Taizo Kaneko
commited on
Commit
·
6ee9897
1
Parent(s):
64ec444
commit files to HF hub
Browse files- fasttext_jp_embedding.py +10 -1
- fasttext_jp_tokenizer.py +62 -11
- mecab_tokenizer.py +2 -0
fasttext_jp_embedding.py
CHANGED
|
@@ -6,11 +6,18 @@ import torch
|
|
| 6 |
|
| 7 |
|
| 8 |
class FastTextJpConfig(PretrainedConfig):
|
| 9 |
-
"""
|
| 10 |
"""
|
| 11 |
model_type = "fasttext_jp"
|
| 12 |
|
| 13 |
def __init__(self, tokenizer_class="FastTextJpTokenizer", **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
kwargs["tokenizer_class"] = tokenizer_class
|
| 15 |
super().__init__(**kwargs)
|
| 16 |
|
|
@@ -29,5 +36,7 @@ class FastTextJpModel(PreTrainedModel):
|
|
| 29 |
return self.word_embeddings(torch.tensor([0]))
|
| 30 |
|
| 31 |
|
|
|
|
|
|
|
| 32 |
FastTextJpConfig.register_for_auto_class()
|
| 33 |
FastTextJpModel.register_for_auto_class("AutoModel")
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class FastTextJpConfig(PretrainedConfig):
|
| 9 |
+
"""FastTextJpModelのConfig
|
| 10 |
"""
|
| 11 |
model_type = "fasttext_jp"
|
| 12 |
|
| 13 |
def __init__(self, tokenizer_class="FastTextJpTokenizer", **kwargs):
|
| 14 |
+
"""初期化処理
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
tokenizer_class (str, optional):
|
| 18 |
+
tokenizer_classを指定しないと、pipelineから読み込まれません。
|
| 19 |
+
config.jsonに記載されます。
|
| 20 |
+
"""
|
| 21 |
kwargs["tokenizer_class"] = tokenizer_class
|
| 22 |
super().__init__(**kwargs)
|
| 23 |
|
|
|
|
| 36 |
return self.word_embeddings(torch.tensor([0]))
|
| 37 |
|
| 38 |
|
| 39 |
+
# AutoModelに登録が必要だが、いろいろやり方が変わっているようで定まっていない。(2022/11/6)
|
| 40 |
+
# https://huggingface.co/docs/transformers/custom_models#sending-the-code-to-the-hub
|
| 41 |
FastTextJpConfig.register_for_auto_class()
|
| 42 |
FastTextJpModel.register_for_auto_class("AutoModel")
|
fasttext_jp_tokenizer.py
CHANGED
|
@@ -6,6 +6,16 @@ VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
|
| 6 |
|
| 7 |
|
| 8 |
def save_stoi(stoi: dict[str, int], vocab_file: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
with open(vocab_file, "w", encoding="utf-8") as writer:
|
| 10 |
index = 0
|
| 11 |
for token, token_index in sorted(stoi.items(), key=lambda kv: kv[1]):
|
|
@@ -18,9 +28,21 @@ def save_stoi(stoi: dict[str, int], vocab_file: str):
|
|
| 18 |
|
| 19 |
|
| 20 |
def load_stoi(vocab_file: str) -> dict[str, int]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
stoi: dict[str, int] = {}
|
|
|
|
| 22 |
with open(vocab_file, "r", encoding="utf-8") as reader:
|
| 23 |
tokens = reader.readlines()
|
|
|
|
|
|
|
| 24 |
for index, token in enumerate(tokens):
|
| 25 |
token = token.rstrip("\n")
|
| 26 |
stoi[token] = index
|
|
@@ -28,8 +50,12 @@ def load_stoi(vocab_file: str) -> dict[str, int]:
|
|
| 28 |
|
| 29 |
|
| 30 |
class FastTextJpTokenizer(MeCabTokenizer):
|
|
|
|
|
|
|
|
|
|
| 31 |
model_type = "fasttext_jp"
|
| 32 |
|
|
|
|
