perticarari commited on
Commit
3d96838
·
verified ·
1 Parent(s): 98b2d69

Initial commit

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:1000
10
+ - loss:CoSENTLoss
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: test
14
+ sentences:
15
+ - '" it ''s a major victory for maine , and it ''s a major victory for other states
16
+ .'
17
+ - doctors say one or both boys may die , and that some brain damage is possible
18
+ if they survive .
19
+ - doctors said that one or both of the boys may die and that if they survive , some
20
+ brain damage is possible .
21
+ - source_sentence: test
22
+ sentences:
23
+ - but software license revenues , a measure financial analysts watch closely , decreased
24
+ 21 percent to $ 107.6 million .
25
+ - a man is fishing .
26
+ - license sales , a key measure of demand , fell 21 percent to $ 107.6 million .
27
+ - source_sentence: test
28
+ sentences:
29
+ - it has a chequered safety record , including 47 accidents that resulted in 668
30
+ deaths .
31
+ - since being drafted into service in 1971 , it has racked up a record 45 accidents
32
+ , with 393 deaths .
33
+ - tenet has been under scrutiny since november , when former chief executive jeffrey
34
+ barbakow said the company used aggressive pricing to trigger higher payments for
35
+ the sickest medicare patients .
36
+ - source_sentence: test
37
+ sentences:
38
+ - it is a national concern that will touch virtually every american , " abraham
39
+ said .
40
+ - he also could be barred permanently from the securities industry .
41
+ - the impact of natural-gas shortages " will touch virtually every american , "
42
+ energy secretary spencer abraham warned yesterday .
43
+ - source_sentence: test
44
+ sentences:
45
+ - dotson , 21 , was arrested and charged on july 21 after reportedly telling authorities
46
+ he shot dennehy after dennehy tried to shoot him .
47
+ - products featuring vanderpool will be released within five years , he said .
48
+ - he projected vanderpool will be available within the next five years .
49
+ datasets:
50
+ - mteb/sts12-sts
51
+ pipeline_tag: sentence-similarity
52
+ library_name: sentence-transformers
53
+ metrics:
54
+ - pearson_cosine
55
+ - spearman_cosine
56
+ - cosine_accuracy
57
+ model-index:
58
+ - name: SentenceTransformer
59
+ results:
60
+ - task:
61
+ type: semantic-similarity
62
+ name: Semantic Similarity
63
+ dataset:
64
+ name: Unknown
65
+ type: unknown
66
+ metrics:
67
+ - type: pearson_cosine
68
+ value: 0.2502604111969662
69
+ name: Pearson Cosine
70
+ - type: spearman_cosine
71
+ value: 0.2861642394156719
72
+ name: Spearman Cosine
73
+ - task:
74
+ type: triplet
75
+ name: Triplet
76
+ dataset:
77
+ name: Unknown
78
+ type: unknown
79
+ metrics:
80
+ - type: cosine_accuracy
81
+ value: 0.844
82
+ name: Cosine Accuracy
83
+ ---
84
+
85
+ # SentenceTransformer
86
+
87
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the [sts12-sts](https://huggingface.co/datasets/mteb/sts12-sts) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
88
+
89
+ ## Model Details
90
+
91
+ ### Model Description
92
+ - **Model Type:** Sentence Transformer
93
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
94
+ - **Maximum Sequence Length:** 512 tokens
95
+ - **Output Dimensionality:** 768 dimensions
96
+ - **Similarity Function:** Cosine Similarity
97
+ - **Training Dataset:**
98
+ - [sts12-sts](https://huggingface.co/datasets/mteb/sts12-sts)
99
+ - **Language:** en
100
+ <!-- - **License:** Unknown -->
101
+
102
+ ### Model Sources
103
+
104
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
105
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
106
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
107
+
108
+ ### Full Model Architecture
109
+
110
+ ```
111
+ SentenceTransformer(
112
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
113
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
114
+ )
115
+ ```
116
+
117
+ ## Usage
118
+
119
+ ### Direct Usage (Sentence Transformers)
120
+
121
+ First install the Sentence Transformers library:
122
+
123
+ ```bash
124
+ pip install -U sentence-transformers
125
+ ```
126
+
127
+ Then you can load this model and run inference.
