Upload 17 files
Browse files- checkpoints/ControlNetModel/config.json +57 -0
- checkpoints/ControlNetModel/diffusion_pytorch_model.safetensors +3 -0
- checkpoints/ip-adapter.bin +3 -0
- checkpoints/pytorch_lora_weights.safetensors +3 -0
- controlnet_util.py +39 -0
- download_models.py +27 -0
- ip_adapter/attention_processor.py +447 -0
- ip_adapter/resampler.py +121 -0
- ip_adapter/utils.py +5 -0
- model_util.py +472 -0
- models/antelopev2.zip +3 -0
- models/antelopev2/1k3d68.onnx +3 -0
- models/antelopev2/2d106det.onnx +3 -0
- models/antelopev2/genderage.onnx +3 -0
- models/antelopev2/glintr100.onnx +3 -0
- models/antelopev2/scrfd_10g_bnkps.onnx +3 -0
- pipeline_stable_diffusion_xl_instantid_full.py +1227 -0
checkpoints/ControlNetModel/config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "ControlNetModel",
|
3 |
+
"_diffusers_version": "0.21.2",
|
4 |
+
"_name_or_path": "/mnt/nj-aigc/usr/guiwan/workspace/diffusion_output/face_xl_ipc_v4_2_XiezhenAnimeForeigner/checkpoint-150000/ControlNetModel",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": "text_time",
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": 256,
|
9 |
+
"attention_head_dim": [
|
10 |
+
5,
|
11 |
+
10,
|
12 |
+
20
|
13 |
+
],
|
14 |
+
"block_out_channels": [
|
15 |
+
320,
|
16 |
+
640,
|
17 |
+
1280
|
18 |
+
],
|
19 |
+
"class_embed_type": null,
|
20 |
+
"conditioning_channels": 3,
|
21 |
+
"conditioning_embedding_out_channels": [
|
22 |
+
16,
|
23 |
+
32,
|
24 |
+
96,
|
25 |
+
256
|
26 |
+
],
|
27 |
+
"controlnet_conditioning_channel_order": "rgb",
|
28 |
+
"cross_attention_dim": 2048,
|
29 |
+
"down_block_types": [
|
30 |
+
"DownBlock2D",
|
31 |
+
"CrossAttnDownBlock2D",
|
32 |
+
"CrossAttnDownBlock2D"
|
33 |
+
],
|
34 |
+
"downsample_padding": 1,
|
35 |
+
"encoder_hid_dim": null,
|
36 |
+
"encoder_hid_dim_type": null,
|
37 |
+
"flip_sin_to_cos": true,
|
38 |
+
"freq_shift": 0,
|
39 |
+
"global_pool_conditions": false,
|
40 |
+
"in_channels": 4,
|
41 |
+
"layers_per_block": 2,
|
42 |
+
"mid_block_scale_factor": 1,
|
43 |
+
"norm_eps": 1e-05,
|
44 |
+
"norm_num_groups": 32,
|
45 |
+
"num_attention_heads": null,
|
46 |
+
"num_class_embeds": null,
|
47 |
+
"only_cross_attention": false,
|
48 |
+
"projection_class_embeddings_input_dim": 2816,
|
49 |
+
"resnet_time_scale_shift": "default",
|
50 |
+
"transformer_layers_per_block": [
|
51 |
+
1,
|
52 |
+
2,
|
53 |
+
10
|
54 |
+
],
|
55 |
+
"upcast_attention": null,
|
56 |
+
"use_linear_projection": true
|
57 |
+
}
|
checkpoints/ControlNetModel/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8127be9f174101ebdafee9964d856b49b634435cf6daa396d3f593cf0bbbb05
|
3 |
+
size 2502139136
|
checkpoints/ip-adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02b3618e36d803784166660520098089a81388e61a93ef8002aa79a5b1c546e1
|
3 |
+
size 1691134141
|
checkpoints/pytorch_lora_weights.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a764e6859b6e04047cd761c08ff0cee96413a8e004c9f07707530cd776b19141
|
3 |
+
size 393855224
|
controlnet_util.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from controlnet_aux import OpenposeDetector
|
5 |
+
from src.dependencies.instantid.model_util import get_torch_device
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
|
9 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
10 |
+
|
11 |
+
device = get_torch_device()
|
12 |
+
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
|
13 |
+
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
|
14 |
+
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
15 |
+
|
16 |
+
def get_depth_map(image):
|
17 |
+
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
18 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
19 |
+
depth_map = depth_estimator(image).predicted_depth
|
20 |
+
|
21 |
+
depth_map = torch.nn.functional.interpolate(
|
22 |
+
depth_map.unsqueeze(1),
|
23 |
+
size=(1024, 1024),
|
24 |
+
mode="bicubic",
|
25 |
+
align_corners=False,
|
26 |
+
)
|
27 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
28 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
29 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
30 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
31 |
+
|
32 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
33 |
+
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
34 |
+
return image
|
35 |
+
|
36 |
+
def get_canny_image(image, t1=100, t2=200):
|
37 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
38 |
+
edges = cv2.Canny(image, t1, t2)
|
39 |
+
return Image.fromarray(edges, "L")
|
download_models.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import hf_hub_download
|
2 |
+
import gdown
|
3 |
+
import os
|
4 |
+
|
5 |
+
# download models
|
6 |
+
hf_hub_download(
|
7 |
+
repo_id="InstantX/InstantID",
|
8 |
+
filename="ControlNetModel/config.json",
|
9 |
+
local_dir="./checkpoints",
|
10 |
+
)
|
11 |
+
hf_hub_download(
|
12 |
+
repo_id="InstantX/InstantID",
|
13 |
+
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
|
14 |
+
local_dir="./checkpoints",
|
15 |
+
)
|
16 |
+
hf_hub_download(
|
17 |
+
repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints"
|
18 |
+
)
|
19 |
+
hf_hub_download(
|
20 |
+
repo_id="latent-consistency/lcm-lora-sdxl",
|
21 |
+
filename="pytorch_lora_weights.safetensors",
|
22 |
+
local_dir="./checkpoints",
|
23 |
+
)
|
24 |
+
# download antelopev2
|
25 |
+
gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="./models/", quiet=False, fuzzy=True)
|
26 |
+
# unzip antelopev2.zip
|
27 |
+
os.system("unzip ./models/antelopev2.zip -d ./models/")
|
ip_adapter/attention_processor.py
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
try:
|
7 |
+
import xformers
|
8 |
+
import xformers.ops
|
9 |
+
xformers_available = True
|
10 |
+
except Exception as e:
|
11 |
+
xformers_available = False
|
12 |
+
|
13 |
+
class RegionControler(object):
|
14 |
+
def __init__(self) -> None:
|
15 |
+
self.prompt_image_conditioning = []
|
16 |
+
region_control = RegionControler()
|
17 |
+
|
18 |
+
class AttnProcessor(nn.Module):
|
19 |
+
r"""
|
20 |
+
Default processor for performing attention-related computations.
|
21 |
+
"""
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
hidden_size=None,
|
25 |
+
cross_attention_dim=None,
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
|
29 |
+
def forward(
|
30 |
+
self,
|
31 |
+
attn,
|
32 |
+
hidden_states,
|
33 |
+
encoder_hidden_states=None,
|
34 |
+
attention_mask=None,
|
35 |
+
temb=None,
|
36 |
+
):
|
37 |
+
residual = hidden_states
|
38 |
+
|
39 |
+
if attn.spatial_norm is not None:
|
40 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
41 |
+
|
42 |
+
input_ndim = hidden_states.ndim
|
43 |
+
|
44 |
+
if input_ndim == 4:
|
45 |
+
batch_size, channel, height, width = hidden_states.shape
|
46 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
47 |
+
|
48 |
+
batch_size, sequence_length, _ = (
|
49 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
50 |
+
)
|
51 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
52 |
+
|
53 |
+
if attn.group_norm is not None:
|
54 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
55 |
+
|
56 |
+
query = attn.to_q(hidden_states)
|
57 |
+
|
58 |
+
if encoder_hidden_states is None:
|
59 |
+
encoder_hidden_states = hidden_states
|
60 |
+
elif attn.norm_cross:
|
61 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
62 |
+
|
63 |
+
key = attn.to_k(encoder_hidden_states)
|
64 |
+
value = attn.to_v(encoder_hidden_states)
|
65 |
+
|
66 |
+
query = attn.head_to_batch_dim(query)
|
67 |
+
key = attn.head_to_batch_dim(key)
|
68 |
+
value = attn.head_to_batch_dim(value)
|
69 |
+
|
70 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
71 |
+
hidden_states = torch.bmm(attention_probs, value)
|
72 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
73 |
+
|
74 |
+
# linear proj
|
75 |
+
hidden_states = attn.to_out[0](hidden_states)
|
76 |
+
# dropout
|
77 |
+
hidden_states = attn.to_out[1](hidden_states)
|
78 |
+
|
79 |
+
if input_ndim == 4:
|
80 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
81 |
+
|
82 |
+
if attn.residual_connection:
|
83 |
+
hidden_states = hidden_states + residual
|
84 |
+
|
85 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
86 |
+
|
87 |
+
return hidden_states
|
88 |
+
|
89 |
+
|
90 |
+
class IPAttnProcessor(nn.Module):
|
91 |
+
r"""
|
92 |
+
Attention processor for IP-Adapater.
|
93 |
+
Args:
|
94 |
+
hidden_size (`int`):
|
95 |
+
The hidden size of the attention layer.
|
96 |
+
cross_attention_dim (`int`):
|
97 |
+
The number of channels in the `encoder_hidden_states`.
|
98 |
+
scale (`float`, defaults to 1.0):
|
99 |
+
the weight scale of image prompt.