| 33 |
vocab_files_names = VOCAB_FILES_NAMES
|
| 34 |
|
| 35 |
def __init__(self,
|
|
@@ -53,35 +79,58 @@ class FastTextJpTokenizer(MeCabTokenizer):
|
|
| 53 |
)
|
| 54 |
self.stoi = load_stoi(vocab_file)
|
| 55 |
self.itos = dict([(ids, tok) for tok, ids in self.stoi.items()])
|
| 56 |
-
self.v_size = len(self.stoi)
|
| 57 |
-
|
| 58 |
-
# self._auto_map = {
|
| 59 |
-
# "AutoTokenizer": ["modeling.FastTextMeCabTokenizer", None]
|
| 60 |
-
# }
|
| 61 |
-
# self.init_inputs = ["vocab.txt"]
|
| 62 |
|
| 63 |
@property
|
| 64 |
def vocab_size(self) -> int:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
"""
|
| 66 |
-
|
| 67 |
-
"""
|
| 68 |
-
return self.v_size
|
| 69 |
|
| 70 |
def _convert_token_to_id(self, token: str) -> int:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
return self.stoi[token]
|
| 72 |
|
| 73 |
def _convert_id_to_token(self, index: int) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
return self.itos[index]
|
| 75 |
|
| 76 |
def save_vocabulary(self,
|
| 77 |
save_directory: str,
|
| 78 |
filename_prefix: str | None = None) -> tuple[str]:
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
if os.path.isdir(save_directory):
|
| 81 |
vocab_file = os.path.join(
|
| 82 |
save_directory,
|
| 83 |
(filename_prefix + "-" if filename_prefix else "") +
|
| 84 |
-
"
|
| 85 |
else:
|
| 86 |
vocab_file = (filename_prefix +
|
| 87 |
"-" if filename_prefix else "") + save_directory
|
|
@@ -89,4 +138,6 @@ class FastTextJpTokenizer(MeCabTokenizer):
|
|
| 89 |
return (vocab_file, )
|
| 90 |
|
| 91 |
|
|
|
|
|
|
|
| 92 |
FastTextJpTokenizer.register_for_auto_class("AutoTokenizer")
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def save_stoi(stoi: dict[str, int], vocab_file: str):
|
| 9 |
+
"""単語IDの辞書を配列にしてvocab_fileに保存します。
|
| 10 |
+
|
| 11 |
+
Args:
|
| 12 |
+
stoi (dict[str, int]): 単語IDのマッピング
|
| 13 |
+
vocab_file (str): 保存するパス
|
| 14 |
+
|
| 15 |
+
Raises:
|
| 16 |
+
ValueError: IDが途切れているとエラーを起こします。
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
with open(vocab_file, "w", encoding="utf-8") as writer:
|
| 20 |
index = 0
|
| 21 |
for token, token_index in sorted(stoi.items(), key=lambda kv: kv[1]):
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
def load_stoi(vocab_file: str) -> dict[str, int]:
|
| 31 |
+
"""ファイルから単語IDの辞書をロードします。
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
vocab_file (str): ファイルのパス
|
| 35 |
+
|
| 36 |
+
Returns:
|
| 37 |
+
dict[str, int]: 単語IDのマッピング
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
stoi: dict[str, int] = {}
|
| 41 |
+
# ファイルから読み出し
|
| 42 |
with open(vocab_file, "r", encoding="utf-8") as reader:
|
| 43 |
tokens = reader.readlines()
|
| 44 |
+
|
| 45 |
+
# 単語IDのマッピングを生成します。
|
| 46 |
for index, token in enumerate(tokens):
|
| 47 |
token = token.rstrip("\n")
|
| 48 |
stoi[token] = index
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
