Upload model
Browse files- config.json +13 -9
- configuration_eurobert.py +216 -0
- model.safetensors +1 -1
config.json
CHANGED
@@ -41,7 +41,7 @@
|
|
41 |
"mask_token_id": 128002,
|
42 |
"max_position_embeddings": 8192,
|
43 |
"mlp_bias": false,
|
44 |
-
"model_type": "
|
45 |
"num_attention_heads": 12,
|
46 |
"num_hidden_layers": 12,
|
47 |
"num_key_value_heads": 12,
|
@@ -50,21 +50,25 @@
|
|
50 |
"pad_token": "<|end_of_text|>",
|
51 |
"pad_token_id": 128001,
|
52 |
"pretraining_tp": 1,
|
53 |
-
"relation_class_weights":
|
|
|
|
|
|
|
|
|
|
|
54 |
"rms_norm_eps": 1e-05,
|
55 |
"rope_scaling": null,
|
56 |
"rope_theta": 250000,
|
57 |
"span_class_weights": [
|
58 |
-
0.
|
59 |
-
2.
|
60 |
-
1.
|
61 |
-
0.
|
62 |
-
0.
|
63 |
],
|
64 |
"tie_word_embeddings": false,
|
65 |
"torch_dtype": "bfloat16",
|
66 |
"transformers_version": "4.53.1",
|
67 |
"use_cache": false,
|
68 |
-
"vocab_size": 128256
|
69 |
-
"vocab_size_with_special_tokens": 128256
|
70 |
}
|
|
|
41 |
"mask_token_id": 128002,
|
42 |
"max_position_embeddings": 8192,
|
43 |
"mlp_bias": false,
|
44 |
+
"model_type": "eurobert",
|
45 |
"num_attention_heads": 12,
|
46 |
"num_hidden_layers": 12,
|
47 |
"num_key_value_heads": 12,
|
|
|
50 |
"pad_token": "<|end_of_text|>",
|
51 |
"pad_token_id": 128001,
|
52 |
"pretraining_tp": 1,
|
53 |
+
"relation_class_weights": [
|
54 |
+
3.1413280715940357,
|
55 |
+
0.06053432820389329,
|
56 |
+
0.050202345060633424,
|
57 |
+
0.7479352551414371
|
58 |
+
],
|
59 |
"rms_norm_eps": 1e-05,
|
60 |
"rope_scaling": null,
|
61 |
"rope_theta": 250000,
|
62 |
"span_class_weights": [
|
63 |
+
0.09106958441686581,
|
64 |
+
2.139054502968615,
|
65 |
+
1.4801632619082092,
|
66 |
+
0.9552814362568587,
|
67 |
+
0.3344312144494511
|
68 |
],
|
69 |
"tie_word_embeddings": false,
|
70 |
"torch_dtype": "bfloat16",
|
71 |
"transformers_version": "4.53.1",
|
72 |
"use_cache": false,
|
73 |
+
"vocab_size": 128256
|
|
|
74 |
}
|
configuration_eurobert.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from src/transformers/models/eurobert/modular_eurobert.py.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
5 |
+
# modular_eurobert.py file directly. One of our CI enforces this.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2025 Nicolas Boizard, Duarte M. Alves, Hippolyte Gisserot-Boukhlef and the EuroBert team. All rights reserved.
|
9 |
+
#
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
|
23 |
+
from transformers.utils import logging
|
24 |
+
from transformers.models.llama import LlamaConfig
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class EuroBertConfig(LlamaConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`EuroBertModel`]. It is used to instantiate an EuroBert
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the EuroBERT-210m.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 128256):
|
42 |
+
Vocabulary size of the EuroBert model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`EuroBertModel`]
|
44 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
45 |
+
Dimensionality of the encoder layers and the pooler layer.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
47 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
49 |
+
Number of hidden layers in the Transformer encoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
num_key_value_heads (`int`, *optional*):
|
53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
55 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
59 |
+
`num_attention_heads`.
|
60 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
61 |
+
The non-linear activation function (function or string) in the encoder and pooler.
|
62 |
+
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
63 |
+
The maximum sequence length that this model might ever be used with. EuroBert supports up to 8192 tokens,
|
64 |
+
EuroBert-pretrained up to 2048.
|
65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
68 |
+
The epsilon used by the rms normalization layers.
|
69 |
+
bos_token_id (`int`, *optional*, defaults to 128000):
|
70 |
+
Beginning of stream token id.
|
71 |
+
eos_token_id (`int`, *optional*, defaults to 128001):
|
72 |
+
End of stream token id.
|
73 |
+
pad_token_id (`int`, *optional*, defaults to 128001):
|
74 |
+
Padding token id.
|
75 |
+
mask_token_id (`int`, *optional*, defaults to 128002):
|
76 |
+
Mask token id.
|
77 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
78 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
79 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
80 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
81 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
82 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
83 |
+
Whether to tie weight embeddings
|
84 |
+
rope_theta (`float`, *optional*, defaults to 250000.0):
|
85 |
+
The base period of the RoPE embeddings. EuroBert used base period of 250000.0,
|
86 |
+
EuroBert-pretrained 10000.0.
|
87 |
+
rope_scaling (`Dict`, *optional*):
|
88 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
89 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
90 |
+
accordingly.
|
91 |
+
Expected contents:
|
92 |
+
`rope_type` (`str`):
|
93 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
94 |
+
'eurobert3'], with 'default' being the original RoPE implementation.
|
95 |
+
`factor` (`float`, *optional*):
|
96 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
97 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
98 |
+
original maximum pre-trained length.
|
99 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
100 |
+
Used with 'dynamic', 'longrope' and 'eurobert3'. The original max position embeddings used during
|
101 |
+
pretraining.