|
100 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
101 |
+
The context length of the image features.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
105 |
+
super().__init__()
|
106 |
+
|
107 |
+
self.hidden_size = hidden_size
|
108 |
+
self.cross_attention_dim = cross_attention_dim
|
109 |
+
self.scale = scale
|
110 |
+
self.num_tokens = num_tokens
|
111 |
+
|
112 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
113 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self,
|
117 |
+
attn,
|
118 |
+
hidden_states,
|
119 |
+
encoder_hidden_states=None,
|
120 |
+
attention_mask=None,
|
121 |
+
temb=None,
|
122 |
+
):
|
123 |
+
residual = hidden_states
|
124 |
+
|
125 |
+
if attn.spatial_norm is not None:
|
126 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
127 |
+
|
128 |
+
input_ndim = hidden_states.ndim
|
129 |
+
|
130 |
+
if input_ndim == 4:
|
131 |
+
batch_size, channel, height, width = hidden_states.shape
|
132 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
133 |
+
|
134 |
+
batch_size, sequence_length, _ = (
|
135 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
136 |
+
)
|
137 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
138 |
+
|
139 |
+
if attn.group_norm is not None:
|
140 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
141 |
+
|
142 |
+
query = attn.to_q(hidden_states)
|
143 |
+
|
144 |
+
if encoder_hidden_states is None:
|
145 |
+
encoder_hidden_states = hidden_states
|
146 |
+
else:
|
147 |
+
# get encoder_hidden_states, ip_hidden_states
|
148 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
149 |
+
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :]
|
150 |
+
if attn.norm_cross:
|
151 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
152 |
+
|
153 |
+
key = attn.to_k(encoder_hidden_states)
|
154 |
+
value = attn.to_v(encoder_hidden_states)
|
155 |
+
|
156 |
+
query = attn.head_to_batch_dim(query)
|
157 |
+
key = attn.head_to_batch_dim(key)
|
158 |
+
value = attn.head_to_batch_dim(value)
|
159 |
+
|
160 |
+
if xformers_available:
|
161 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
162 |
+
else:
|
163 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
164 |
+
hidden_states = torch.bmm(attention_probs, value)
|
165 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
166 |
+
|
167 |
+
# for ip-adapter
|
168 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
169 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
170 |
+
|
171 |
+
ip_key = attn.head_to_batch_dim(ip_key)
|
172 |
+
ip_value = attn.head_to_batch_dim(ip_value)
|
173 |
+
|
174 |
+
if xformers_available:
|
175 |
+
ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None)
|
176 |
+
else:
|
177 |
+
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
178 |
+
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
179 |
+
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
180 |
+
|
181 |
+
# region control
|
182 |
+
if len(region_control.prompt_image_conditioning) == 1:
|
183 |
+
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
184 |
+
if region_mask is not None:
|
185 |
+
h, w = region_mask.shape[:2]
|
186 |
+
ratio = (h * w / query.shape[1]) ** 0.5
|
187 |
+
mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
|
188 |
+
else:
|
189 |
+
mask = torch.ones_like(ip_hidden_states)
|
190 |
+
ip_hidden_states = ip_hidden_states * mask
|
191 |
+
|
192 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
193 |
+
|
194 |
+
# linear proj
|
195 |
+
hidden_states = attn.to_out[0](hidden_states)
|
196 |
+
# dropout
|
197 |
+
hidden_states = attn.to_out[1](hidden_states)
|
198 |
+
|
199 |
+
if input_ndim == 4:
|
200 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
201 |
+
|
202 |
+
if attn.residual_connection:
|
203 |
+
hidden_states = hidden_states + residual
|
204 |
+
|
205 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
206 |
+
|
207 |
+
return hidden_states
|
208 |
+
|
209 |
+
|
210 |
+
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
|
211 |
+
# TODO attention_mask
|
212 |
+
query = query.contiguous()
|
213 |
+
key = key.contiguous()
|
214 |
+
value = value.contiguous()
|
215 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
216 |
+
# hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
217 |
+
return hidden_states
|
218 |
+
|
219 |
+
|
220 |
+
class AttnProcessor2_0(torch.nn.Module):
|
221 |
+
r"""
|
222 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
223 |
+
"""
|
224 |
+
def __init__(
|
225 |
+
self,
|
226 |
+
hidden_size=None,
|
227 |
+
cross_attention_dim=None,
|
228 |
+
):
|
229 |
+
super().__init__()
|
230 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
231 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self,
|
235 |
+
attn,
|
236 |
+
hidden_states,
|
237 |
+
encoder_hidden_states=None,
|
238 |
+
attention_mask=None,
|
239 |
+
temb=None,
|
240 |
+
):
|
241 |
+
residual = hidden_states
|
242 |
+
|
243 |
+
if attn.spatial_norm is not None:
|
244 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
245 |
+
|
246 |
+
input_ndim = hidden_states.ndim
|
247 |
+
|
248 |
+
if input_ndim == 4:
|
249 |
+
batch_size, channel, height, width = hidden_states.shape
|
250 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
251 |
+
|
252 |
+
batch_size, sequence_length, _ = (
|
253 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
254 |
+
)
|
255 |
+
|
256 |
+
if attention_mask is not None:
|
257 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
258 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
259 |
+
# (batch, heads, source_length, target_length)
|
260 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
261 |
+
|
262 |
+
if attn.group_norm is not None:
|
263 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
264 |
+
|
265 |
+
query = attn.to_q(hidden_states)
|
266 |
+
|
267 |
+
if encoder_hidden_states is None:
|
268 |
+
encoder_hidden_states = hidden_states
|
269 |
+
elif attn.norm_cross:
|
270 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
271 |
+
|
272 |
+
key = attn.to_k(encoder_hidden_states)
|
273 |
+
value = attn.to_v(encoder_hidden_states)
|
274 |
+
|
275 |
+
inner_dim = key.shape[-1]
|
276 |
+
head_dim = inner_dim // attn.heads
|
277 |
+
|
278 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
279 |
+
|
280 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
281 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
282 |
+
|
283 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
284 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
285 |
+
hidden_states = F.scaled_dot_product_attention(
|
286 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
287 |
+
)
|
288 |
+
|
289 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
290 |
+
hidden_states = hidden_states.to(query.dtype)
|
291 |
+
|
292 |
+
# linear proj
|
293 |
+
hidden_states = attn.to_out[0](hidden_states)
|
294 |
+
# dropout
|
295 |
+
hidden_states = attn.to_out[1](hidden_states)
|
296 |
+
|
297 |
+
if input_ndim == 4:
|
298 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
299 |
+
|
300 |
+
if attn.residual_connection:
|
301 |
+
hidden_states = hidden_states + residual
|
302 |
+
|
303 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
304 |
+
|
305 |
+
return hidden_states
|
306 |
+
|
307 |
+
class IPAttnProcessor2_0(torch.nn.Module):
|
308 |
+
r"""
|
309 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
310 |
+
Args:
|
311 |
+
hidden_size (`int`):
|
312 |
+
The hidden size of the attention layer.
|
313 |
+
cross_attention_dim (`int`):
|
314 |
+
The number of channels in the `encoder_hidden_states`.
|
315 |
+
scale (`float`, defaults to 1.0):
|
316 |
+
the weight scale of image prompt.
|
317 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
318 |
+
The context length of the image features.
|
319 |
+
"""
|
320 |
+
|
321 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
322 |
+
super().__init__()
|
323 |
+
|
324 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
325 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
326 |
+
|
327 |
+
self.hidden_size = hidden_size
|
328 |
+
self.cross_attention_dim = cross_attention_dim
|
329 |
+
self.scale = scale
|
330 |
+
self.num_tokens = num_tokens
|
331 |
+
|
332 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
333 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
334 |
+
|
335 |
+
def forward(
|
336 |
+
self,
|
337 |
+
attn,
|
338 |
+
hidden_states,
|
339 |
+
encoder_hidden_states=None,
|
340 |
+
attention_mask=None,
|
341 |
+
temb=None,
|
342 |
+
):
|
343 |
+
residual = hidden_states
|
344 |
+
|
345 |
+
if attn.spatial_norm is not None:
|
346 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
347 |
+
|
348 |
+
input_ndim = hidden_states.ndim
|
349 |
+
|
350 |
+
if input_ndim == 4:
|
351 |
+
batch_size, channel, height, width = hidden_states.shape
|
352 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
353 |
+
|
354 |
+
batch_size, sequence_length, _ = (
|
355 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
356 |
+
)
|
357 |
+
|
358 |
+
if attention_mask is not None:
|
359 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
360 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
361 |
+
# (batch, heads, source_length, target_length)
|
362 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
363 |
+
|
364 |
+
if attn.group_norm is not None:
|
365 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
366 |
+
|
367 |
+
query = attn.to_q(hidden_states)
|
368 |
+
|
369 |
+
if encoder_hidden_states is None:
|
370 |
+
encoder_hidden_states = hidden_states
|
371 |
+
else:
|
372 |
+
# get encoder_hidden_states, ip_hidden_states
|
373 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
374 |
+
encoder_hidden_states, ip_hidden_states = (
|
375 |
+
encoder_hidden_states[:, :end_pos, :],
|
376 |
+
encoder_hidden_states[:, end_pos:, :],
|
377 |
+
)
|
378 |
+
if attn.norm_cross:
|
379 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
380 |
+
|
381 |
+
key = attn.to_k(encoder_hidden_states)
|
382 |
+
value = attn.to_v(encoder_hidden_states)
|
383 |
+
|
384 |
+
inner_dim = key.shape[-1]
|
385 |
+
head_dim = inner_dim // attn.heads
|
386 |
+
|
387 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
388 |
+
|
389 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
390 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
391 |
+
|
392 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
393 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
394 |
+
hidden_states = F.scaled_dot_product_attention(
|
395 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
396 |
+
)
|
397 |
+
|
398 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
399 |
+
hidden_states = hidden_states.to(query.dtype)
|
400 |
+
|
401 |
+
# for ip-adapter
|
402 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