class FastTextJpTokenizer(MeCabTokenizer):
|
| 53 |
+
|
| 54 |
+
# Configが認識するのに必要です。
|
| 55 |
+
# https://huggingface.co/docs/transformers/custom_models#writing-a-custom-configuration
|
| 56 |
model_type = "fasttext_jp"
|
| 57 |
|
| 58 |
+
# vocab.txtを認識するのにおそらく必要。
|
| 59 |
vocab_files_names = VOCAB_FILES_NAMES
|
| 60 |
|
| 61 |
def __init__(self,
|
|
|
|
| 79 |
)
|
| 80 |
self.stoi = load_stoi(vocab_file)
|
| 81 |
self.itos = dict([(ids, tok) for tok, ids in self.stoi.items()])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
@property
|
| 84 |
def vocab_size(self) -> int:
|
| 85 |
+
"""ボキャブラリのサイズ
|
| 86 |
+
※PreTrainedTokenizerで実装すべき必須の関数。
|
| 87 |
+
|
| 88 |
+
Returns:
|
| 89 |
+
int: ボキャブラリのサイズ
|
| 90 |
"""
|
| 91 |
+
return len(self.stoi)
|
|
|
|
|
|
|
| 92 |
|
| 93 |
def _convert_token_to_id(self, token: str) -> int:
|
| 94 |
+
"""単語からID
|
| 95 |
+
※PreTrainedTokenizerで実装すべき必須の関数。
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
token (str): 単語
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
int: ID
|
| 102 |
+
"""
|
| 103 |
return self.stoi[token]
|
| 104 |
|
| 105 |
def _convert_id_to_token(self, index: int) -> str:
|
| 106 |
+
"""IDから単語
|
| 107 |
+
※PreTrainedTokenizerで実装すべき必須の関数。
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
index (int): ID
|
| 111 |
+
|
| 112 |
+
Returns:
|
| 113 |
+
str: 単語
|
| 114 |
+
"""
|
| 115 |
return self.itos[index]
|
| 116 |
|
| 117 |
def save_vocabulary(self,
|
| 118 |
save_directory: str,
|
| 119 |
filename_prefix: str | None = None) -> tuple[str]:
|
| 120 |
+
"""ボキャブラリの保存
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
save_directory (str): 保存するディレクトリ。ファイル名はvocab.txtに固定
|
| 124 |
+
filename_prefix (str | None, optional): ファイルのprefix
|
| 125 |
+
|
| 126 |
+
Returns:
|
| 127 |
+
tuple[str]: ファイル名を返す。
|
| 128 |
+
"""
|
| 129 |
if os.path.isdir(save_directory):
|
| 130 |
vocab_file = os.path.join(
|
| 131 |
save_directory,
|
| 132 |
(filename_prefix + "-" if filename_prefix else "") +
|
| 133 |
+
VOCAB_FILES_NAMES["vocab_file"])
|
| 134 |
else:
|
| 135 |
vocab_file = (filename_prefix +
|
| 136 |
"-" if filename_prefix else "") + save_directory
|
|
|
|
| 138 |
return (vocab_file, )
|
| 139 |
|
| 140 |
|
| 141 |
+
# AutoTokenizerに登録が必要だが、いろいろやり方が変わっているようで定まっていない。(2022/11/6)
|
| 142 |
+
# https://huggingface.co/docs/transformers/custom_models#sending-the-code-to-the-hub
|
| 143 |
FastTextJpTokenizer.register_for_auto_class("AutoTokenizer")
|
mecab_tokenizer.py
CHANGED
|
@@ -5,6 +5,8 @@ from transformers import PreTrainedTokenizer
|
|
| 5 |
|
| 6 |
|
| 7 |
class MeCabResult(NamedTuple):
|
|
|
|
|
|
|
| 8 |
hyosokei: str
|
| 9 |
hinshi: str
|
| 10 |
hinshi_saibunrui_1: str
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class MeCabResult(NamedTuple):
|
| 8 |
+
"""MeCab解析結果の型
|
| 9 |
+
"""
|
| 10 |
hyosokei: str
|
| 11 |
hinshi: str
|
| 12 |
hinshi_saibunrui_1: str
|