|
102 |
+
`attention_factor` (`float`, *optional*):
|
103 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
104 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
105 |
+
`factor` field to infer the suggested value.
|
106 |
+
`beta_fast` (`float`, *optional*):
|
107 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
108 |
+
ramp function. If unspecified, it defaults to 32.
|
109 |
+
`beta_slow` (`float`, *optional*):
|
110 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
111 |
+
ramp function. If unspecified, it defaults to 1.
|
112 |
+
`short_factor` (`List[float]`, *optional*):
|
113 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
114 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
115 |
+
size divided by the number of attention heads divided by 2
|
116 |
+
`long_factor` (`List[float]`, *optional*):
|
117 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
118 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
119 |
+
size divided by the number of attention heads divided by 2
|
120 |
+
`low_freq_factor` (`float`, *optional*):
|
121 |
+
Only used with 'eurobert3'. Scaling factor applied to low frequency components of the RoPE
|
122 |
+
`high_freq_factor` (`float`, *optional*):
|
123 |
+
Only used with 'eurobert3'. Scaling factor applied to high frequency components of the RoPE
|
124 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
125 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
126 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
127 |
+
The dropout ratio for the attention probabilities.
|
128 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
129 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
130 |
+
head_dim (`int`, *optional*):
|
131 |
+
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
|
132 |
+
classifier_pooling (`str`, *optional*, defaults to `"late"`):
|
133 |
+
The pooling strategy to use for the classifier. Can be one of ['bos', 'mean', 'late'].
|
134 |
+
|
135 |
+
```python
|
136 |
+
>>> from transformers import EuroBertModel, EuroBertConfig
|
137 |
+
|
138 |
+
>>> # Initializing a EuroBert eurobert-base style configuration
|
139 |
+
>>> configuration = EuroBertConfig()
|
140 |
+
|
141 |
+
>>> # Initializing a model from the eurobert-base style configuration
|
142 |
+
>>> model = EuroBertModel(configuration)
|
143 |
+
|
144 |
+
>>> # Accessing the model configuration
|
145 |
+
>>> configuration = model.config
|
146 |
+
```"""
|
147 |
+
|
148 |
+
model_type = "eurobert"
|
149 |
+
|
150 |
+
def __init__(
|
151 |
+
self,
|
152 |
+
vocab_size=128256,
|
153 |
+
hidden_size=768,
|
154 |
+
intermediate_size=3072,
|
155 |
+
num_hidden_layers=12,
|
156 |
+
num_attention_heads=12,
|
157 |
+
num_key_value_heads=None,
|
158 |
+
hidden_act="silu",
|
159 |
+
max_position_embeddings=8192,
|
160 |
+
initializer_range=0.02,
|
161 |
+
rms_norm_eps=1e-05,
|
162 |
+
bos_token_id=128000,
|
163 |
+
eos_token_id=128001,
|
164 |
+
pad_token_id=128001,
|
165 |
+
mask_token_id=128002,
|
166 |
+
pretraining_tp=1,
|
167 |
+
tie_word_embeddings=False,
|
168 |
+
rope_theta=250000.0,
|
169 |
+
rope_scaling=None,
|
170 |
+
attention_bias=False,
|
171 |
+
attention_dropout=0.0,
|
172 |
+
mlp_bias=False,
|
173 |
+
head_dim=None,
|
174 |
+
classifier_pooling="late",
|
175 |
+
**kwargs,
|
176 |
+
):
|
177 |
+
# use_cache is specific to decoder models and should be set to False for encoder models
|
178 |
+
use_cache = kwargs.pop("use_cache", None)
|
179 |
+
if use_cache:
|
180 |
+
logger.warning_once(
|
181 |
+
"The `use_cache` argument to EuroBertConfig is set to `False`, as caching is never used for encoder models."
|
182 |
+
)
|
183 |
+
|
184 |
+
if num_key_value_heads is None:
|
185 |
+
num_key_value_heads = num_attention_heads
|
186 |
+
|
187 |
+
super().__init__(
|
188 |
+
vocab_size=vocab_size,
|
189 |
+
hidden_size=hidden_size,
|
190 |
+
intermediate_size=intermediate_size,
|
191 |
+
num_hidden_layers=num_hidden_layers,
|
192 |
+
num_attention_heads=num_attention_heads,
|
193 |
+
num_key_value_heads=num_key_value_heads,
|
194 |
+
hidden_act=hidden_act,
|
195 |
+
max_position_embeddings=max_position_embeddings,
|
196 |
+
initializer_range=initializer_range,
|
197 |
+
rms_norm_eps=rms_norm_eps,
|
198 |
+
use_cache=False,
|
199 |
+
bos_token_id=bos_token_id,
|
200 |
+
eos_token_id=eos_token_id,
|
201 |
+
pad_token_id=pad_token_id,
|
202 |
+
pretraining_tp=pretraining_tp,
|
203 |
+
tie_word_embeddings=tie_word_embeddings,
|
204 |
+
rope_theta=rope_theta,
|
205 |
+
rope_scaling=rope_scaling,
|
206 |
+
attention_bias=attention_bias,
|
207 |
+
attention_dropout=attention_dropout,
|
208 |
+
mlp_bias=mlp_bias,
|
209 |
+
head_dim=head_dim,
|
210 |
+
**kwargs,
|
211 |
+
)
|
212 |
+
self.mask_token_id = mask_token_id
|
213 |
+
self.clf_pooling = classifier_pooling
|
214 |
+
|
215 |
+
|
216 |
+
__all__ = ["EuroBertConfig"]
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 423558482
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd85103cb0c7240d129a3bf142c2b70130e269d41375579994d4101e7877d4d9
|
3 |
size 423558482
|