403 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
404 |
+
|
405 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
406 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
407 |
+
|
408 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
409 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
410 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
411 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
412 |
+
)
|
413 |
+
with torch.no_grad():
|
414 |
+
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
|
415 |
+
#print(self.attn_map.shape)
|
416 |
+
|
417 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
418 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
419 |
+
|
420 |
+
# region control
|
421 |
+
if len(region_control.prompt_image_conditioning) == 1:
|
422 |
+
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
423 |
+
if region_mask is not None:
|
424 |
+
query = query.reshape([-1, query.shape[-2], query.shape[-1]])
|
425 |
+
h, w = region_mask.shape[:2]
|
426 |
+
ratio = (h * w / query.shape[1]) ** 0.5
|
427 |
+
mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
|
428 |
+
else:
|
429 |
+
mask = torch.ones_like(ip_hidden_states)
|
430 |
+
ip_hidden_states = ip_hidden_states * mask
|
431 |
+
|
432 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
433 |
+
|
434 |
+
# linear proj
|
435 |
+
hidden_states = attn.to_out[0](hidden_states)
|
436 |
+
# dropout
|
437 |
+
hidden_states = attn.to_out[1](hidden_states)
|
438 |
+
|
439 |
+
if input_ndim == 4:
|
440 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
441 |
+
|
442 |
+
if attn.residual_connection:
|
443 |
+
hidden_states = hidden_states + residual
|
444 |
+
|
445 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
446 |
+
|
447 |
+
return hidden_states
|
ip_adapter/resampler.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
|
8 |
+
# FFN
|
9 |
+
def FeedForward(dim, mult=4):
|
10 |
+
inner_dim = int(dim * mult)
|
11 |
+
return nn.Sequential(
|
12 |
+
nn.LayerNorm(dim),
|
13 |
+
nn.Linear(dim, inner_dim, bias=False),
|
14 |
+
nn.GELU(),
|
15 |
+
nn.Linear(inner_dim, dim, bias=False),
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
def reshape_tensor(x, heads):
|
20 |
+
bs, length, width = x.shape
|
21 |
+
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
22 |
+
x = x.view(bs, length, heads, -1)
|
23 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
24 |
+
x = x.transpose(1, 2)
|
25 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
26 |
+
x = x.reshape(bs, heads, length, -1)
|
27 |
+
return x
|
28 |
+
|
29 |
+
|
30 |
+
class PerceiverAttention(nn.Module):
|
31 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
32 |
+
super().__init__()
|
33 |
+
self.scale = dim_head**-0.5
|
34 |
+
self.dim_head = dim_head
|
35 |
+
self.heads = heads
|
36 |
+
inner_dim = dim_head * heads
|
37 |
+
|
38 |
+
self.norm1 = nn.LayerNorm(dim)
|
39 |
+
self.norm2 = nn.LayerNorm(dim)
|
40 |
+
|
41 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
42 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
43 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
44 |
+
|
45 |
+
|
46 |
+
def forward(self, x, latents):
|
47 |
+
"""
|
48 |
+
Args:
|
49 |
+
x (torch.Tensor): image features
|
50 |
+
shape (b, n1, D)
|
51 |
+
latent (torch.Tensor): latent features
|
52 |
+
shape (b, n2, D)
|
53 |
+
"""
|
54 |
+
x = self.norm1(x)
|
55 |
+
latents = self.norm2(latents)
|
56 |
+
|
57 |
+
b, l, _ = latents.shape
|
58 |
+
|
59 |
+
q = self.to_q(latents)
|
60 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
61 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
62 |
+
|
63 |
+
q = reshape_tensor(q, self.heads)
|
64 |
+
k = reshape_tensor(k, self.heads)
|
65 |
+
v = reshape_tensor(v, self.heads)
|
66 |
+
|
67 |
+
# attention
|
68 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
69 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
70 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
71 |
+
out = weight @ v
|
72 |
+
|
73 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
74 |
+
|
75 |
+
return self.to_out(out)
|
76 |
+
|
77 |
+
|
78 |
+
class Resampler(nn.Module):
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
dim=1024,
|
82 |
+
depth=8,
|
83 |
+
dim_head=64,
|
84 |
+
heads=16,
|
85 |
+
num_queries=8,
|
86 |
+
embedding_dim=768,
|
87 |
+
output_dim=1024,
|
88 |
+
ff_mult=4,
|
89 |
+
):
|
90 |
+
super().__init__()
|
91 |
+
|
92 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
93 |
+
|
94 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
95 |
+
|
96 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
97 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
98 |
+
|
99 |
+
self.layers = nn.ModuleList([])
|
100 |
+
for _ in range(depth):
|
101 |
+
self.layers.append(
|
102 |
+
nn.ModuleList(
|
103 |
+
[
|
104 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
105 |
+
FeedForward(dim=dim, mult=ff_mult),
|
106 |
+
]
|
107 |
+
)
|
108 |
+
)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
|
112 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
113 |
+
|
114 |
+
x = self.proj_in(x)
|
115 |
+
|
116 |
+
for attn, ff in self.layers:
|
117 |
+
latents = attn(x, latents) + latents
|
118 |
+
latents = ff(latents) + latents
|
119 |
+
|
120 |
+
latents = self.proj_out(latents)
|
121 |
+
return self.norm_out(latents)
|
ip_adapter/utils.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn.functional as F
|
2 |
+
|
3 |
+
|
4 |
+
def is_torch2_available():
|
5 |
+
return hasattr(F, "scaled_dot_product_attention")
|
model_util.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal, Union, Optional, Tuple, List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
|
5 |
+
from diffusers import (
|
6 |
+
UNet2DConditionModel,
|
7 |
+
SchedulerMixin,
|
8 |
+
StableDiffusionPipeline,
|
9 |
+
StableDiffusionXLPipeline,
|
10 |
+
AutoencoderKL,
|
11 |
+
)
|
12 |
+
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
13 |
+
convert_ldm_unet_checkpoint,
|
14 |
+
)
|
15 |
+
from safetensors.torch import load_file
|
16 |
+
from diffusers.schedulers import (
|
17 |
+
DDIMScheduler,
|
18 |
+
DDPMScheduler,
|
19 |
+
LMSDiscreteScheduler,
|
20 |
+
EulerDiscreteScheduler,
|
21 |
+
EulerAncestralDiscreteScheduler,
|
22 |
+
UniPCMultistepScheduler,
|
23 |
+
)
|
24 |
+
|
25 |
+
from omegaconf import OmegaConf
|
26 |
+
|
27 |
+
# DiffUsers版StableDiffusionのモデルパラメータ
|
28 |
+
NUM_TRAIN_TIMESTEPS = 1000
|
29 |
+
BETA_START = 0.00085
|
30 |
+
BETA_END = 0.0120
|
31 |
+
|
32 |
+
UNET_PARAMS_MODEL_CHANNELS = 320
|
33 |
+
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
|
34 |
+
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
|
35 |
+
UNET_PARAMS_IMAGE_SIZE = 64 # fixed from old invalid value `32`
|
36 |
+
UNET_PARAMS_IN_CHANNELS = 4
|
37 |
+
UNET_PARAMS_OUT_CHANNELS = 4
|
38 |
+
UNET_PARAMS_NUM_RES_BLOCKS = 2
|
39 |
+
UNET_PARAMS_CONTEXT_DIM = 768
|
40 |
+
UNET_PARAMS_NUM_HEADS = 8
|
41 |
+
# UNET_PARAMS_USE_LINEAR_PROJECTION = False
|
42 |
+
|
43 |
+
VAE_PARAMS_Z_CHANNELS = 4
|
44 |
+
VAE_PARAMS_RESOLUTION = 256
|
45 |
+
VAE_PARAMS_IN_CHANNELS = 3
|
46 |
+
VAE_PARAMS_OUT_CH = 3
|
47 |
+
VAE_PARAMS_CH = 128
|
48 |
+
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
|
49 |
+
VAE_PARAMS_NUM_RES_BLOCKS = 2
|
50 |
+
|
51 |
+
# V2
|
52 |
+
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20]
|
53 |
+
V2_UNET_PARAMS_CONTEXT_DIM = 1024
|
54 |
+
# V2_UNET_PARAMS_USE_LINEAR_PROJECTION = True
|
55 |
+
|
56 |
+
TOKENIZER_V1_MODEL_NAME = "CompVis/stable-diffusion-v1-4"
|
57 |
+
TOKENIZER_V2_MODEL_NAME = "stabilityai/stable-diffusion-2-1"
|
58 |
+
|
59 |
+
AVAILABLE_SCHEDULERS = Literal["ddim", "ddpm", "lms", "euler_a", "euler", "uniPC"]
|
60 |
+
|
61 |
+
SDXL_TEXT_ENCODER_TYPE = Union[CLIPTextModel, CLIPTextModelWithProjection]
|
62 |
+
|
63 |
+
DIFFUSERS_CACHE_DIR = None # if you want to change the cache dir, change this
|
64 |
+
|
65 |
+
|
66 |
+
def load_checkpoint_with_text_encoder_conversion(ckpt_path: str, device="cpu"):
|
67 |
+
# text encoderの格納形式が違うモデルに対応する ('text_model'がない)
|
68 |
+
TEXT_ENCODER_KEY_REPLACEMENTS = [
|
69 |
+
(
|
70 |
+
"cond_stage_model.transformer.embeddings.",
|
71 |
+
"cond_stage_model.transformer.text_model.embeddings.",
|
72 |
+
),
|
73 |
+
(
|
74 |
+
"cond_stage_model.transformer.encoder.",
|
75 |
+
"cond_stage_model.transformer.text_model.encoder.",
|
76 |
+
),
|
77 |
+
(
|
78 |
+
"cond_stage_model.transformer.final_layer_norm.",
|
79 |
+
"cond_stage_model.transformer.text_model.final_layer_norm.",
|
80 |
+
),
|
81 |
+
]
|
82 |
+
|
83 |
+
if ckpt_path.endswith(".safetensors"):
|
84 |
+
checkpoint = None
|
85 |
+
state_dict = load_file(ckpt_path) # , device) # may causes error
|
86 |
+
else:
|
87 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
88 |
+
if "state_dict" in checkpoint:
|
89 |
+
state_dict = checkpoint["state_dict"]
|
90 |
+
else:
|
91 |
+
state_dict = checkpoint
|
92 |
+
checkpoint = None
|
93 |
+
|
94 |
+
key_reps = []
|
95 |
+
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
|
96 |
+
for key in state_dict.keys():
|
97 |
+
if key.startswith(rep_from):
|
98 |
+
new_key = rep_to + key[len(rep_from) :]
|
99 |
+
key_reps.append((key, new_key))
|
100 |
+
|
101 |
+
for key, new_key in key_reps:
|
102 |
+
state_dict[new_key] = state_dict[key]
|
103 |
+
del state_dict[key]
|
104 |
+
|
105 |
+
return checkpoint, state_dict
|
106 |
+
|
107 |
+
|
108 |
+
def create_unet_diffusers_config(v2, use_linear_projection_in_v2=False):
|
109 |
+
"""
|
110 |
+
Creates a config for the diffusers based on the config of the LDM model.
|
111 |
+
"""
|
112 |
+
# unet_params = original_config.model.params.unet_config.params
|
113 |
+
|
114 |
+
block_out_channels = [
|
115 |
+
UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT
|
116 |
+
]
|
117 |
+
|
118 |
+
down_block_types = []
|
119 |
+
resolution = 1
|
120 |
+
for i in range(len(block_out_channels)):
|
121 |
+
block_type = (
|
122 |
+
"CrossAttnDownBlock2D"
|
123 |
+
if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS
|
124 |
+
else "DownBlock2D"
|
125 |
+
)
|
126 |
+
down_block_types.append(block_type)
|
127 |
+
if i != len(block_out_channels) - 1:
|
128 |
+
resolution *= 2
|
129 |
+
|
130 |
+
up_block_types = []
|
131 |
+
for i in range(len(block_out_channels)):
|
132 |
+
block_type = (
|
133 |
+
"CrossAttnUpBlock2D"
|
134 |
+
if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS
|
135 |
+
else "UpBlock2D"
|
136 |
+
)
|
137 |
+
up_block_types.append(block_type)
|
138 |
+
resolution //= 2
|
139 |
+
|
140 |
+
config = dict(
|
141 |
+
sample_size=UNET_PARAMS_IMAGE_SIZE,
|
142 |
+
in_channels=UNET_PARAMS_IN_CHANNELS,
|
143 |
+
out_channels=UNET_PARAMS_OUT_CHANNELS,
|
144 |
+
down_block_types=tuple(down_block_types),
|
145 |
+
