Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.19 +/- 0.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff8eef675b498a1cd0aff11cf60cc4fec2209f3a6db7a8652c2c8fd2a3088101
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a4208d87f40>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a4208d88740>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1692521248443592094,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARmkcvy4BzD690KY+LCWRP4ipqr9SaaA/um1mPjIB5L6CYy2+lC2KPpoOgTwiHuQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyy6zvxrfNj6Wg0Q/OWrNP0feN7+6yWM/pUDePtILfr8VF149MSyNv3nea78lA9A/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABGaRy/LgHMPr3Qpj52O2m/mHI9P8IeWj8sJZE/iKmqv1JpoD+fB4M/NEFzv9CWfz+6bWY+MgHkvoJjLb5hjJO+AgrTv6+SsL+ULYo+mg6BPCIe5D7BFwE/gNWNunUKyj6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-0.61098135 0.3984465 0.3258113 ]\n [ 1.1339469 -1.3332987 1.2532141 ]\n [ 0.22502795 -0.44532162 -0.1693249 ]\n [ 0.26987898 0.01575403 0.4455424 ]]",
|
34 |
+
"desired_goal": "[[-1.3998655 0.17858544 0.76763284]\n [ 1.6048042 -0.71823543 0.88979685]\n [ 0.43408695 -0.99236786 0.05422123]\n [-1.1029111 -0.9213634 1.625096 ]]",
|
35 |
+
"observation": "[[-6.1098135e-01 3.9844650e-01 3.2581130e-01 -9.1106355e-01\n 7.4002981e-01 8.5203183e-01]\n [ 1.1339469e+00 -1.3332987e+00 1.2532141e+00 1.0236701e+00\n -9.5021367e-01 9.9839497e-01]\n [ 2.2502795e-01 -4.4532162e-01 -1.6932490e-01 -2.8818038e-01\n -1.6487429e+00 -1.3794764e+00]\n [ 2.6987898e-01 1.5754033e-02 4.4554240e-01 5.0426871e-01\n -1.0821074e-03 3.9461103e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAA8j5vSVc47t5MNI8rOMNvkoHpT0ZDxk+XOSDOvbLC75Eo4s+vFuxvbEbsTy57ck9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.12196352 -0.00693847 0.02565788]\n [-0.13856381 0.08058031 0.14947166]\n [ 0.00100626 -0.13652024 0.27273 ]\n [-0.08660075 0.02161965 