--- library_name: peft base_model: katuni4ka/tiny-random-qwen1.5-moe tags: - axolotl - generated_from_trainer model-index: - name: 962accf0-33b8-4f9e-9141-56b586b99e32 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-qwen1.5-moe bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 16b5810173360f44_train_data.json ds_type: json format: custom path: /workspace/input_data/16b5810173360f44_train_data.json type: field_input: difficulty field_instruction: content field_output: java format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: pedrosperber760/962accf0-33b8-4f9e-9141-56b586b99e32 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 3 mlflow_experiment_name: /tmp/16b5810173360f44_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: 4 sequence_len: 4096 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 962accf0-33b8-4f9e-9141-56b586b99e32 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 962accf0-33b8-4f9e-9141-56b586b99e32 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# 962accf0-33b8-4f9e-9141-56b586b99e32 This model is a fine-tuned version of [katuni4ka/tiny-random-qwen1.5-moe](https://huggingface.co/katuni4ka/tiny-random-qwen1.5-moe) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 6 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9313 | 0.0142 | 1 | 11.9303 | | 11.9315 | 0.0426 | 3 | 11.9297 | | 11.9302 | 0.0851 | 6 | 11.9272 | | 11.9249 | 0.1277 | 9 | 11.9225 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1