128
+ ```python
129
+ from sentence_transformers import SentenceTransformer
130
+
131
+ # Download from the 🤗 Hub
132
+ model = SentenceTransformer("sentence_transformers_model_id")
133
+ # Run inference
134
+ sentences = [
135
+ 'test',
136
+ 'he projected vanderpool will be available within the next five years .',
137
+ 'products featuring vanderpool will be released within five years , he said .',
138
+ ]
139
+ embeddings = model.encode(sentences)
140
+ print(embeddings.shape)
141
+ # [3, 768]
142
+
143
+ # Get the similarity scores for the embeddings
144
+ similarities = model.similarity(embeddings, embeddings)
145
+ print(similarities.shape)
146
+ # [3, 3]
147
+ ```
148
+
149
+ <!--
150
+ ### Direct Usage (Transformers)
151
+
152
+ <details><summary>Click to see the direct usage in Transformers</summary>
153
+
154
+ </details>
155
+ -->
156
+
157
+ <!--
158
+ ### Downstream Usage (Sentence Transformers)
159
+
160
+ You can finetune this model on your own dataset.
161
+
162
+ <details><summary>Click to expand</summary>
163
+
164
+ </details>
165
+ -->
166
+
167
+ <!--
168
+ ### Out-of-Scope Use
169
+
170
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
171
+ -->
172
+
173
+ ## Evaluation
174
+
175
+ ### Metrics
176
+
177
+ #### Semantic Similarity
178
+
179
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
180
+
181
+ | Metric | Value |
182
+ |:--------------------|:-----------|
183
+ | pearson_cosine | 0.2503 |
184
+ | **spearman_cosine** | **0.2862** |
185
+
186
+ #### Triplet
187
+
188
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
189
+
190
+ | Metric | Value |
191
+ |:--------------------|:----------|
192
+ | **cosine_accuracy** | **0.844** |
193
+
194
+ <!--
195
+ ## Bias, Risks and Limitations
196
+
197
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
198
+ -->
199
+
200
+ <!--
201
+ ### Recommendations
202
+
203
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
204
+ -->
205
+
206
+ ## Training Details
207
+
208
+ ### Training Dataset
209
+
210
+ #### sts12-sts
211
+
212
+ * Dataset: [sts12-sts](https://huggingface.co/datasets/mteb/sts12-sts) at [fdf8427](https://huggingface.co/datasets/mteb/sts12-sts/tree/fdf84275bb8ce4b49c971d02e84dd1abc677a50f)
213
+ * Size: 1,000 training samples
214
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
215
+ * Approximate statistics based on the first 1000 samples:
216
+ | | anchor | positive | negative |
217
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
218
+ | type | string | string | string |
219
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
220
+ * Samples:
221
+ | anchor | positive | negative |
222
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
223
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
224
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
225
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
226
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
227
+ ```json
228
+ {
229
+ "scale": 20.0,
230
+ "similarity_fct": "cos_sim"
231
+ }
232
+ ```
233
+
234
+ ### Evaluation Dataset
235
+
236
+ #### sts12-sts
237
+
238
+ * Dataset: [sts12-sts](https://huggingface.co/datasets/mteb/sts12-sts) at [fdf8427](https://huggingface.co/datasets/mteb/sts12-sts/tree/fdf84275bb8ce4b49c971d02e84dd1abc677a50f)
239
+ * Size: 1,000 evaluation samples
240
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
241
+ * Approximate statistics based on the first 1000 samples:
242
+ | | anchor | positive | negative |
243
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
244
+ | type | string | string | string |
245
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.16 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.84 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.45 tokens</li><li>max: 27 tokens</li></ul> |