0.09859795]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6+kpI+W4ViMAWyUSwKMAXSUR0Cj7XEc0cfedX2UKGgGR7/LoaDPGACoaAdLA2gIR0Cj7KxChN/OdX2UKGgGR7/JWPtD2JzlaAdLA2gIR0Cj7TbVBlcydX2UKGgGR7/dNke6qbSaaAdLBGgIR0Cj7Pehf0EpdX2UKGgGR7+3VH4Glhw3aAdLAmgIR0Cj7LW56MR6dX2UKGgGR7/c7nxJ/XoUaAdLBGgIR0Cj7YNXYDkmdX2UKGgGR7/QNb1RLsa9aAdLA2gIR0Cj7UcAR02cdX2UKGgGR7+09U0elsP8aAdLAmgIR0Cj7MFFlTWHdX2UKGgGR7/Pmxt52QnyaAdLA2gIR0Cj7QguqWC3dX2UKGgGR7/I6z3RG+bmaAdLA2gIR0Cj7ZOS4e90dX2UKGgGR7/QQ1JlJ6IFaAdLA2gIR0Cj7M8M3IdVdX2UKGgGR7/WmqHXVbzLaAdLBGgIR0Cj7VmfXf65dX2UKGgGR7/R8NhE0BOpaAdLA2gIR0Cj7RYbS7XhdX2UKGgGR7+gDs+mm+CcaAdLAWgIR0Cj7NQLmZE2dX2UKGgGR7/Vr9VFQVKxaAdLBGgIR0Cj7ajurp7kdX2UKGgGR7++g3974SHuaAdLAmgIR0Cj7OA+Y+jedX2UKGgGR7/UTsIE8q4IaAdLA2gIR0Cj7SdhiLEUdX2UKGgGR7/Uk8ifQKKHaAdLBGgIR0Cj7W++mFajdX2UKGgGR7/F8b70nPVvaAdLA2gIR0Cj7becx0uEdX2UKGgGR7/U66asp5NXaAdLA2gIR0Cj7O6Yu01JdX2UKGgGR7++mdiDujREaAdLAmgIR0Cj7XtL+PzWdX2UKGgGR7/cSDyvs7dSaAdLBGgIR0Cj7TvldTo/dX2UKGgGR7/VwfQrtmcwaAdLA2gIR0Cj7cdA5aNddX2UKGgGR7/QQoCuEEkjaAdLA2gIR0Cj7P4wAU+LdX2UKGgGR7/hJhnanJkoaAdLBGgIR0Cj7Yy+xnnMdX2UKGgGR7/WMVk+X7cgaAdLBGgIR0Cj7U/kWAPNdX2UKGgGR7/PYs/Y8Md+aAdLA2gIR0Cj7Q3nhbW3dX2UKGgGR7/VctoSL61taAdLBGgIR0Cj7dt7jT8YdX2UKGgGR7/Fv3rUsnRcaAdLA2gIR0Cj7ZyN4qwydX2UKGgGR7/Ikyk9ECvHaAdLA2gIR0Cj7Rt65XlsdX2UKGgGR7/QsYEW69TQaAdLA2gIR0Cj7ekiliz+dX2UKGgGR7/hdJ8OTaCdaAdLBGgIR0Cj7WKRdQfqdX2UKGgGR7/Rg/C66J66aAdLA2gIR0Cj7a0Moc7ydX2UKGgGR7+op2ECeVcEaAdLAWgIR0Cj7Wl6Rhc8dX2UKGgGR7/DJrcj7hvSaAdLAmgIR0Cj7XH8TBZZdX2UKGgGR7/VNahYeT3ZaAdLBGgIR0Cj7S/su3+ddX2UKGgGR7/YLsrupjtpaAdLBGgIR0Cj7f2rXDm9dX2UKGgGR7/VrnkkrwvyaAdLA2gIR0Cj7bqSgXdkdX2UKGgGR7+4UYbbUPQOaAdLAmgIR0Cj7Xsajvd/dX2UKGgGR7/BlFtsN2C/aAdLAmgIR0Cj7TkTpPhydX2UKGgGR7/D/kvK2a2GaAdLAmgIR0Cj7YYOlO45dX2UKGgGR7/XO/cnE2pAaAdLBGgIR0Cj7hFsguAadX2UKGgGR7/bbUPQOWjXaAdLBGgIR0Cj7c5byH2zdX2UKGgGR7+yPBBRhttRaAdLAmgIR0Cj7Y70OEuhdX2UKGgGR7/XLeANG3F2aAdLBGgIR0Cj7Uz0g8r7dX2UKGgGR7/CP/aQFLWaaAdLAmgIR0Cj7hqIJqqPdX2UKGgGR7/NVDrqt5lfaAdLA2gIR0Cj7d3Nke6qdX2UKGgGR7+/UtqYZ2pyaAdLAmgIR0Cj7ZpFb3XadX2UKGgGR7/TrFwT/Q0GaAdLA2gIR0Cj7VyFoL5RdX2UKGgGR7+vOlfqoqCpaAdLAmgIR0Cj7aNGd7OWdX2UKGgGR7/dGIbfgrH3aAdLBGgIR0Cj7i6UiY9gdX2UKGgGR7/NO4XoC+10aAdLA2gIR0Cj7et3wCr+dX2UKGgGR7+4/Tspobn6aAdLAmgIR0Cj7WW6ClJpdX2UKGgGR7+5gb6xgRbsaAdLAmgIR0Cj7axMvh60dX2UKGgGR7+WEkB0ZFXraAdLAWgIR0Cj