up_block_types=tuple(up_block_types),
|
146 |
+
block_out_channels=tuple(block_out_channels),
|
147 |
+
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS,
|
148 |
+
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM
|
149 |
+
if not v2
|
150 |
+
else V2_UNET_PARAMS_CONTEXT_DIM,
|
151 |
+
attention_head_dim=UNET_PARAMS_NUM_HEADS
|
152 |
+
if not v2
|
153 |
+
else V2_UNET_PARAMS_ATTENTION_HEAD_DIM,
|
154 |
+
# use_linear_projection=UNET_PARAMS_USE_LINEAR_PROJECTION if not v2 else V2_UNET_PARAMS_USE_LINEAR_PROJECTION,
|
155 |
+
)
|
156 |
+
if v2 and use_linear_projection_in_v2:
|
157 |
+
config["use_linear_projection"] = True
|
158 |
+
|
159 |
+
return config
|
160 |
+
|
161 |
+
|
162 |
+
def load_diffusers_model(
|
163 |
+
pretrained_model_name_or_path: str,
|
164 |
+
v2: bool = False,
|
165 |
+
clip_skip: Optional[int] = None,
|
166 |
+
weight_dtype: torch.dtype = torch.float32,
|
167 |
+
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
|
168 |
+
if v2:
|
169 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
170 |
+
TOKENIZER_V2_MODEL_NAME,
|
171 |
+
subfolder="tokenizer",
|
172 |
+
torch_dtype=weight_dtype,
|
173 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
174 |
+
)
|
175 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
176 |
+
pretrained_model_name_or_path,
|
177 |
+
subfolder="text_encoder",
|
178 |
+
# default is clip skip 2
|
179 |
+
num_hidden_layers=24 - (clip_skip - 1) if clip_skip is not None else 23,
|
180 |
+
torch_dtype=weight_dtype,
|
181 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
185 |
+
TOKENIZER_V1_MODEL_NAME,
|
186 |
+
subfolder="tokenizer",
|
187 |
+
torch_dtype=weight_dtype,
|
188 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
189 |
+
)
|
190 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
191 |
+
pretrained_model_name_or_path,
|
192 |
+
subfolder="text_encoder",
|
193 |
+
num_hidden_layers=12 - (clip_skip - 1) if clip_skip is not None else 12,
|
194 |
+
torch_dtype=weight_dtype,
|
195 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
196 |
+
)
|
197 |
+
|
198 |
+
unet = UNet2DConditionModel.from_pretrained(
|
199 |
+
pretrained_model_name_or_path,
|
200 |
+
subfolder="unet",
|
201 |
+
torch_dtype=weight_dtype,
|
202 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
203 |
+
)
|
204 |
+
|
205 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
206 |
+
|
207 |
+
return tokenizer, text_encoder, unet, vae
|
208 |
+
|
209 |
+
|
210 |
+
def load_checkpoint_model(
|
211 |
+
checkpoint_path: str,
|
212 |
+
v2: bool = False,
|
213 |
+
clip_skip: Optional[int] = None,
|
214 |
+
weight_dtype: torch.dtype = torch.float32,
|
215 |
+
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
|
216 |
+
pipe = StableDiffusionPipeline.from_single_file(
|
217 |
+
checkpoint_path,
|
218 |
+
upcast_attention=True if v2 else False,
|
219 |
+
torch_dtype=weight_dtype,
|
220 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
221 |
+
)
|
222 |
+
|
223 |
+
_, state_dict = load_checkpoint_with_text_encoder_conversion(checkpoint_path)
|
224 |
+
unet_config = create_unet_diffusers_config(v2, use_linear_projection_in_v2=v2)
|
225 |
+
unet_config["class_embed_type"] = None
|
226 |
+
unet_config["addition_embed_type"] = None
|
227 |
+
converted_unet_checkpoint = convert_ldm_unet_checkpoint(state_dict, unet_config)
|
228 |
+
unet = UNet2DConditionModel(**unet_config)
|
229 |
+
unet.load_state_dict(converted_unet_checkpoint)
|
230 |
+
|
231 |
+
tokenizer = pipe.tokenizer
|
232 |
+
text_encoder = pipe.text_encoder
|
233 |
+
vae = pipe.vae
|
234 |
+
if clip_skip is not None:
|
235 |
+
if v2:
|
236 |
+
text_encoder.config.num_hidden_layers = 24 - (clip_skip - 1)
|
237 |
+
else:
|
238 |
+
text_encoder.config.num_hidden_layers = 12 - (clip_skip - 1)
|
239 |
+
|
240 |
+
del pipe
|
241 |
+
|
242 |
+
return tokenizer, text_encoder, unet, vae
|
243 |
+
|
244 |
+
|
245 |
+
def load_models(
|
246 |
+
pretrained_model_name_or_path: str,
|
247 |
+
scheduler_name: str,
|
248 |
+
v2: bool = False,
|
249 |
+
v_pred: bool = False,
|
250 |
+
weight_dtype: torch.dtype = torch.float32,
|
251 |
+
) -> Tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel, SchedulerMixin,]:
|
252 |
+
if pretrained_model_name_or_path.endswith(
|
253 |
+
".ckpt"
|
254 |
+
) or pretrained_model_name_or_path.endswith(".safetensors"):
|
255 |
+
tokenizer, text_encoder, unet, vae = load_checkpoint_model(
|
256 |
+
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
|
257 |
+
)
|
258 |
+
else: # diffusers
|
259 |
+
tokenizer, text_encoder, unet, vae = load_diffusers_model(
|
260 |
+
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
|
261 |
+
)
|
262 |
+
|
263 |
+
if scheduler_name:
|
264 |
+
scheduler = create_noise_scheduler(
|
265 |
+
scheduler_name,
|
266 |
+
prediction_type="v_prediction" if v_pred else "epsilon",
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
scheduler = None
|
270 |
+
|
271 |
+
return tokenizer, text_encoder, unet, scheduler, vae
|
272 |
+
|
273 |
+
|
274 |
+
def load_diffusers_model_xl(
|
275 |
+
pretrained_model_name_or_path: str,
|
276 |
+
weight_dtype: torch.dtype = torch.float32,
|
277 |
+
) -> Tuple[List[CLIPTokenizer], List[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
|
278 |
+
# returns tokenizer, tokenizer_2, text_encoder, text_encoder_2, unet
|
279 |
+
|
280 |
+
tokenizers = [
|
281 |
+
CLIPTokenizer.from_pretrained(
|
282 |
+
pretrained_model_name_or_path,
|
283 |
+
subfolder="tokenizer",
|
284 |
+
torch_dtype=weight_dtype,
|
285 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
286 |
+
),
|
287 |
+
CLIPTokenizer.from_pretrained(
|
288 |
+
pretrained_model_name_or_path,
|
289 |
+
subfolder="tokenizer_2",
|
290 |
+
torch_dtype=weight_dtype,
|
291 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
292 |
+
pad_token_id=0, # same as open clip
|
293 |
+
),
|
294 |
+
]
|
295 |
+
|
296 |
+
text_encoders = [
|
297 |
+
CLIPTextModel.from_pretrained(
|
298 |
+
pretrained_model_name_or_path,
|
299 |
+
subfolder="text_encoder",
|
300 |
+
torch_dtype=weight_dtype,
|
301 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
302 |
+
),
|
303 |
+
CLIPTextModelWithProjection.from_pretrained(
|
304 |
+
pretrained_model_name_or_path,
|
305 |
+
subfolder="text_encoder_2",
|
306 |
+
torch_dtype=weight_dtype,
|
307 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
308 |
+
),
|
309 |
+
]
|
310 |
+
|
311 |
+
unet = UNet2DConditionModel.from_pretrained(
|
312 |
+
pretrained_model_name_or_path,
|
313 |
+
subfolder="unet",
|
314 |
+
torch_dtype=weight_dtype,
|
315 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
316 |
+
)
|
317 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
318 |
+
return tokenizers, text_encoders, unet, vae
|
319 |
+
|
320 |
+
|
321 |
+
def load_checkpoint_model_xl(
|
322 |
+
checkpoint_path: str,
|
323 |
+
weight_dtype: torch.dtype = torch.float32,
|
324 |
+
) -> Tuple[List[CLIPTokenizer], List[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
|
325 |
+
pipe = StableDiffusionXLPipeline.from_single_file(
|
326 |
+
checkpoint_path,
|
327 |
+
torch_dtype=weight_dtype,
|
328 |
+
cache_dir=DIFFUSERS_CACHE_DIR,
|
329 |
+
)
|
330 |
+
|
331 |
+
unet = pipe.unet
|
332 |
+
vae = pipe.vae
|
333 |
+
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
|
334 |
+
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
|
335 |
+
if len(text_encoders) == 2:
|
336 |
+
text_encoders[1].pad_token_id = 0
|
337 |
+
|
338 |
+
del pipe
|
339 |
+
|
340 |
+
return tokenizers, text_encoders, unet, vae
|
341 |
+
|
342 |
+
|
343 |
+
def load_models_xl(
|
344 |
+
pretrained_model_name_or_path: str,
|
345 |
+
scheduler_name: str,
|
346 |
+
weight_dtype: torch.dtype = torch.float32,
|
347 |
+
noise_scheduler_kwargs=None,
|
348 |
+
) -> Tuple[
|
349 |
+
List[CLIPTokenizer],
|
350 |
+
List[SDXL_TEXT_ENCODER_TYPE],
|
351 |
+
UNet2DConditionModel,
|
352 |
+
SchedulerMixin,
|
353 |
+
]:
|
354 |
+
if pretrained_model_name_or_path.endswith(
|
355 |
+
".ckpt"
|
356 |
+
) or pretrained_model_name_or_path.endswith(".safetensors"):
|
357 |
+
(tokenizers, text_encoders, unet, vae) = load_checkpoint_model_xl(
|
358 |
+
pretrained_model_name_or_path, weight_dtype
|
359 |
+
)
|
360 |
+
else: # diffusers
|
361 |
+
(tokenizers, text_encoders, unet, vae) = load_diffusers_model_xl(
|
362 |
+
pretrained_model_name_or_path, weight_dtype
|
363 |
+
)
|
364 |
+
if scheduler_name:
|
365 |
+
scheduler = create_noise_scheduler(scheduler_name, noise_scheduler_kwargs)
|
366 |
+
else:
|
367 |
+
scheduler = None
|
368 |
+
|
369 |
+
return tokenizers, text_encoders, unet, scheduler, vae
|
370 |
+
|
371 |
+
def create_noise_scheduler(
|
372 |
+
scheduler_name: AVAILABLE_SCHEDULERS = "ddpm",
|
373 |
+
noise_scheduler_kwargs=None,
|
374 |
+
prediction_type: Literal["epsilon", "v_prediction"] = "epsilon",
|
375 |
+
) -> SchedulerMixin:
|
376 |
+
name = scheduler_name.lower().replace(" ", "_")
|
377 |
+
if name.lower() == "ddim":
|
378 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddim
|
379 |
+
scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
|
380 |
+
elif name.lower() == "ddpm":
|
381 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddpm
|
382 |
+
scheduler = DDPMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
|
383 |
+
elif name.lower() == "lms":
|
384 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/lms_discrete
|
385 |
+
scheduler = LMSDiscreteScheduler(
|
386 |
+
**OmegaConf.to_container(noise_scheduler_kwargs)
|
387 |
+
)
|
388 |
+
elif name.lower() == "euler_a":
|
389 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/euler_ancestral
|
390 |
+
scheduler = EulerAncestralDiscreteScheduler(
|
391 |
+
**OmegaConf.to_container(noise_scheduler_kwargs)
|
392 |
+
)
|
393 |
+
elif name.lower() == "euler":
|
394 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/euler_ancestral
|
395 |
+
scheduler = EulerDiscreteScheduler(
|
396 |
+
**OmegaConf.to_container(noise_scheduler_kwargs)
|
397 |
+
)
|
398 |
+
elif name.lower() == "unipc":
|
399 |
+
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/unipc
|
400 |
+
scheduler = UniPCMultistepScheduler(
|
401 |
+
**OmegaConf.to_container(noise_scheduler_kwargs)
|
402 |
+
)
|
403 |
+
else:
|
404 |
+
raise ValueError(f"Unknown scheduler name: {name}")
|
405 |
+
|
406 |
+
return scheduler
|
407 |
+
|
408 |
+
|
409 |
+
def torch_gc():
|
410 |
+
import gc
|
411 |
+
|
412 |
+
gc.collect()
|
413 |
+
if torch.cuda.is_available():
|
414 |
+
with torch.cuda.device("cuda"):
|
415 |
+
torch.cuda.empty_cache()
|
416 |
+
torch.cuda.ipc_collect()
|
417 |
+
|
418 |
+
|
419 |
+
from enum import Enum
|
420 |
+
|
421 |
+
|
422 |
+
class CPUState(Enum):
|
423 |
+
GPU = 0
|
424 |
+
CPU = 1
|
425 |
+
MPS = 2
|
426 |
+
|
427 |
+
|
428 |
+
cpu_state = CPUState.GPU
|
429 |
+
xpu_available = False
|
430 |
+
directml_enabled = False
|
431 |
+
|
432 |
+
|
433 |
+
def is_intel_xpu():
|
434 |
+
global cpu_state
|
435 |
+
global xpu_available
|
436 |
+
if cpu_state == CPUState.GPU:
|
437 |
+
if xpu_available:
|
438 |
+
return True
|
439 |
+
return False
|
440 |
+
|
441 |
+
|
442 |
+
try:
|
443 |
+
import intel_extension_for_pytorch as ipex
|
444 |
+
|
445 |
+
if torch.xpu.is_available():
|
446 |
+
xpu_available = True
|
447 |
+
except:
|
448 |
+
pass
|
449 |
+
|
450 |
+
try:
|
451 |
+
if torch.backends.mps.is_available():
|
452 |
+
cpu_state = CPUState.MPS
|
453 |
+
import torch.mps
|
454 |
+
except:
|
455 |
+
pass
|
456 |
+
|
457 |
+
|
458 |
+
def get_torch_device():
|
459 |
+
global directml_enabled
|
460 |
+
global cpu_state
|
461 |
+
if directml_enabled:
|
462 |
+
global directml_device
|
463 |
+
return directml_device
|
464 |
+
if cpu_state == CPUState.MPS:
|
465 |
+
return torch.device("mps")
|
466 |
+
if cpu_state == CPUState.CPU:
|
467 |
+
return torch.device("cpu")
|
468 |
+
else:
|
469 |
+
if is_intel_xpu():
|
470 |
+
return torch.device("xpu")
|
471 |
+
else:
|
472 |
+
return torch.device(torch.cuda.current_device())
|
models/antelopev2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e182f14fc6e80b3bfa375b33eb6cff7ee05d8ef7633e738d1c89021dcf0c5c5
|
3 |
+
size 360662982
|
models/antelopev2/1k3d68.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df5c06b8a0c12e422b2ed8947b8869faa4105387f199c477af038aa01f9a45cc
|
3 |
+
size 143607619
|
models/antelopev2/2d106det.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf
|
3 |
+
size 5030888
|
models/antelopev2/genderage.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb
|
3 |
+
size 1322532
|
models/antelopev2/glintr100.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ab1d6435d639628a6f3e5008dd4f929edf4c4124b1a7169e1048f9fef534cdf
|
3 |
+
size 260665334
|
models/antelopev2/scrfd_10g_bnkps.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91
|
3 |
+
size 16923827
|
pipeline_stable_diffusion_xl_instantid_full.py
ADDED
@@ -0,0 +1,1227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The InstantX Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
import math
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import PIL.Image
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
|
26 |
+
from diffusers.image_processor import PipelineImageInput
|
27 |
+
|
28 |
+
from diffusers.models import ControlNetModel
|
29 |
+
|
30 |
+
from diffusers.utils import (
|
31 |
+
deprecate,
|
32 |
+
logging,
|
33 |
+
replace_example_docstring,
|
34 |
+
)
|
35 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
|
36 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
37 |
+
|
38 |
+
from diffusers import StableDiffusionXLControlNetPipeline
|
39 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
40 |
+
from diffusers.utils.import_utils import is_xformers_available
|
41 |
+
|
42 |
+
from ip_adapter.resampler import Resampler
|
43 |
+
from ip_adapter.utils import is_torch2_available
|
44 |
+
|
45 |
+
if is_torch2_available():
|
46 |
+
from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
|
47 |
+
else:
|
48 |
+
from ip_adapter.attention_processor import IPAttnProcessor, AttnProcessor
|
49 |
+
|
50 |
+
class RegionControler(object):
|
51 |
+
def __init__(self) -> None:
|
52 |
+
self.prompt_image_conditioning = []
|
53 |
+
region_control = RegionControler()
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
56 |
+
|
57 |
+
EXAMPLE_DOC_STRING = """
|
58 |
+
Examples:
|
59 |
+
```py
|
60 |
+
>>> # !pip install opencv-python transformers accelerate insightface
|
61 |
+
>>> import diffusers
|
62 |
+
>>> from diffusers.utils import load_image
|
63 |
+
>>> from diffusers.models import ControlNetModel
|
64 |
+
|
65 |
+
>>> import cv2
|
66 |
+
>>> import torch
|
67 |
+
>>> import numpy as np
|
68 |
+
>>> from PIL import Image
|
69 |
+
|
70 |
+
>>> from insightface.app import FaceAnalysis
|
71 |
+
>>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
|
72 |
+
|
73 |
+
>>> # download 'antelopev2' under ./models
|
74 |
+
>>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
75 |
+
>>> app.prepare(ctx_id=0, det_size=(640, 640))
|
76 |
+
|
77 |
+
>>> # download models under ./checkpoints
|
78 |
+
>>> face_adapter = f'./checkpoints/ip-adapter.bin'
|
79 |
+
>>> controlnet_path = f'./checkpoints/ControlNetModel'
|
80 |
+
|
81 |
+
>>> # load IdentityNet
|
82 |
+
>>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
83 |
+
|
84 |
+
>>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
85 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
|
86 |
+
... )
|
87 |
+
>>> pipe.cuda()
|
88 |
+
|
89 |
+
>>> # load adapter
|
90 |
+
>>> pipe.load_ip_adapter_instantid(face_adapter)
|
91 |
+
|
92 |
+
>>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"
|
93 |
+
>>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"
|
94 |
+
|
95 |
+
>>> # load an image
|
96 |
+
>>> image = load_image("your-example.jpg")
|
97 |
+
|
98 |
+
>>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1]
|
99 |
+
>>> face_emb = face_info['embedding']
|
100 |
+
>>> face_kps = draw_kps(face_image, face_info['kps'])
|
101 |
+
|
102 |
+
>>> pipe.set_ip_adapter_scale(0.8)
|
103 |
+
|
104 |
+
>>> # generate image
|
105 |
+
>>> image = pipe(
|
106 |
+
... prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8
|
107 |
+
... ).images[0]
|
108 |
+
```
|
109 |
+
"""
|
110 |
+
|
111 |
+
from transformers import CLIPTokenizer
|
112 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
|
113 |
+
class LongPromptWeight(object):
|
114 |
+
|
115 |
+
"""
|
116 |
+
Copied from https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion_xl.py
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self) -> None:
|
120 |
+
pass
|
121 |
+
|
122 |
+
def parse_prompt_attention(self, text):
|
123 |
+
"""
|
124 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
125 |
+
Accepted tokens are:
|
126 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
127 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
128 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
129 |
+
\( - literal character '('
|
130 |
+
\[ - literal character '['
|
131 |
+
\) - literal character ')'
|
132 |
+
\] - literal character ']'
|
133 |
+
\\ - literal character '\'
|
134 |
+
anything else - just text
|
135 |
+
|
136 |
+
>>> parse_prompt_attention('normal text')
|
137 |
+
[['normal text', 1.0]]
|
138 |
+
>>> parse_prompt_attention('an (important) word')
|
139 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
140 |
+
>>> parse_prompt_attention('(unbalanced')
|
141 |
+
[['unbalanced', 1.1]]
|
142 |
+
>>> parse_prompt_attention('\(literal\]')
|
143 |
+
[['(literal]', 1.0]]
|
144 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
145 |
+
[['unnecessaryparens', 1.1]]
|
146 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
147 |
+
[['a ', 1.0],
|
148 |
+
['house', 1.5730000000000004],
|
149 |
+
[' ', 1.1],
|
150 |
+
['on', 1.0],
|
151 |
+
[' a ', 1.1],
|
152 |
+
['hill', 0.55],
|
153 |
+
[', sun, ', 1.1],
|
154 |
+
['sky', 1.4641000000000006],
|
155 |
+
['.', 1.1]]
|
156 |
+
"""
|
157 |
+
import re
|
158 |
+
|
159 |
+
re_attention = re.compile(
|
160 |
+
r"""
|
161 |
+
\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
|
162 |
+
\)|]|[^\\()\[\]:]+|:
|
163 |
+
""",
|
164 |
+
re.X,
|
165 |
+
)
|
166 |
+
|
167 |
+
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
|
168 |
+
|
169 |
+
res = []
|
170 |
+
round_brackets = []
|
171 |
+
square_brackets = []
|
172 |
+
|
173 |
+
round_bracket_multiplier = 1.1
|
174 |
+
square_bracket_multiplier = 1 / 1.1
|
175 |
+
|
176 |
+
def multiply_range(start_position, multiplier):
|
177 |
+
for p in range(start_position, len(res)):
|
178 |
+
res[p][1] *= multiplier
|
179 |
+
|
180 |
+
for m in re_attention.finditer(text):
|
181 |
+
text = m.group(0)
|
182 |
+
weight = m.group(1)
|
183 |
+
|
184 |
+
if text.startswith("\\"):
|
185 |
+
res.append([text[1:], 1.0])
|
186 |
+
elif text == "(":
|
187 |
+
round_brackets.append(len(res))
|
188 |
+
elif text == "[":
|
189 |
+
square_brackets.append(len(res))
|
190 |
+
elif weight is not None and len(round_brackets) > 0:
|
191 |
+
multiply_range(round_brackets.pop(), float(weight))
|
192 |
+
elif text == ")" and len(round_brackets) > 0:
|
193 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
194 |
+
elif text == "]" and len(square_brackets) > 0:
|
195 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
196 |
+
else:
|
197 |
+
parts = re.split(re_break, text)
|
198 |
+
for i, part in enumerate(parts):
|
199 |
+
if i > 0:
|
200 |
+
res.append(["BREAK", -1])
|
201 |
+
res.append([part, 1.0])
|
202 |
+
|
203 |
+
for pos in round_brackets:
|
204 |
+
multiply_range(pos, round_bracket_multiplier)
|
205 |
+
|
206 |
+
for pos in square_brackets:
|
207 |
+
multiply_range(pos, square_bracket_multiplier)
|
208 |
+
|
209 |
+
if len(res) == 0:
|
210 |
+
res = [["", 1.0]]
|
211 |
+
|
212 |
+
# merge runs of identical weights
|
213 |
+
i = 0
|
214 |
+
while i + 1 < len(res):
|
215 |
+
if res[i][1] == res[i + 1][1]:
|
216 |
+
res[i][0] += res[i + 1][0]
|
217 |
+
res.pop(i + 1)
|
218 |
+
else:
|
219 |
+
i += 1
|
220 |
+
|
221 |
+
return res
|
222 |
+
|
223 |
+
def get_prompts_tokens_with_weights(self, clip_tokenizer: CLIPTokenizer, prompt: str):
|
224 |
+
"""
|
225 |
+
Get prompt token ids and weights, this function works for both prompt and negative prompt
|
226 |
+
|
227 |
+
Args:
|
228 |
+
pipe (CLIPTokenizer)
|
229 |
+
A CLIPTokenizer
|
230 |
+
prompt (str)
|
231 |
+
A prompt string with weights
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
text_tokens (list)
|
235 |
+
A list contains token ids
|
236 |
+
text_weight (list)
|
237 |
+
A list contains the correspodent weight of token ids
|
238 |
+
|
239 |
+
Example:
|
240 |
+
import torch
|
241 |
+
from transformers import CLIPTokenizer
|
242 |
+
|
243 |
+
clip_tokenizer = CLIPTokenizer.from_pretrained(
|
244 |
+
"stablediffusionapi/deliberate-v2"
|
245 |
+
, subfolder = "tokenizer"
|
246 |
+
, dtype = torch.float16
|
247 |
+
)
|
248 |
+
|
249 |
+
token_id_list, token_weight_list = get_prompts_tokens_with_weights(
|
250 |
+
clip_tokenizer = clip_tokenizer
|
251 |
+
,prompt = "a (red:1.5) cat"*70
|
252 |
+
)
|
253 |
+
"""
|
254 |
+
texts_and_weights = self.parse_prompt_attention(prompt)
|
255 |
+
text_tokens, text_weights = [], []
|
256 |
+
for word, weight in texts_and_weights:
|
257 |
+
# tokenize and discard the starting and the ending token
|
258 |
+
token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt
|
259 |
+
# the returned token is a 1d list: [320, 1125, 539, 320]
|
260 |
+
|
261 |
+
# merge the new tokens to the all tokens holder: text_tokens
|
262 |
+
text_tokens = [*text_tokens, *token]
|
263 |
+
|
264 |
+
# each token chunk will come with one weight, like ['red cat', 2.0]
|
265 |
+
# need to expand weight for each token.
|
266 |
+
chunk_weights = [weight] * len(token)
|
267 |
+
|
268 |
+
# append the weight back to the weight holder: text_weights
|
269 |
+
text_weights = [*text_weights, *chunk_weights]
|
270 |
+
return text_tokens, text_weights
|
271 |
+
|
272 |
+
def group_tokens_and_weights(self, token_ids: list, weights: list, pad_last_block=False):
|
273 |
+
"""
|
274 |
+
Produce tokens and weights in groups and pad the missing tokens
|
275 |
+
|
276 |
+
Args:
|
277 |
+
token_ids (list)
|
278 |
+
The token ids from tokenizer
|
279 |
+
weights (list)
|
280 |
+
The weights list from function get_prompts_tokens_with_weights
|
281 |
+
pad_last_block (bool)
|
282 |
+
Control if fill the last token list to 75 tokens with eos
|
283 |
+
Returns:
|
284 |
+
new_token_ids (2d list)
|
285 |
+
new_weights (2d list)
|
286 |
+
|
287 |
+
Example:
|
288 |
+
token_groups,weight_groups = group_tokens_and_weights(
|
289 |
+
token_ids = token_id_list
|
290 |
+
, weights = token_weight_list
|
291 |
+
)
|
292 |
+
"""
|
293 |
+
bos, eos = 49406, 49407
|
294 |
+
|
295 |
+
# this will be a 2d list
|
296 |
+
new_token_ids = []
|
297 |
+
new_weights = []
|
298 |
+
while len(token_ids) >= 75:
|
299 |
+
# get the first 75 tokens
|
300 |
+
head_75_tokens = [token_ids.pop(0) for _ in range(75)]
|
301 |
+
head_75_weights = [weights.pop(0) for _ in range(75)]
|
302 |
+
|
303 |
+
# extract token ids and weights
|
304 |
+
temp_77_token_ids = [bos] + head_75_tokens + [eos]
|
305 |
+
temp_77_weights = [1.0] + head_75_weights + [1.0]
|
306 |
+
|
307 |
+
# add 77 token and weights chunk to the holder list
|
308 |
+
new_token_ids.append(temp_77_token_ids)
|
309 |
+
new_weights.append(temp_77_weights)
|
310 |
+
|
311 |
+
# padding the left
|
312 |
+
if len(token_ids) >= 0:
|
313 |
+
padding_len = 75 - len(token_ids) if pad_last_block else 0
|
314 |
+
|
315 |
+
temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
|
316 |
+
new_token_ids.append(temp_77_token_ids)
|
317 |
+
|
318 |
+
temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
|
319 |
+
new_weights.append(temp_77_weights)
|
320 |
+
|
321 |
+
return new_token_ids, new_weights
|
322 |
+
|
323 |
+
def get_weighted_text_embeddings_sdxl(
|
324 |
+
self,
|
325 |
+
pipe: StableDiffusionXLPipeline,
|
326 |
+
prompt: str = "",
|
327 |
+
prompt_2: str = None,
|
328 |
+
neg_prompt: str = "",
|
329 |
+
neg_prompt_2: str = None,
|
330 |
+
prompt_embeds=None,
|
331 |
+
negative_prompt_embeds=None,
|
332 |
+
pooled_prompt_embeds=None,
|
333 |
+
negative_pooled_prompt_embeds=None,
|
334 |
+
extra_emb=None,
|
335 |
+
extra_emb_alpha=0.6,
|
336 |
+
):
|
337 |
+
"""
|
338 |
+
This function can process long prompt with weights, no length limitation
|
339 |
+
for Stable Diffusion XL
|
340 |
+
|
341 |
+
Args:
|
342 |
+
pipe (StableDiffusionPipeline)
|
343 |
+
prompt (str)
|
344 |
+
prompt_2 (str)
|
345 |
+
neg_prompt (str)
|
346 |
+
neg_prompt_2 (str)
|
347 |
+
Returns:
|
348 |
+
prompt_embeds (torch.Tensor)
|
349 |
+
neg_prompt_embeds (torch.Tensor)
|
350 |
+
"""
|
351 |
+
#
|
352 |
+
if prompt_embeds is not None and \
|
353 |
+
negative_prompt_embeds is not None and \
|
354 |
+
pooled_prompt_embeds is not None and \
|
355 |
+
negative_pooled_prompt_embeds is not None:
|
356 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
357 |
+
|
358 |
+
if prompt_2:
|
359 |
+
prompt = f"{prompt} {prompt_2}"
|
360 |
+
|
361 |
+
if neg_prompt_2:
|
362 |
+
neg_prompt = f"{neg_prompt} {neg_prompt_2}"
|
363 |
+
|
364 |
+
eos = pipe.tokenizer.eos_token_id
|
365 |
+
|
366 |
+
# tokenizer 1
|
367 |
+
prompt_tokens, prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
|
368 |
+
neg_prompt_tokens, neg_prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
|
369 |
+
|
370 |
+
# tokenizer 2
|
371 |
+
# prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt)
|
372 |
+
# neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt)
|
373 |
+
# tokenizer 2 遇到 !! !!!! 等多感叹号和tokenizer 1的效果不一致
|
374 |
+
prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
|
375 |
+
neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
|
376 |
+
|
377 |
+
# padding the shorter one for prompt set 1
|
378 |
+
prompt_token_len = len(prompt_tokens)
|
379 |
+
neg_prompt_token_len = len(neg_prompt_tokens)
|
380 |
+
|
381 |
+
if prompt_token_len > neg_prompt_token_len:
|
382 |
+
# padding the neg_prompt with eos token
|
383 |
+
neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
|
384 |
+
neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
|
385 |
+
else:
|
386 |
+
# padding the prompt
|
387 |
+
prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
|
388 |
+
prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
|
389 |
+
|
390 |
+
# padding the shorter one for token set 2
|
391 |
+
prompt_token_len_2 = len(prompt_tokens_2)
|
392 |
+
neg_prompt_token_len_2 = len(neg_prompt_tokens_2)
|
393 |
+
|
394 |
+
if prompt_token_len_2 > neg_prompt_token_len_2:
|
395 |
+
# padding the neg_prompt with eos token
|
396 |
+
neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
397 |
+
neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
398 |
+
else:
|
399 |
+
# padding the prompt
|
400 |
+
prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
401 |
+
prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
402 |
+
|
403 |
+
embeds = []
|
404 |
+
neg_embeds = []
|
405 |
+
|
406 |
+
prompt_token_groups, prompt_weight_groups = self.group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())
|
407 |
+
|
408 |
+
neg_prompt_token_groups, neg_prompt_weight_groups = self.group_tokens_and_weights(
|
409 |
+
neg_prompt_tokens.copy(), neg_prompt_weights.copy()
|
410 |
+
)
|
411 |
+
|
412 |
+
prompt_token_groups_2, prompt_weight_groups_2 = self.group_tokens_and_weights(
|
413 |
+
prompt_tokens_2.copy(), prompt_weights_2.copy()
|
414 |
+
)
|
415 |
+
|
416 |
+
neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = self.group_tokens_and_weights(
|
417 |
+
neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
|
418 |
+
)
|
419 |
+
|
420 |
+
# get prompt embeddings one by one is not working.
|
421 |
+
for i in range(len(prompt_token_groups)):
|
422 |
+
# get positive prompt embeddings with weights
|
423 |
+
token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
|
424 |
+
weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
|
425 |
+
|
426 |
+
token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
|
427 |
+
|
428 |
+
# use first text encoder
|
429 |
+
prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True)
|
430 |
+
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
|
431 |
+
|
432 |
+
# use second text encoder
|
433 |
+
prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True)
|
434 |
+
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
|
435 |
+
pooled_prompt_embeds = prompt_embeds_2[0]
|
436 |
+
|
437 |
+
prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
|
438 |
+
token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)
|
439 |
+
|
440 |
+
for j in range(len(weight_tensor)):
|
441 |
+
if weight_tensor[j] != 1.0:
|
442 |
+
token_embedding[j] = (
|
443 |
+
token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
|
444 |
+
)
|
445 |
+
|
446 |
+
token_embedding = token_embedding.unsqueeze(0)
|
447 |
+
embeds.append(token_embedding)
|
448 |
+
|
449 |
+
# get negative prompt embeddings with weights
|
450 |
+
neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
|
451 |
+
neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
|
452 |
+
neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
|
453 |
+
|
454 |
+
# use first text encoder
|
455 |
+
neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True)
|
456 |
+
neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]
|
457 |
+
|
458 |
+
# use second text encoder
|
459 |
+
neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True)
|
460 |
+
neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
|
461 |
+
negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]
|
462 |
+
|
463 |
+
neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
|
464 |
+
neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)
|
465 |
+
|
466 |
+
for z in range(len(neg_weight_tensor)):
|
467 |
+
if neg_weight_tensor[z] != 1.0:
|
468 |
+
neg_token_embedding[z] = (
|
469 |
+
neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
|
470 |
+
)
|
471 |
+
|
472 |
+
neg_token_embedding = neg_token_embedding.unsqueeze(0)
|
473 |
+
neg_embeds.append(neg_token_embedding)
|
474 |
+
|
475 |
+
prompt_embeds = torch.cat(embeds, dim=1)
|
476 |
+
negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
|
477 |
+
|
478 |
+
if extra_emb is not None:
|
479 |
+
extra_emb = extra_emb.to(prompt_embeds.device, dtype=prompt_embeds.dtype) * extra_emb_alpha
|
480 |
+
prompt_embeds = torch.cat([prompt_embeds, extra_emb], 1)
|
481 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, torch.zeros_like(extra_emb)], 1)
|
482 |
+
print(f'fix prompt_embeds, extra_emb_alpha={extra_emb_alpha}')
|
483 |
+
|
484 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
485 |
+
|
486 |
+
def get_prompt_embeds(self, *args, **kwargs):
|
487 |
+
prompt_embeds, negative_prompt_embeds, _, _ = self.get_weighted_text_embeddings_sdxl(*args, **kwargs)
|
488 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
489 |
+
return prompt_embeds
|
490 |
+
|
491 |
+
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
|
492 |
+
|
493 |
+
stickwidth = 4
|
494 |
+
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
495 |
+
kps = np.array(kps)
|
496 |
+
|
497 |
+
w, h = image_pil.size
|
498 |
+
out_img = np.zeros([h, w, 3])
|
499 |
+
|
500 |
+
for i in range(len(limbSeq)):
|
501 |
+
index = limbSeq[i]
|
502 |
+
color = color_list[index[0]]
|
503 |
+
|
504 |
+
x = kps[index][:, 0]
|
505 |
+
y = kps[index][:, 1]
|
506 |
+
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
507 |
+
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
508 |
+
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
509 |
+
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
510 |
+
out_img = (out_img * 0.6).astype(np.uint8)
|
511 |
+
|
512 |
+
for idx_kp, kp in enumerate(kps):
|
513 |
+
color = color_list[idx_kp]
|
514 |
+
x, y = kp
|
515 |
+
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
516 |
+
|
517 |
+
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
|
518 |
+
return out_img_pil
|
519 |
+
|
520 |
+
class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
521 |
+
|
522 |
+
def cuda(self, dtype=torch.float16, use_xformers=False):
|
523 |
+
self.to('cuda', dtype)
|
524 |
+
|
525 |
+
if hasattr(self, 'image_proj_model'):
|
526 |
+
self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
|
527 |
+
|
528 |
+
if use_xformers:
|
529 |
+
if is_xformers_available():
|
530 |
+
import xformers
|
531 |
+
from packaging import version
|
532 |
+
|
533 |
+
xformers_version = version.parse(xformers.__version__)
|
534 |
+
if xformers_version == version.parse("0.0.16"):
|
535 |
+
logger.warn(
|
536 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
537 |
+
)
|
538 |
+
self.enable_xformers_memory_efficient_attention()
|
539 |
+
else:
|
540 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
541 |
+
|
542 |
+
def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=0.5):
|
543 |
+
self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
|
544 |
+
self.set_ip_adapter(model_ckpt, num_tokens, scale)
|
545 |
+
|
546 |
+
def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16):
|
547 |
+
|
548 |
+
image_proj_model = Resampler(
|
549 |
+
dim=1280,
|
550 |
+
depth=4,
|
551 |
+
dim_head=64,
|
552 |
+
heads=20,
|
553 |
+
num_queries=num_tokens,
|
554 |
+
embedding_dim=image_emb_dim,
|
555 |
+
output_dim=self.unet.config.cross_attention_dim,
|
556 |
+
ff_mult=4,
|
557 |
+
)
|
558 |
+
|
559 |
+
image_proj_model.eval()
|
560 |
+
|
561 |
+
self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype)
|
562 |
+
state_dict = torch.load(model_ckpt, map_location="cpu")
|
563 |
+
if 'image_proj' in state_dict:
|
564 |
+
state_dict = state_dict["image_proj"]
|
565 |
+
self.image_proj_model.load_state_dict(state_dict)
|
566 |
+
|
567 |
+
self.image_proj_model_in_features = image_emb_dim
|
568 |
+
|
569 |
+
def set_ip_adapter(self, model_ckpt, num_tokens, scale):
|
570 |
+
|
571 |
+
unet = self.unet
|
572 |
+
attn_procs = {}
|
573 |
+
for name in unet.attn_processors.keys():
|
574 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
575 |
+
if name.startswith("mid_block"):
|
576 |
+
hidden_size = unet.config.block_out_channels[-1]
|
577 |
+
elif name.startswith("up_blocks"):
|
578 |
+
block_id = int(name[len("up_blocks.")])