246
+ * Samples:
247
+ | anchor | positive | negative |
248
+ |:--------------------------------------------------------------------------------------------------------|:---------------------------------------------|:-------------------------------------------------|
249
+ | <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church is filled with song.</code> | <code>A choir singing at a baseball game.</code> |
250
+ | <code>A woman with a green headscarf, blue shirt and a very big grin.</code> | <code>The woman is very happy.</code> | <code>The woman has been shot.</code> |
251
+ | <code>An old man with a package poses in front of an advertisement.</code> | <code>A man poses in front of an ad.</code> | <code>A man walks by an ad.</code> |
252
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
253
+ ```json
254
+ {
255
+ "scale": 20.0,
256
+ "similarity_fct": "cos_sim"
257
+ }
258
+ ```
259
+
260
+ ### Training Hyperparameters
261
+ #### Non-Default Hyperparameters
262
+
263
+ - `eval_strategy`: steps
264
+ - `per_device_train_batch_size`: 32
265
+ - `per_device_eval_batch_size`: 32
266
+ - `learning_rate`: 1e-05
267
+ - `num_train_epochs`: 10
268
+
269
+ #### All Hyperparameters
270
+ <details><summary>Click to expand</summary>
271
+
272
+ - `overwrite_output_dir`: False
273
+ - `do_predict`: False
274
+ - `eval_strategy`: steps
275
+ - `prediction_loss_only`: True
276
+ - `per_device_train_batch_size`: 32
277
+ - `per_device_eval_batch_size`: 32
278
+ - `per_gpu_train_batch_size`: None
279
+ - `per_gpu_eval_batch_size`: None
280
+ - `gradient_accumulation_steps`: 1
281
+ - `eval_accumulation_steps`: None
282
+ - `torch_empty_cache_steps`: None
283
+ - `learning_rate`: 1e-05
284
+ - `weight_decay`: 0.0
285
+ - `adam_beta1`: 0.9
286
+ - `adam_beta2`: 0.999
287
+ - `adam_epsilon`: 1e-08
288
+ - `max_grad_norm`: 1.0
289
+ - `num_train_epochs`: 10
290
+ - `max_steps`: -1
291
+ - `lr_scheduler_type`: linear
292
+ - `lr_scheduler_kwargs`: {}
293
+ - `warmup_ratio`: 0.0
294
+ - `warmup_steps`: 0
295
+ - `log_level`: passive
296
+ - `log_level_replica`: warning
297
+ - `log_on_each_node`: True
298
+ - `logging_nan_inf_filter`: True
299
+ - `save_safetensors`: True
300
+ - `save_on_each_node`: False
301
+ - `save_only_model`: False
302
+ - `restore_callback_states_from_checkpoint`: False
303
+ - `no_cuda`: False
304
+ - `use_cpu`: False
305
+ - `use_mps_device`: False
306
+ - `seed`: 42
307
+ - `data_seed`: None
308
+ - `jit_mode_eval`: False
309
+ - `use_ipex`: False
310
+ - `bf16`: False
311
+ - `fp16`: False
312
+ - `fp16_opt_level`: O1
313
+ - `half_precision_backend`: auto
314
+ - `bf16_full_eval`: False
315
+ - `fp16_full_eval`: False
316
+ - `tf32`: None
317
+ - `local_rank`: 0
318
+ - `ddp_backend`: None
319
+ - `tpu_num_cores`: None
320
+ - `tpu_metrics_debug`: False
321
+ - `debug`: []
322
+ - `dataloader_drop_last`: False
323
+ - `dataloader_num_workers`: 0
324
+ - `dataloader_prefetch_factor`: None
325
+ - `past_index`: -1
326
+ - `disable_tqdm`: False
327
+ - `remove_unused_columns`: True
328
+ - `label_names`: None
329
+ - `load_best_model_at_end`: False
330
+ - `ignore_data_skip`: False
331
+ - `fsdp`: []
332
+ - `fsdp_min_num_params`: 0
333
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
334
+ - `fsdp_transformer_layer_cls_to_wrap`: None
335
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
336
+ - `deepspeed`: None
337
+ - `label_smoothing_factor`: 0.0
338
+ - `optim`: adamw_torch
339
+ - `optim_args`: None
340
+ - `adafactor`: False
341
+ - `group_by_length`: False
342
+ - `length_column_name`: length
343
+ - `ddp_find_unused_parameters`: None
344
+ - `ddp_bucket_cap_mb`: None
345
+ - `ddp_broadcast_buffers`: False
346