7WpJoTPCdX2UKGgGR7/Ks3AEdNnHaAdLA2gIR0Cj7j5QHiWFdX2UKGgGR7+1GH58BuGcaAdLAmgIR0Cj7XWaUiY+dX2UKGgGR7/YG9Htnf2saAdLBGgIR0Cj7f/3nIQwdX2UKGgGR7/KwPiDM/yHaAdLA2gIR0Cj7byAhB7edX2UKGgGR7+jCgsbvPToaAdLAWgIR0Cj7XquKXOXdX2UKGgGR7/Pbj94u9OAaAdLA2gIR0Cj7kyQgcLjdX2UKGgGR7+7gP3BYV7AaAdLAmgIR0Cj7gmVJL/TdX2UKGgGR7+WicoYvWYnaAdLAWgIR0Cj7hBTXJ5ndX2UKGgGR7/TlC1JDmbLaAdLA2gIR0Cj7YqsMiKSdX2UKGgGR7/XxvNu+AVgaAdLBGgIR0Cj7dFBppN9dX2UKGgGR7/bAJswco6TaAdLBGgIR0Cj7mDeCTUzdX2UKGgGR7/RjTrmhdt3aAdLA2gIR0Cj7h3U6PsBdX2UKGgGR7+56AvtdAxBaAdLAmgIR0Cj7dpBw++udX2UKGgGR7/Z8Aq/dqL1aAdLBGgIR0Cj7Zx5s0pFdX2UKGgGR7/Atp22Xsw+aAdLAmgIR0Cj7eVEuxr0dX2UKGgGR7/UD2alUIcBaAdLA2gIR0Cj7i2gezUrdX2UKGgGR7/QfqX4TK1YaAdLBGgIR0Cj7nV8b70ndX2UKGgGR7+Wr0aqCHymaAdLAWgIR0Cj7jJjlPrOdX2UKGgGR7/UWpqASWZ7aAdLA2gIR0Cj7aybH6uXdX2UKGgGR7/XmknCwbEQaAdLA2gIR0Cj7fMXJo0zdX2UKGgGR7+3p8neBQN1aAdLAmgIR0Cj7jsnJDE4dX2UKGgGR7+VEE1VHWjHaAdLAWgIR0Cj7feK0lZ6dX2UKGgGR7+0uoP07KaHaAdLAmgIR0Cj7bWAXl8xdX2UKGgGR7/WFJQLux8laAdLBGgIR0Cj7omOU+s6dX2UKGgGR7/PiBoVVPvbaAdLA2gIR0Cj7krRa5f/dX2UKGgGR7/EXO4XoC+2aAdLA2gIR0Cj7gdIXj2jdX2UKGgGR7+z2oNutOmBaAdLAmgIR0Cj7pLk8zRAdX2UKGgGR7+MlXzUZvUCaAdLAWgIR0Cj7k/NiYsvdX2UKGgGR7/WBpHqeK8+aAdLBGgIR0Cj7coAXEZSdX2UKGgGR7+0/qxC6YmcaAdLAmgIR0Cj7p3wLE1mdX2UKGgGR7/A1JlJ6IFeaAdLAmgIR0Cj7lrhzeXSdX2UKGgGR7/I2fChvitJaAdLA2gIR0Cj7hdXDFZQdX2UKGgGR7/D4RmK64DtaAdLA2gIR0Cj7dnRkVesdX2UKGgGR7+974SHuZ1FaAdLAmgIR0Cj7iBciW3SdX2UKGgGR7/PqTKT0QK8aAdLA2gIR0Cj7qwgLZzxdX2UKGgGR7/UTDO1OTJRaAdLA2gIR0Cj7mkGRmsedX2UKGgGR7/NILgGbCrMaAdLA2gIR0Cj7edZid8RdX2UKGgGR7/B7rs0HhS+aAdLAmgIR0Cj7rcuanaWdX2UKGgGR7/D6fJ3gUDdaAdLAmgIR0Cj7nQjlgc+dX2UKGgGR7/VIVM23rleaAdLA2gIR0Cj7jCSaEzwdX2UKGgGR7/AyO7xusLfaAdLAmgIR0Cj7nyon8badX2UKGgGR7/UJvYODrZ8aAdLA2gIR0Cj7fdgfEGadX2UKGgGR7/F1VYISlFdaAdLA2gIR0Cj7sUAksz3dX2UKGgGR7/IyuZCv5gxaAdLA2gIR0Cj7j6F/QSjdX2UKGgGR7+w6gdwNsnBaAdLAmgIR0Cj7gD2JzkqdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8016f2f81052ad5f52289afe4f526cb3b95de43a07da0e7544f1be2c04d1de77
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c47fb5fb4c5742c0856bd67ddc091490f8add3c223ba80f7489243b352ce1266
