from sentence_transformers import models import torch import torch.nn as nn class CustTrans(models.Transformer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.curr_task_type = None self._rebuild_taskembedding(['sts', 'quora']) def forward(self, inputs, task_type=None): enc = self.auto_model(**inputs).last_hidden_state if task_type == None: task_type = self.curr_task_type if task_type in self.task_types: idx = torch.tensor(self.task_types.index(task_type), device=self.TaskEmbedding.weight.device) hyp = self.TaskEmbedding(idx) inputs['token_embeddings'] = self._project(enc, hyp) else: inputs['token_embeddings'] = enc return inputs def _set_curr_task_type(self, task_type): self.curr_task_type = task_type def _set_taskembedding_grad(self, value): self.TaskEmbedding.weight.requires_grad = value def _set_transformer_grad(self, value): for param in self.auto_model.parameters(): param.requires_grad = value def _rebuild_taskembedding(self, task_types): self.task_types = task_types self.task_emb = 1 - torch.eye(len(self.task_types),768) self.TaskEmbedding = nn.Embedding(len(self.task_types), 768).from_pretrained(self.task_emb) def _project(self, v, normal_hyper): # return v - torch.dot(v, normal_hyper)*normal_hyper / torch.norm(normal_hyper)**2 return v*normal_hyper