+ - `dataloader_pin_memory`: True
347
+ - `dataloader_persistent_workers`: False
348
+ - `skip_memory_metrics`: True
349
+ - `use_legacy_prediction_loop`: False
350
+ - `push_to_hub`: False
351
+ - `resume_from_checkpoint`: None
352
+ - `hub_model_id`: None
353
+ - `hub_strategy`: every_save
354
+ - `hub_private_repo`: False
355
+ - `hub_always_push`: False
356
+ - `gradient_checkpointing`: False
357
+ - `gradient_checkpointing_kwargs`: None
358
+ - `include_inputs_for_metrics`: False
359
+ - `include_for_metrics`: []
360
+ - `eval_do_concat_batches`: True
361
+ - `fp16_backend`: auto
362
+ - `push_to_hub_model_id`: None
363
+ - `push_to_hub_organization`: None
364
+ - `mp_parameters`:
365
+ - `auto_find_batch_size`: False
366
+ - `full_determinism`: False
367
+ - `torchdynamo`: None
368
+ - `ray_scope`: last
369
+ - `ddp_timeout`: 1800
370
+ - `torch_compile`: False
371
+ - `torch_compile_backend`: None
372
+ - `torch_compile_mode`: None
373
+ - `dispatch_batches`: None
374
+ - `split_batches`: None
375
+ - `include_tokens_per_second`: False
376
+ - `include_num_input_tokens_seen`: False
377
+ - `neftune_noise_alpha`: None
378
+ - `optim_target_modules`: None
379
+ - `batch_eval_metrics`: False
380
+ - `eval_on_start`: False
381
+ - `use_liger_kernel`: False
382
+ - `eval_use_gather_object`: False
383
+ - `average_tokens_across_devices`: False
384
+ - `prompts`: None
385
+ - `batch_sampler`: batch_sampler
386
+ - `multi_dataset_batch_sampler`: proportional
387
+
388
+ </details>
389
+
390
+ ### Training Logs
391
+ | Epoch | Step | Training Loss | Validation Loss | spearman_cosine | cosine_accuracy |
392
+ |:-----:|:----:|:-------------:|:---------------:|:---------------:|:---------------:|
393
+ | 3.125 | 100 | 6.523 | 6.3663 | 0.2497 | - |
394
+ | 6.25 | 200 | 6.0248 | 6.3467 | 0.2702 | - |
395
+ | 9.375 | 300 | 5.8616 | 6.3936 | 0.2862 | - |
396
+ | 3.125 | 100 | 2.1251 | 1.2034 | - | 0.854 |
397
+ | 6.25 | 200 | 1.6618 | 1.2496 | - | 0.843 |
398
+ | 9.375 | 300 | 1.6239 | 1.2676 | - | 0.844 |
399
+
400
+
401
+ ### Framework Versions
402
+ - Python: 3.10.12
403
+ - Sentence Transformers: 3.3.1
404
+ - Transformers: 4.46.2
405
+ - PyTorch: 2.5.1+cu121
406
+ - Accelerate: 1.1.1
407
+ - Datasets: 3.1.0
408
+ - Tokenizers: 0.20.3
409
+
410
+ ## Citation
411
+
412
+ ### BibTeX
413
+
414
+ #### Sentence Transformers
415
+ ```bibtex
416
+ @inproceedings{reimers-2019-sentence-bert,
417
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
418
+ author = "Reimers, Nils and Gurevych, Iryna",
419
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
420
+ month = "11",
421
+ year = "2019",
422
+ publisher = "Association for Computational Linguistics",
423
+ url = "https://arxiv.org/abs/1908.10084",
424
+ }
425
+ ```
426
+
427
+ #### MultipleNegativesRankingLoss
428
+ ```bibtex
429
+ @misc{henderson2017efficient,
430
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
431
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
432
+ year={2017},
433
+ eprint={1705.00652},
434
+ archivePrefix={arXiv},
435
+ primaryClass={cs.CL}
436
+ }
437
+ ```
438
+
439
+ <!--
440
+ ## Glossary
441
+
442
+ *Clearly define terms in order to be accessible across audiences.*
443
+ -->
444
+
445
+ <!--
446
+ ## Model Card Authors
447
+
448
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
449
+ -->
450
+
451
+ <!--
452
+ ## Model Card Contact
453
+
454
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
455
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "omniembedding",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3f5cb0e45d40583bb1696b6113195cb1a34650541ded587f9e9cdee78985248
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "__main__.CustTrans"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff