: False
488
+ - `eval_on_start`: False
489
+ - `use_liger_kernel`: False
490
+ - `eval_use_gather_object`: False
491
+ - `average_tokens_across_devices`: False
492
+ - `prompts`: None
493
+ - `batch_sampler`: no_duplicates
494
+ - `multi_dataset_batch_sampler`: proportional
495
+
496
+ </details>
497
+
498
+ ### Training Logs
499
+ | Epoch | Step | Training Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
500
+ |:------:|:-----:|:-------------:|:-----------------------:|:------------------------:|
501
+ | -1 | -1 | - | 0.3315 | - |
502
+ | 0.0014 | 500 | 2.7624 | - | - |
503
+ | 0.0028 | 1000 | 2.7106 | - | - |
504
+ | 0.0042 | 1500 | 2.7205 | - | - |
505
+ | 0.0056 | 2000 | 2.6742 | - | - |
506
+ | 0.0070 | 2500 | 2.6359 | - | - |
507
+ | -1 | -1 | - | 0.4808 | - |
508
+ | 0.0113 | 500 | 6.8841 | - | - |
509
+ | 0.0225 | 1000 | 6.8706 | - | - |
510
+ | 0.0338 | 1500 | 6.8388 | - | - |
511
+ | 0.0451 | 2000 | 6.8323 | - | - |
512
+ | 0.0563 | 2500 | 6.8277 | - | - |
513
+ | 0.0676 | 3000 | 6.8306 | - | - |
514
+ | 0.0789 | 3500 | 6.833 | - | - |
515
+ | 0.0901 | 4000 | 6.8267 | - | - |
516
+ | 0.1014 | 4500 | 6.8323 | - | - |
517
+ | 0.1127 | 5000 | 6.8293 | - | - |
518
+ | 0.1240 | 5500 | 6.8384 | - | - |
519
+ | 0.1352 | 6000 | 6.8265 | - | - |
520
+ | 0.1465 | 6500 | 6.8205 | - | - |
521
+ | 0.1578 | 7000 | 6.8257 | - | - |
522
+ | 0.1690 | 7500 | 6.8167 | - | - |
523
+ | 0.1803 | 8000 | 6.8171 | - | - |
524
+ | 0.1916 | 8500 | 6.8221 | - | - |
525
+ | 0.2028 | 9000 | 6.8208 | - | - |
526
+ | 0.2141 | 9500 | 6.8301 | - | - |
527
+ | 0.2254 | 10000 | 6.8166 | - | - |
528
+ | 0.2366 | 10500 | 6.8143 | - | - |
529
+ | 0.2479 | 11000 | 6.8184 | - | - |
530
+ | 0.2592 | 11500 | 6.8274 | - | - |
531
+ | 0.2704 | 12000 | 6.8339 | - | - |
532
+ | 0.2817 | 12500 | 6.8273 | - | - |
533
+ | 0.2930 | 13000 | 6.8338 | - | - |
534
+ | 0.3043 | 13500 | 6.821 | - | - |
535
+ | 0.3155 | 14000 | 6.8375 | - | - |
536
+ | 0.3268 | 14500 | 6.8219 | - | - |
537
+ | 0.3381 | 15000 | 6.8277 | - | - |
538
+ | 0.3493 | 15500 | 6.8248 | - | - |
539
+ | 0.3606 | 16000 | 6.8234 | - | - |
540
+ | 0.3719 | 16500 | 6.8215 | - | - |
541
+ | 0.3831 | 17000 | 6.823 | - | - |
542
+ | 0.3944 | 17500 | 6.8287 | - | - |
543
+ | 0.4057 | 18000 | 6.8226 | - | - |
544
+ | 0.4169 | 18500 | 6.8179 | - | - |
545
+ | 0.4282 | 19000 | 6.8142 | - | - |
546
+ | 0.4395 | 19500 | 6.82 | - | - |
547
+ | 0.4507 | 20000 | 6.8243 | - | - |
548
+ | 0.4620 | 20500 | 6.8185 | - | - |
549
+ | 0.4733 | 21000 | 6.8191 | - | - |
550
+ | 0.4846 | 21500 | 6.8318 | - | - |
551
+ | 0.4958 | 22000 | 6.8282 | - | - |
552
+ | 0.5071 | 22500 | 6.8291 | - | - |
553
+ | 0.5184 | 23000 | 6.8259 | - | - |
554
+ | 0.5296 | 23500 | 6.8232 | - | - |
555
+ | 0.5409 | 24000 | 6.822 | - | - |
556
+ | 0.5522 | 24500 | 6.8271 | - | - |
557
+ | 0.5634 | 25000 | 6.8174 | - | - |
558
+ | 0.5747 | 25500 | 6.8164 | - | - |
559
+ | 0.5860 | 26000 | 6.8279 | - | - |
560
+ | 0.5972 | 26500 | 6.8153 | - | - |
561
+ | 0.6085 | 27000 | 6.8242 | - | - |
562
+ | 0.6198 | 27500 | 6.806 | - | - |
563
+ | 0.6310 | 28000 | 6.8305 | - | - |
564
+ | 0.6423 | 28500 | 6.8164 | - | - |
565
+ | 0.6536 | 29000 | 6.8198 | - | - |
566
+ | 0.6648 | 29500 | 6.8171 | - | - |
567
+ | 0.6761 | 30000 | 6.8131 | - | - |
568
+ | 0.6874 | 30500 | 6.8149 | - | - |
569
+ | 0.6987 | 31000 | 6.8149 | - | - |
570
+ | 0.7099 | 31500 | 6.8216 | - | - |
571
+ | 0.7212 | 32000 | 6.8244 | - | - |
572
+ | 0.7325 | 32500 | 6.8264 | - | - |
573
+ | 0.7437 | 33000 | 6.8176 | - | - |
574
+ | 0.7550 | 33500 | 6.8255 | - | - |
575
+ | 0.7663 | 34000 | 6.807 | - | - |
576
+ | 0.7775 | 34500 | 6.8187 | - | - |
577
+ | 0.7888 | 35000 | 6.8174 | - | - |
578
+ | 0.8001 | 35500 | 6.8197 | - | - |
579
+ | 0.8113 | 36000 | 6.8074 | - | - |
580
+ | 0.8226 | 36500 | 6.8105 | - | - |
581
+ | 0.8339 | 37000 | 6.8143 | - | - |
582
+ | 0.8451 | 37500 | 6.8069 | - | - |
583
+ | 0.8564 | 38000 | 6.8109 | - | - |
584
+ | 0.8677 | 38500 | 6.8072 | - | - |
585
+ | 0.8790 | 39000 | 6.8172 | - | - |
586
+ | 0.8902 | 39500 | 6.8127 | - | - |
587
+ | 0.9015 | 40000 | 6.8151 | - | - |
588
+ | 0.9128 | 40500 | 6.8188 | - | - |
589
+ | 0.9240 | 41000 | 6.8191 | - | - |
590
+ | 0.9353 | 41500 | 6.811 | - | - |
591
+ | 0.9466 | 42000 | 6.8095 | - | - |
592
+ | 0.9578 | 42500 | 6.8042 | - | - |
593
+ | 0.9691 | 43000 | 6.8086 | - | - |
594
+ | 0.9804 | 43500 | 6.8106 | - | - |
595
+ | 0.9916 | 44000 | 6.8038 | - | - |
596
+ | -1 | -1 | - | - | 0.6348 |
597
+
598
+
599
+ ### Framework Versions
600
+ - Python: 3.10.14
601
+ - Sentence Transformers: 4.0.2
602
+ - Transformers: 4.50.3
603
+ - PyTorch: 2.6.0+cu124
604
+ - Accelerate: 1.6.0
605
+ - Datasets: 3.5.0
606
+ - Tokenizers: 0.21.1
607
+
608
+ ## Citation
609
+
610
+ ### BibTeX
611
+
612
+ #### Sentence Transformers
613
+ ```bibtex
614
+ @inproceedings{reimers-2019-sentence-bert,
615
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
616
+ author = "Reimers, Nils and Gurevych, Iryna",
617
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
618
+ month = "11",
619
+ year = "2019",
620
+ publisher = "Association for Computational Linguistics",
621
+ url = "https://arxiv.org/abs/1908.10084",
622
+ }
623
+ ```
624
+
625
+ #### CoSENTLoss
626
+ ```bibtex
627
+ @online{kexuefm-8847,
628
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
629
+ author={Su Jianlin},
630
+ year={2022},
631
+ month={Jan},
632
+ url={https://kexue.fm/archives/8847},
633
+ }
634
+ ```
635
+
636
+ <!--
637
+ ## Glossary
638
+
639
+ *Clearly define terms in order to be accessible across audiences.*
640
+ -->
641
+
642
+ <!--
643
+ ## Model Card Authors
644
+
645
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
646
+ -->
647
+
648
+ <!--
649
+ ## Model Card Contact
650
+
651
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
652
+ -->
final/config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 384,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 1536,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 4,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.50.3",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 30522
24
+ }
final/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.0.2",
4
+ "transformers": "4.50.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
final/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1099454258cd35e036c72b027a68b3c46c88a932491d2ff6f22e8dba027f8be5
3
+ size 76664936
final/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
final/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
final/special_tokens_map.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "[PAD]",
4
+ "[UNK]",
5
+ "[CLS]",
6
+ "[SEP]",
7
+ "[MASK]"
8
+ ],
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "mask_token": {
17
+ "content": "[MASK]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "pad_token": {
24
+ "content": "[PAD]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "sep_token": {
31
+ "content": "[SEP]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "unk_token": {
38
+ "content": "[UNK]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ }
44
+ }
final/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
final/tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [
45
+ "[PAD]",
46
+ "[UNK]",
47
+ "[CLS]",
48
+ "[SEP]",
49
+ "[MASK]"
50
+ ],
51
+ "clean_up_tokenization_spaces": true,
52
+ "cls_token": "[CLS]",
53
+ "do_basic_tokenize": true,
54
+ "do_lower_case": true,
55
+ "extra_special_tokens": {},
56
+ "mask_token": "[MASK]",
57
+ "max_length": 128,
58
+ "model_max_length": 512,
59
+ "never_split": null,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "[PAD]",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "[SEP]",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "BertTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
final/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1099454258cd35e036c72b027a68b3c46c88a932491d2ff6f22e8dba027f8be5
3
  size 76664936
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcae832c07ba5b9574df11a0bce65230b41e2a32e8f5ac4580c3f6bf4666bd67
3
  size 76664936
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e984b75f86da268f7ec0c73c242514020d74c9e945f0b000e173ad5222086dad
3
+ size 5688