Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,112 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# parseny/TinyLlama1.1B-Nvidia-QA
|
2 |
+
|
3 |
+
This repository contains the parseny/TinyLlama1.1B-Nvidia-QA model, a fine-tuned version of the TinyLlama language model designed for generating answers on NVIDIA documentation. The model was fine-tuned on a [dataset of question-answer pairs](https://www.kaggle.com/datasets/gondimalladeepesh/nvidia-documentation-question-and-answer-pairs) and evaluated using several metrics to ensure high performance.
|
4 |
+
|
5 |
+
## Model Details
|
6 |
+
|
7 |
+
- **Model ID**: parseny/TinyLlama1.1B-Nvidia-QA
|
8 |
+
- **Model Type**: Causal Language Model
|
9 |
+
- **Base Model**: TinyLlama-1.1B
|
10 |
+
- **Quantization**: 4-bit quantization using BitsAndBytes
|
11 |
+
- **Fine-Tuning Framework**: Hugging Face Transformers and PEFT
|
12 |
+
|
13 |
+
## Training Configuration
|
14 |
+
|
15 |
+
The model was fine-tuned with the following training arguments:
|
16 |
+
|
17 |
+
```python
|
18 |
+
training_arguments = TrainingArguments(
|
19 |
+
output_dir="./logs",
|
20 |
+
per_device_train_batch_size=16,
|
21 |
+
gradient_accumulation_steps=4,
|
22 |
+
optim="paged_adamw_32bit",
|
23 |
+
fp16=True,
|
24 |
+
evaluation_strategy="epoch",
|
25 |
+
save_strategy="epoch",
|
26 |
+
num_train_epochs=5,
|
27 |
+
load_best_model_at_end=True,
|
28 |
+
learning_rate=5e-4
|
29 |
+
)
|
30 |
+
```
|
31 |
+
|
32 |
+
## Evaluation Metrics
|
33 |
+
|
34 |
+
The performance of the fine-tuned model was evaluated using the following metrics:
|
35 |
+
|
36 |
+
- **ROUGE Scores**:
|
37 |
+
- **ROUGE-1**: 0.3122
|
38 |
+
- **ROUGE-2**: 0.1228
|
39 |
+
- **ROUGE-L**: 0.2599
|
40 |
+
- **ROUGE-Lsum**: 0.2600
|
41 |
+
|
42 |
+
- **METEOR Score**: 0.27
|
43 |
+
|
44 |
+
These scores indicate that the model performs reasonably well in generating responses that are lexically and semantically similar to the reference answers.
|
45 |
+
|
46 |
+
## Model Usage
|
47 |
+
|
48 |
+
You can use this model to generate responses for chat-based applications. Below is an example of how to load and use the model for generating responses:
|
49 |
+
|
50 |
+
```python
|
51 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
52 |
+
from peft import PeftModel, PeftConfig
|
53 |
+
import torch
|
54 |
+
|
55 |
+
# Load the model and tokenizer
|
56 |
+
model_id = "parseny/TinyLlama1.1B-Nvidia-QA"
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
59 |
+
model.to('cuda')
|
60 |
+
|
61 |
+
# Generate a response
|
62 |
+
generation_config = GenerationConfig(
|
63 |
+
penalty_alpha=0.6, do_sample=True,
|
64 |
+
top_k=5, temperature=0.5, repetition_penalty=1.2,
|
65 |
+
max_new_tokens=47, pad_token_id=tokenizer.eos_token_id
|
66 |
+
)
|
67 |
+
|
68 |
+
def generate_response(prompt):
|
69 |
+
try:
|
70 |
+
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
|
71 |
+
outputs = model.generate(**inputs, generation_config=generation_config)
|
72 |
+
generated_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
73 |
+
start_idx = generated_response.find('<|im_start|>assistant\n') + len('<|im_start|>assistant\n')
|
74 |
+
generated_response = generated_response[start_idx:]
|
75 |
+
end_idx = generated_response.find('<|im_end|>')
|
76 |
+
generated_response = generated_response[:end_idx]
|
77 |
+
return generated_response
|
78 |
+
except:
|
79 |
+
return ""
|
80 |
+
|
81 |
+
# Example usage
|
82 |
+
prompt = "What was the purpose of setting up the DGX RAID memory in version 2 of the pipeline?"
|
83 |
+
response = generate_response(prompt)
|
84 |
+
print(response)
|
85 |
+
```
|
86 |
+
|
87 |
+
## Training Procedure
|
88 |
+
|
89 |
+
The model was fine-tuned using a dataset of question-answer pairs. The fine-tuning process involved:
|
90 |
+
|
91 |
+
1. Loading the pre-trained TinyLlama-1.1B model.
|
92 |
+
2. Quantizing the model to 4-bit precision to reduce memory usage and increase inference speed.
|
93 |
+
3. Fine-tuning the model using the `SFTTrainer` with the specified training arguments.
|
94 |
+
4. Evaluating the model at the end of each epoch and saving the best-performing model.
|
95 |
+
|
96 |
+
## How to Cite
|
97 |
+
|
98 |
+
If you use this model in your research or applications, please cite it as follows:
|
99 |
+
|
100 |
+
```
|
101 |
+
@misc{parseny-tinyllama-nvidia-qa,
|
102 |
+
author = {Your Name},
|
103 |
+
title = {TinyLlama1.1B-Nvidia-QA: NVIDIA documnetation helper},
|
104 |
+
year = {2024},
|
105 |
+
publisher = {Hugging Face},
|
106 |
+
url = {https://huggingface.co/parseny/TinyLlama1.1B-Nvidia-QA},
|
107 |
+
}
|
108 |
+
```
|
109 |
+
|
110 |
+
## Contact
|
111 |
+
|
112 |
+
For any questions or issues, please open an issue on the Hugging Face model repository.
|