|
579 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
580 |
+
elif name.startswith("down_blocks"):
|
581 |
+
block_id = int(name[len("down_blocks.")])
|
582 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
583 |
+
if cross_attention_dim is None:
|
584 |
+
attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype)
|
585 |
+
else:
|
586 |
+
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size,
|
587 |
+
cross_attention_dim=cross_attention_dim,
|
588 |
+
scale=scale,
|
589 |
+
num_tokens=num_tokens).to(unet.device, dtype=unet.dtype)
|
590 |
+
unet.set_attn_processor(attn_procs)
|
591 |
+
|
592 |
+
state_dict = torch.load(model_ckpt, map_location="cpu")
|
593 |
+
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
|
594 |
+
if 'ip_adapter' in state_dict:
|
595 |
+
state_dict = state_dict['ip_adapter']
|
596 |
+
ip_layers.load_state_dict(state_dict)
|
597 |
+
|
598 |
+
def set_ip_adapter_scale(self, scale):
|
599 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
600 |
+
for attn_processor in unet.attn_processors.values():
|
601 |
+
if isinstance(attn_processor, IPAttnProcessor):
|
602 |
+
attn_processor.scale = scale
|
603 |
+
|
604 |
+
def _encode_prompt_image_emb(self, prompt_image_emb, device, num_images_per_prompt, dtype, do_classifier_free_guidance):
|
605 |
+
|
606 |
+
if isinstance(prompt_image_emb, torch.Tensor):
|
607 |
+
prompt_image_emb = prompt_image_emb.clone().detach()
|
608 |
+
else:
|
609 |
+
prompt_image_emb = torch.tensor(prompt_image_emb)
|
610 |
+
|
611 |
+
prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
|
612 |
+
|
613 |
+
if do_classifier_free_guidance:
|
614 |
+
prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
|
615 |
+
else:
|
616 |
+
prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
|
617 |
+
|
618 |
+
prompt_image_emb = prompt_image_emb.to(device=self.image_proj_model.latents.device,
|
619 |
+
dtype=self.image_proj_model.latents.dtype)
|
620 |
+
prompt_image_emb = self.image_proj_model(prompt_image_emb)
|
621 |
+
|
622 |
+
bs_embed, seq_len, _ = prompt_image_emb.shape
|
623 |
+
prompt_image_emb = prompt_image_emb.repeat(1, num_images_per_prompt, 1)
|
624 |
+
prompt_image_emb = prompt_image_emb.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
625 |
+
|
626 |
+
return prompt_image_emb.to(device=device, dtype=dtype)
|
627 |
+
|
628 |
+
@torch.no_grad()
|
629 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
630 |
+
def __call__(
|
631 |
+
self,
|
632 |
+
prompt: Union[str, List[str]] = None,
|
633 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
634 |
+
image: PipelineImageInput = None,
|
635 |
+
height: Optional[int] = None,
|
636 |
+
width: Optional[int] = None,
|
637 |
+
num_inference_steps: int = 50,
|
638 |
+
guidance_scale: float = 5.0,
|
639 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
640 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
641 |
+
num_images_per_prompt: Optional[int] = 1,
|
642 |
+
eta: float = 0.0,
|
643 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
644 |
+
latents: Optional[torch.FloatTensor] = None,
|
645 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
646 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
647 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
648 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
649 |
+
image_embeds: Optional[torch.FloatTensor] = None,
|
650 |
+
output_type: Optional[str] = "pil",
|
651 |
+
return_dict: bool = True,
|
652 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
653 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
654 |
+
guess_mode: bool = False,
|
655 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
656 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
657 |
+
original_size: Tuple[int, int] = None,
|
658 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
659 |
+
target_size: Tuple[int, int] = None,
|
660 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
661 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
662 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
663 |
+
clip_skip: Optional[int] = None,
|
664 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
665 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
666 |
+
|
667 |
+
# IP adapter
|
668 |
+
ip_adapter_scale=None,
|
669 |
+
|
670 |
+
# Enhance Face Region
|
671 |
+
control_mask = None,
|
672 |
+
|
673 |
+
**kwargs,
|
674 |
+
):
|
675 |
+
r"""
|
676 |
+
The call function to the pipeline for generation.
|
677 |
+
|
678 |
+
Args:
|
679 |
+
prompt (`str` or `List[str]`, *optional*):
|
680 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
681 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
682 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
683 |
+
used in both text-encoders.
|
684 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
685 |
+
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
686 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
687 |
+
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
|
688 |
+
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
689 |
+
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
|
690 |
+
`init`, images must be passed as a list such that each element of the list can be correctly batched for
|
691 |
+
input to a single ControlNet.
|
692 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
693 |
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
694 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
695 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
696 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
697 |
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
698 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
699 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
700 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
701 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
702 |
+
expense of slower inference.
|
703 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
704 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
705 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
706 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
707 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
708 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
709 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
710 |
+
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
711 |
+
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
712 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
713 |
+
The number of images to generate per prompt.
|
714 |
+
eta (`float`, *optional*, defaults to 0.0):
|
715 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
716 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
717 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
718 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
719 |
+
generation deterministic.
|
720 |
+
latents (`torch.FloatTensor`, *optional*):
|
721 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
722 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
723 |
+
tensor is generated by sampling using the supplied random `generator`.
|
724 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
725 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
726 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
727 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
728 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
729 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
730 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
731 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
732 |
+
not provided, pooled text embeddings are generated from `prompt` input argument.
|
733 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
734 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
735 |
+
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
736 |
+
argument.
|
737 |
+
image_embeds (`torch.FloatTensor`, *optional*):
|
738 |
+
Pre-generated image embeddings.
|
739 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
740 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
741 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
742 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
743 |
+
plain tuple.
|
744 |
+
cross_attention_kwargs (`dict`, *optional*):
|
745 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
746 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
747 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
748 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
749 |
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
750 |
+
the corresponding scale as a list.
|
751 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
752 |
+
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
753 |
+
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
754 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
755 |
+
The percentage of total steps at which the ControlNet starts applying.
|
756 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
757 |
+
The percentage of total steps at which the ControlNet stops applying.
|
758 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
759 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
760 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
761 |
+
explained in section 2.2 of
|
762 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
763 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
764 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
765 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
766 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
767 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
768 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
769 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
770 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
771 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
772 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
773 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
774 |
+
micro-conditioning as explained in section 2.2 of
|
775 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
776 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
777 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
778 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
779 |
+
micro-conditioning as explained in section 2.2 of
|
780 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
781 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
782 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
783 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
784 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
785 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
786 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
787 |
+
clip_skip (`int`, *optional*):
|
788 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
789 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
790 |
+
callback_on_step_end (`Callable`, *optional*):
|
791 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
792 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
793 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
794 |
+
`callback_on_step_end_tensor_inputs`.
|
795 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
796 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
797 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
798 |
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
799 |
+
|
800 |
+
Examples:
|
801 |
+
|
802 |
+
Returns:
|
803 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
804 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
805 |
+
otherwise a `tuple` is returned containing the output images.
|
806 |
+
"""
|
807 |
+
|
808 |
+
lpw = LongPromptWeight()
|
809 |
+
|
810 |
+
callback = kwargs.pop("callback", None)
|
811 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
812 |
+
|
813 |
+
if callback is not None:
|
814 |
+
deprecate(
|
815 |
+
"callback",
|
816 |
+
"1.0.0",
|
817 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
818 |
+
)
|
819 |
+
if callback_steps is not None:
|
820 |
+
deprecate(
|
821 |
+
"callback_steps",
|
822 |
+
"1.0.0",
|
823 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
824 |
+
)
|
825 |
+
|
826 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
827 |
+
|
828 |
+
# align format for control guidance
|
829 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
830 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
831 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
832 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
833 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
834 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
835 |
+
control_guidance_start, control_guidance_end = (
|
836 |
+
mult * [control_guidance_start],
|
837 |
+
mult * [control_guidance_end],
|
838 |
+
)
|
839 |
+
|
840 |
+
# 0. set ip_adapter_scale
|
841 |
+
if ip_adapter_scale is not None:
|
842 |
+
self.set_ip_adapter_scale(ip_adapter_scale)
|
843 |
+
|
844 |
+
# 1. Check inputs. Raise error if not correct
|
845 |
+
self.check_inputs(
|
846 |
+
prompt=prompt,
|
847 |
+
prompt_2=prompt_2,
|
848 |
+
image=image,
|
849 |
+
callback_steps=callback_steps,
|
850 |
+
negative_prompt=negative_prompt,
|
851 |
+
negative_prompt_2=negative_prompt_2,
|
852 |
+
prompt_embeds=prompt_embeds,
|
853 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
854 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
855 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
856 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
857 |
+
control_guidance_start=control_guidance_start,
|
858 |
+
control_guidance_end=control_guidance_end,
|
859 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
860 |
+
)
|
861 |
+
|
862 |
+
self._guidance_scale = guidance_scale
|
863 |
+
self._clip_skip = clip_skip
|
864 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
865 |
+
|
866 |
+
# 2. Define call parameters
|
867 |
+
if prompt is not None and isinstance(prompt, str):
|
868 |
+
batch_size = 1
|
869 |
+
elif prompt is not None and isinstance(prompt, list):
|
870 |
+
batch_size = len(prompt)
|
871 |
+
else:
|
872 |
+
batch_size = prompt_embeds.shape[0]
|
873 |
+
|
874 |
+
device = self._execution_device
|
875 |
+
|
876 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
877 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
878 |
+
|
879 |
+
global_pool_conditions = (
|
880 |
+
controlnet.config.global_pool_conditions
|
881 |
+
if isinstance(controlnet, ControlNetModel)
|
882 |
+
else controlnet.nets[0].config.global_pool_conditions
|
883 |
+
)
|
884 |
+
guess_mode = guess_mode or global_pool_conditions
|
885 |
+
|
886 |
+
# 3.1 Encode input prompt
|
887 |
+
(
|
888 |
+
prompt_embeds,
|
889 |
+
negative_prompt_embeds,
|
890 |
+
pooled_prompt_embeds,
|
891 |
+
negative_pooled_prompt_embeds,
|
892 |
+
) = lpw.get_weighted_text_embeddings_sdxl(
|
893 |
+
pipe=self,
|
894 |
+
prompt=prompt,
|
895 |
+
neg_prompt=negative_prompt,
|
896 |
+
prompt_embeds=prompt_embeds,
|
897 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
898 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
899 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
900 |
+
)
|
901 |
+
|
902 |
+
# 3.2 Encode image prompt
|
903 |
+
prompt_image_emb = self._encode_prompt_image_emb(image_embeds,
|
904 |
+
device,
|
905 |
+
num_images_per_prompt,
|
906 |
+
self.unet.dtype,
|
907 |
+
self.do_classifier_free_guidance)
|
908 |
+
|
909 |
+
# 4. Prepare image
|
910 |
+
if isinstance(controlnet, ControlNetModel):
|
911 |
+
image = self.prepare_image(
|
912 |
+
image=image,
|
913 |
+
width=width,
|
914 |
+
height=height,
|
915 |
+
batch_size=batch_size * num_images_per_prompt,
|
916 |
+
num_images_per_prompt=num_images_per_prompt,
|
917 |
+
device=device,
|
918 |
+
dtype=controlnet.dtype,
|
919 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
920 |
+
guess_mode=guess_mode,
|
921 |
+
)
|
922 |
+
height, width = image.shape[-2:]
|
923 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
924 |
+
images = []
|
925 |
+
|
926 |
+
for image_ in image:
|
927 |
+
image_ = self.prepare_image(
|
928 |
+
image=image_,
|
929 |
+
width=width,
|
930 |
+
height=height,
|
931 |
+
batch_size=batch_size * num_images_per_prompt,
|
932 |
+
num_images_per_prompt=num_images_per_prompt,
|
933 |
+
device=device,
|
934 |
+
dtype=controlnet.dtype,
|
935 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
936 |
+
guess_mode=guess_mode,
|
937 |
+
)
|
938 |
+
|
939 |
+
images.append(image_)
|
940 |
+
|
941 |
+
image = images
|
942 |
+
height, width = image[0].shape[-2:]
|
943 |
+
else:
|
944 |
+
assert False
|
945 |
+
|
946 |
+
# 4.1 Region control
|
947 |
+
if control_mask is not None:
|
948 |
+
mask_weight_image = control_mask
|
949 |
+
mask_weight_image = np.array(mask_weight_image)
|
950 |
+
mask_weight_image_tensor = torch.from_numpy(mask_weight_image).to(device=device, dtype=prompt_embeds.dtype)
|
951 |
+
mask_weight_image_tensor = mask_weight_image_tensor[:, :, 0] / 255.