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.0
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a4208d87f40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a4208d88740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692521248443592094, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARmkcvy4BzD690KY+LCWRP4ipqr9SaaA/um1mPjIB5L6CYy2+lC2KPpoOgTwiHuQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyy6zvxrfNj6Wg0Q/OWrNP0feN7+6yWM/pUDePtILfr8VF149MSyNv3nea78lA9A/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABGaRy/LgHMPr3Qpj52O2m/mHI9P8IeWj8sJZE/iKmqv1JpoD+fB4M/NEFzv9CWfz+6bWY+MgHkvoJjLb5hjJO+AgrTv6+SsL+ULYo+mg6BPCIe5D7BFwE/gNWNunUKyj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.61098135 0.3984465 0.3258113 ]\n [ 1.1339469 -1.3332987 1.2532141 ]\n [ 0.22502795 -0.44532162 -0.1693249 ]\n [ 0.26987898 0.01575403 0.4455424 ]]", "desired_goal": "[[-1.3998655 0.17858544 0.76763284]\n [ 1.6048042 -0.71823543 0.88979685]\n [ 0.43408695 -0.99236786 0.05422123]\n [-1.1029111 -0.9213634 1.625096 ]]", "observation": "[[-6.1098135e-01 3.9844650e-01 3.2581130e-01 -9.1106355e-01\n 7.4002981e-01 8.5203183e-01]\n [ 1.1339469e+00 -1.3332987e+00 1.2532141e+00 1.0236701e+00\n -9.5021367e-01 9.9839497e-01]\n [ 2.2502795e-01 -4.4532162e-01 -1.6932490e-01 -2.8818038e-01\n -1.6487429e+00 -1.3794764e+00]\n [ 2.6987898e-01 1.5754033e-02 4.4554240e-01 5.0426871e-01\n -1.0821074e-03 3.9461103e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAA8j5vSVc47t5MNI8rOMNvkoHpT0ZDxk+XOSDOvbLC75Eo4s+vFuxvbEbsTy57ck9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12196352 -0.00693847 0.02565788]\n [-0.13856381 0.08058031 0.14947166]\n [ 0.00100626 -0.13652024 0.27273 ]\n [-0.08660075 0.02161965 0.09859795]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6+kpI+W4ViMAWyUSwKMAXSUR0Cj7XEc0cfedX2UKGgGR7/LoaDPGACoaAdLA2gIR0Cj7KxChN/OdX2UKGgGR7/JWPtD2JzlaAdLA2gIR0Cj7TbVBlcydX2UKGgGR7/dNke6qbSaaAdLBGgIR0Cj7Pehf0EpdX2UKGgGR7+3VH4Glhw3aAdLAmgIR0Cj7LW56MR6dX2UKGgGR7/c7nxJ/XoUaAdLBGgIR0Cj7YNXYDkmdX2UKGgGR7/QNb1RLsa9aAdLA2gIR0Cj7UcAR02cdX2UKGgGR7+09U0elsP8aAdLAmgIR0Cj7MFFlTWHdX2UKGgGR7/Pmxt52QnyaAdLA2gIR0Cj7QguqWC3dX2UKGgGR7/I6z3RG+bmaAdLA2gIR0Cj7ZOS4e90dX2UKGgGR7/QQ1JlJ6IFaAdLA2gIR0Cj7M8M3IdVdX2UKGgGR7/WmqHXVbzLaAdLBGgIR0Cj7VmfXf65dX2UKGgGR7/R8NhE0BOpaAdLA2gIR0Cj7RYbS7XhdX2UKGgGR7+gDs+mm+CcaAdLAWgIR0Cj7NQLmZE2dX2UKGgGR7/Vr9VFQVKxaAdLBGgIR0Cj7ajurp7kdX2UKGgGR7++g3974SHuaAdLAmgIR0Cj7OA+Y+jedX2UKGgGR7/UTsIE8q4IaAdLA2gIR0Cj7SdhiLEUdX2UKGgGR7/Uk8ifQKKHaAdLBGgIR0Cj7W++mFajdX2UKGgGR7/F8b70nPVvaAdLA2gIR0Cj7becx0uEdX2UKGgGR7/U66asp5NXaAdLA2gIR0Cj7O6Yu01JdX2UKGgGR7++mdiDujREaAdLAmgIR0Cj7XtL+PzWdX2UKGgGR7/cSDyvs7dSaAdLBGgIR0Cj7TvldTo/dX2UKGgGR7/VwfQrtmcwaAdLA2gIR0Cj7cdA5aNddX2UKGgGR7/QQoCuEEkjaAdLA2gIR0Cj7P4wAU+LdX2UKGgGR7/hJhnanJkoaAdLBGgIR0Cj7Yy+xnnMdX2UKGgGR7/WMVk+X7cgaAdLBGgIR0Cj7U/kWAPNdX2UKGgGR7/PYs/Y8Md+aAdLA2gIR0Cj7Q3nhbW3dX2UKGgGR7/VctoSL61taAdLBGgIR0Cj7dt7jT8YdX2UKGgGR7/Fv3rUsnRcaAdLA2gIR0Cj7ZyN4qwydX2UKGgGR7/Ikyk9ECvHaAdLA2gIR0Cj7Rt65XlsdX2UKGgGR7/QsYEW69TQaAdLA2gIR0Cj7ekiliz+dX2UKGgGR7/hdJ8OTaCdaAdLBGgIR0Cj7WKRdQfqdX2UKGgGR7/Rg/C66J66aAdLA2gIR0Cj7a0Moc7ydX2UKGgGR7+op2ECeVcEaAdLAWgIR0Cj7Wl6Rhc8dX2UKGgGR7/DJrcj7hvSaAdLAmgIR0Cj7XH8TBZZdX2UKGgGR7/VNahYeT3ZaAdLBGgIR0Cj7S/su3+ddX2UKGgGR7/YLsrupjtpaAdLBGgIR0Cj7f2rXDm9dX2UKGgGR7/VrnkkrwvyaAdLA2gIR0Cj7bqSgXdkdX2UKGgGR7+4UYbbUPQOaAdLAmgIR0Cj7Xsajvd/dX2UKGgGR7/BlFtsN2C/aAdLAmgIR0Cj7TkTpPhydX2UKGgGR7/D/kvK2a2GaAdLAmgIR0Cj7YYOlO45dX2UKGgGR7/XO/cnE2pAaAdLBGgIR0Cj7hFsguAadX2UKGgGR7/bbUPQOWjXaAdLBGgIR0Cj7c5byH2zdX2UKGgGR7+yPBBRhttRaAdLAmgIR0Cj7Y70OEuhdX2UKGgGR7/XLeANG3F2aAdLBGgIR0Cj7Uz0g8r7dX2UKGgGR7/CP/aQFLWaaAdLAmgIR0Cj7hqIJqqPdX2UKGgGR7/NVDrqt5lfaAdLA2gIR0Cj7d3Nke6qdX2UKGgGR7+/UtqYZ2pyaAdLAmgIR0Cj7ZpFb3XadX2UKGgGR7/TrFwT/Q0GaAdLA2gIR0Cj7VyFoL5RdX2UKGgGR7+vOlfqoqCpaAdLAmgIR0Cj7aNGd7OWdX2UKGgGR7/dGIbfgrH3aAdLBGgIR0Cj7i6UiY9gdX2UKGgGR7/NO4XoC+10aAdLA2gIR0Cj7et3wCr+dX2UKGgGR7+4/Tspobn6aAdLAmgIR0Cj7WW6ClJpdX2UKGgGR7+5gb6xgRbsaAdLAmgIR0Cj7axMvh60dX2UKGgGR7+WEkB0ZFXraAdLAWgIR0Cj7WpJoTPCdX2UKGgGR7/Ks3AEdNnHaAdLA2gIR0Cj7j5QHiWFdX2UKGgGR7+1GH58BuGcaAdLAmgIR0Cj7XWaUiY+dX2UKGgGR7/YG9Htnf2saAdLBGgIR0Cj7f/3nIQwdX2UKGgGR7/KwPiDM/yHaAdLA2gIR0Cj7byAhB7edX2UKGgGR7+jCgsbvPToaAdLAWgIR0Cj7XquKXOXdX2UKGgGR7/Pbj94u9OAaAdLA2gIR0Cj7kyQgcLjdX2UKGgGR7+7gP3BYV7AaAdLAmgIR0Cj7gmVJL/TdX2UKGgGR7+WicoYvWYnaAdLAWgIR0Cj7hBTXJ5ndX2UKGgGR7/TlC1JDmbLaAdLA2gIR0Cj7YqsMiKSdX2UKGgGR7/XxvNu+AVgaAdLBGgIR0Cj7dFBppN9dX2UKGgGR7/bAJswco6TaAdLBGgIR0Cj7mDeCTUzdX2UKGgGR7/RjTrmhdt3aAdLA2gIR0Cj7h3U6PsBdX2UKGgGR7+56AvtdAxBaAdLAmgIR0Cj7dpBw++udX2UKGgGR7/Z8Aq/dqL1aAdLBGgIR0Cj7Zx5s0pFdX2UKGgGR7/Atp22Xsw+aAdLAmgIR0Cj7eVEuxr0dX2UKGgGR7/UD2alUIcBaAdLA2gIR0Cj7i2gezUrdX2UKGgGR7/QfqX4TK1YaAdLBGgIR0Cj7nV8b70ndX2UKGgGR7+Wr0aqCHymaAdLAWgIR0Cj7jJjlPrOdX2UKGgGR7/UWpqASWZ7aAdLA2gIR0Cj7aybH6uXdX2UKGgGR7/XmknCwbEQaAdLA2gIR0Cj7fMXJo0zdX2UKGgGR7+3p8neBQN1aAdLAmgIR0Cj7jsnJDE4dX2UKGgGR7+VEE1VHWjHaAdLAWgIR0Cj7feK0lZ6dX2UKGgGR7+0uoP07KaHaAdLAmgIR0Cj7bWAXl8xdX2UKGgGR7/WFJQLux8laAdLBGgIR0Cj7omOU+s6dX2UKGgGR7/PiBoVVPvbaAdLA2gIR0Cj7krRa5f/dX2UKGgGR7/EXO4XoC+2aAdLA2gIR0Cj7gdIXj2jdX2UKGgGR7+z2oNutOmBaAdLAmgIR0Cj7pLk8zRAdX2UKGgGR7+MlXzUZvUCaAdLAWgIR0Cj7k/NiYsvdX2UKGgGR7/WBpHqeK8+aAdLBGgIR0Cj7coAXEZSdX2UKGgGR7+0/qxC6YmcaAdLAmgIR0Cj7p3wLE1mdX2UKGgGR7/A1JlJ6IFeaAdLAmgIR0Cj7lrhzeXSdX2UKGgGR7/I2fChvitJaAdLA2gIR0Cj7hdXDFZQdX2UKGgGR7/D4RmK64DtaAdLA2gIR0Cj7dnRkVesdX2UKGgGR7+974SHuZ1FaAdLAmgIR0Cj7iBciW3SdX2UKGgGR7/PqTKT0QK8aAdLA2gIR0Cj7qwgLZzxdX2UKGgGR7/UTDO1OTJRaAdLA2gIR0Cj7mkGRmsedX2UKGgGR7/NILgGbCrMaAdLA2gIR0Cj7edZid8RdX2UKGgGR7/B7rs0HhS+aAdLAmgIR0Cj7rcuanaWdX2UKGgGR7/D6fJ3gUDdaAdLAmgIR0Cj7nQjlgc+dX2UKGgGR7/VIVM23rleaAdLA2gIR0Cj7jCSaEzwdX2UKGgGR7/AyO7xusLfaAdLAmgIR0Cj7nyon8badX2UKGgGR7/UJvYODrZ8aAdLA2gIR0Cj7fdgfEGadX2UKGgGR7/F1VYISlFdaAdLA2gIR0Cj7sUAksz3dX2UKGgGR7/IyuZCv5gxaAdLA2gIR0Cj7j6F/QSjdX2UKGgGR7+w6gdwNsnBaAdLAmgIR0Cj7gD2JzkqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.0", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (655 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.19318454517051578, "std_reward": 0.1037815561495349, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-20T09:30:43.406650"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05d72775001c904dc29b291cdd55b906bc8f1a45b563fdde68be4d4aa47d4580
|
3 |
+
size 2623
|