|
952 |
+
mask_weight_image_tensor = mask_weight_image_tensor[None, None]
|
953 |
+
h, w = mask_weight_image_tensor.shape[-2:]
|
954 |
+
control_mask_wight_image_list = []
|
955 |
+
for scale in [8, 8, 8, 16, 16, 16, 32, 32, 32]:
|
956 |
+
scale_mask_weight_image_tensor = F.interpolate(
|
957 |
+
mask_weight_image_tensor,(h // scale, w // scale), mode='bilinear')
|
958 |
+
control_mask_wight_image_list.append(scale_mask_weight_image_tensor)
|
959 |
+
region_mask = torch.from_numpy(np.array(control_mask)[:, :, 0]).to(self.unet.device, dtype=self.unet.dtype) / 255.
|
960 |
+
region_control.prompt_image_conditioning = [dict(region_mask=region_mask)]
|
961 |
+
else:
|
962 |
+
control_mask_wight_image_list = None
|
963 |
+
region_control.prompt_image_conditioning = [dict(region_mask=None)]
|
964 |
+
|
965 |
+
# 5. Prepare timesteps
|
966 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
967 |
+
timesteps = self.scheduler.timesteps
|
968 |
+
self._num_timesteps = len(timesteps)
|
969 |
+
|
970 |
+
# 6. Prepare latent variables
|
971 |
+
num_channels_latents = self.unet.config.in_channels
|
972 |
+
latents = self.prepare_latents(
|
973 |
+
batch_size * num_images_per_prompt,
|
974 |
+
num_channels_latents,
|
975 |
+
height,
|
976 |
+
width,
|
977 |
+
prompt_embeds.dtype,
|
978 |
+
device,
|
979 |
+
generator,
|
980 |
+
latents,
|
981 |
+
)
|
982 |
+
|
983 |
+
# 6.5 Optionally get Guidance Scale Embedding
|
984 |
+
timestep_cond = None
|
985 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
986 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
987 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
988 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
989 |
+
).to(device=device, dtype=latents.dtype)
|
990 |
+
|
991 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
992 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
993 |
+
|
994 |
+
# 7.1 Create tensor stating which controlnets to keep
|
995 |
+
controlnet_keep = []
|
996 |
+
for i in range(len(timesteps)):
|
997 |
+
keeps = [
|
998 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
999 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
1000 |
+
]
|
1001 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
1002 |
+
|
1003 |
+
# 7.2 Prepare added time ids & embeddings
|
1004 |
+
if isinstance(image, list):
|
1005 |
+
original_size = original_size or image[0].shape[-2:]
|
1006 |
+
else:
|
1007 |
+
original_size = original_size or image.shape[-2:]
|
1008 |
+
target_size = target_size or (height, width)
|
1009 |
+
|
1010 |
+
add_text_embeds = pooled_prompt_embeds
|
1011 |
+
if self.text_encoder_2 is None:
|
1012 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1013 |
+
else:
|
1014 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1015 |
+
|
1016 |
+
add_time_ids = self._get_add_time_ids(
|
1017 |
+
original_size,
|
1018 |
+
crops_coords_top_left,
|
1019 |
+
target_size,
|
1020 |
+
dtype=prompt_embeds.dtype,
|
1021 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1022 |
+
)
|
1023 |
+
|
1024 |
+
if negative_original_size is not None and negative_target_size is not None:
|
1025 |
+
negative_add_time_ids = self._get_add_time_ids(
|
1026 |
+
negative_original_size,
|
1027 |
+
negative_crops_coords_top_left,
|
1028 |
+
negative_target_size,
|
1029 |
+
dtype=prompt_embeds.dtype,
|
1030 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1031 |
+
)
|
1032 |
+
else:
|
1033 |
+
negative_add_time_ids = add_time_ids
|
1034 |
+
|
1035 |
+
if self.do_classifier_free_guidance:
|
1036 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1037 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1038 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1039 |
+
|
1040 |
+
prompt_embeds = prompt_embeds.to(device)
|
1041 |
+
add_text_embeds = add_text_embeds.to(device)
|
1042 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1043 |
+
encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
|
1044 |
+
|
1045 |
+
# 8. Denoising loop
|
1046 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1047 |
+
is_unet_compiled = is_compiled_module(self.unet)
|
1048 |
+
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
1049 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
1050 |
+
|
1051 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1052 |
+
for i, t in enumerate(timesteps):
|
1053 |
+
# Relevant thread:
|
1054 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
1055 |
+
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
1056 |
+
torch._inductor.cudagraph_mark_step_begin()
|
1057 |
+
# expand the latents if we are doing classifier free guidance
|
1058 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1059 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1060 |
+
|
1061 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1062 |
+
|
1063 |
+
# controlnet(s) inference
|
1064 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1065 |
+
# Infer ControlNet only for the conditional batch.
|
1066 |
+
control_model_input = latents
|
1067 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1068 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1069 |
+
controlnet_added_cond_kwargs = {
|
1070 |
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
1071 |
+
"time_ids": add_time_ids.chunk(2)[1],
|
1072 |
+
}
|
1073 |
+
else:
|
1074 |
+
control_model_input = latent_model_input
|
1075 |
+
controlnet_prompt_embeds = prompt_embeds
|
1076 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
1077 |
+
|
1078 |
+
if isinstance(controlnet_keep[i], list):
|
1079 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1080 |
+
else:
|
1081 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1082 |
+
if isinstance(controlnet_cond_scale, list):
|
1083 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1084 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1085 |
+
|
1086 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
1087 |
+
down_block_res_samples_list, mid_block_res_sample_list = [], []
|
1088 |
+
for control_index in range(len(self.controlnet.nets)):
|
1089 |
+
controlnet = self.controlnet.nets[control_index]
|
1090 |
+
if control_index == 0:
|
1091 |
+
# assume fhe first controlnet is IdentityNet
|
1092 |
+
controlnet_prompt_embeds = prompt_image_emb
|
1093 |
+
else:
|
1094 |
+
controlnet_prompt_embeds = prompt_embeds
|
1095 |
+
down_block_res_samples, mid_block_res_sample = controlnet(control_model_input,
|
1096 |
+
t,
|
1097 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1098 |
+
controlnet_cond=image[control_index],
|
1099 |
+
conditioning_scale=cond_scale[control_index],
|
1100 |
+
guess_mode=guess_mode,
|
1101 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1102 |
+
return_dict=False)
|
1103 |
+
|
1104 |
+
# controlnet mask
|
1105 |
+
if control_index == 0 and control_mask_wight_image_list is not None:
|
1106 |
+
down_block_res_samples = [
|
1107 |
+
down_block_res_sample * mask_weight
|
1108 |
+
for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list)
|
1109 |
+
]
|
1110 |
+
mid_block_res_sample *= control_mask_wight_image_list[-1]
|
1111 |
+
|
1112 |
+
down_block_res_samples_list.append(down_block_res_samples)
|
1113 |
+
mid_block_res_sample_list.append(mid_block_res_sample)
|
1114 |
+
|
1115 |
+
mid_block_res_sample = torch.stack(mid_block_res_sample_list).sum(dim=0)
|
1116 |
+
down_block_res_samples = [torch.stack(down_block_res_samples).sum(dim=0) for down_block_res_samples in
|
1117 |
+
zip(*down_block_res_samples_list)]
|
1118 |
+
else:
|
1119 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1120 |
+
control_model_input,
|
1121 |
+
t,
|
1122 |
+
encoder_hidden_states=prompt_image_emb,
|
1123 |
+
controlnet_cond=image,
|
1124 |
+
conditioning_scale=cond_scale,
|
1125 |
+
guess_mode=guess_mode,
|
1126 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1127 |
+
return_dict=False,
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
# controlnet mask
|
1131 |
+
if control_mask_wight_image_list is not None:
|
1132 |
+
down_block_res_samples = [
|
1133 |
+
down_block_res_sample * mask_weight
|
1134 |
+
for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list)
|
1135 |
+
]
|
1136 |
+
mid_block_res_sample *= control_mask_wight_image_list[-1]
|
1137 |
+
|
1138 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1139 |
+
# Infered ControlNet only for the conditional batch.
|
1140 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1141 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1142 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1143 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1144 |
+
|
1145 |
+
# predict the noise residual
|
1146 |
+
noise_pred = self.unet(
|
1147 |
+
latent_model_input,
|
1148 |
+
t,
|
1149 |
+
encoder_hidden_states=encoder_hidden_states,
|
1150 |
+
timestep_cond=timestep_cond,
|
1151 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1152 |
+
down_block_additional_residuals=down_block_res_samples,
|
1153 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1154 |
+
added_cond_kwargs=added_cond_kwargs,
|
1155 |
+
return_dict=False,
|
1156 |
+
)[0]
|
1157 |
+
|
1158 |
+
# perform guidance
|
1159 |
+
if self.do_classifier_free_guidance:
|
1160 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1161 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1162 |
+
|
1163 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1164 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1165 |
+
|
1166 |
+
if callback_on_step_end is not None:
|
1167 |
+
callback_kwargs = {}
|
1168 |
+
for k in callback_on_step_end_tensor_inputs:
|
1169 |
+
callback_kwargs[k] = locals()[k]
|
1170 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1171 |
+
|
1172 |
+
latents = callback_outputs.pop("latents", latents)
|
1173 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1174 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1175 |
+
|
1176 |
+
# call the callback, if provided
|
1177 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1178 |
+
progress_bar.update()
|
1179 |
+
if callback is not None and i % callback_steps == 0:
|
1180 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1181 |
+
callback(step_idx, t, latents)
|
1182 |
+
|
1183 |
+
if not output_type == "latent":
|
1184 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1185 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1186 |
+
|
1187 |
+
if needs_upcasting:
|
1188 |
+
self.upcast_vae()
|
1189 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1190 |
+
|
1191 |
+
# unscale/denormalize the latents
|
1192 |
+
# denormalize with the mean and std if available and not None
|
1193 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1194 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1195 |
+
if has_latents_mean and has_latents_std:
|
1196 |
+
latents_mean = (
|
1197 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1198 |
+
)
|
1199 |
+
latents_std = (
|
1200 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1201 |
+
)
|
1202 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1203 |
+
else:
|
1204 |
+
latents = latents / self.vae.config.scaling_factor
|
1205 |
+
|
1206 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1207 |
+
|
1208 |
+
# cast back to fp16 if needed
|
1209 |
+
if needs_upcasting:
|
1210 |
+
self.vae.to(dtype=torch.float16)
|
1211 |
+
else:
|
1212 |
+
image = latents
|
1213 |
+
|
1214 |
+
if not output_type == "latent":
|
1215 |
+
# apply watermark if available
|
1216 |
+
if self.watermark is not None:
|
1217 |
+
image = self.watermark.apply_watermark(image)
|
1218 |
+
|
1219 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1220 |
+
|
1221 |
+
# Offload all models
|
1222 |
+
self.maybe_free_model_hooks()
|
1223 |
+
|
1224 |
+
if not return_dict:
|
1225 |
+
return (image,)
|
1226 |
+
|
1227 |
+
return StableDiffusionXLPipelineOutput(images=image)
|