Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOn Strengthening and Defending Graph Reconstruction Attack with Markov Chain Approximation
Although powerful graph neural networks (GNNs) have boosted numerous real-world applications, the potential privacy risk is still underexplored. To close this gap, we perform the first comprehensive study of graph reconstruction attack that aims to reconstruct the adjacency of nodes. We show that a range of factors in GNNs can lead to the surprising leakage of private links. Especially by taking GNNs as a Markov chain and attacking GNNs via a flexible chain approximation, we systematically explore the underneath principles of graph reconstruction attack, and propose two information theory-guided mechanisms: (1) the chain-based attack method with adaptive designs for extracting more private information; (2) the chain-based defense method that sharply reduces the attack fidelity with moderate accuracy loss. Such two objectives disclose a critical belief that to recover better in attack, you must extract more multi-aspect knowledge from the trained GNN; while to learn safer for defense, you must forget more link-sensitive information in training GNNs. Empirically, we achieve state-of-the-art results on six datasets and three common GNNs. The code is publicly available at: https://github.com/tmlr-group/MC-GRA.
All You Need Is Hashing: Defending Against Data Reconstruction Attack in Vertical Federated Learning
Vertical federated learning is a trending solution for multi-party collaboration in training machine learning models. Industrial frameworks adopt secure multi-party computation methods such as homomorphic encryption to guarantee data security and privacy. However, a line of work has revealed that there are still leakage risks in VFL. The leakage is caused by the correlation between the intermediate representations and the raw data. Due to the powerful approximation ability of deep neural networks, an adversary can capture the correlation precisely and reconstruct the data. To deal with the threat of the data reconstruction attack, we propose a hashing-based VFL framework, called HashVFL, to cut off the reversibility directly. The one-way nature of hashing allows our framework to block all attempts to recover data from hash codes. However, integrating hashing also brings some challenges, e.g., the loss of information. This paper proposes and addresses three challenges to integrating hashing: learnability, bit balance, and consistency. Experimental results demonstrate HashVFL's efficiency in keeping the main task's performance and defending against data reconstruction attacks. Furthermore, we also analyze its potential value in detecting abnormal inputs. In addition, we conduct extensive experiments to prove HashVFL's generalization in various settings. In summary, HashVFL provides a new perspective on protecting multi-party's data security and privacy in VFL. We hope our study can attract more researchers to expand the application domains of HashVFL.
Just a Simple Transformation is Enough for Data Protection in Vertical Federated Learning
Vertical Federated Learning (VFL) aims to enable collaborative training of deep learning models while maintaining privacy protection. However, the VFL procedure still has components that are vulnerable to attacks by malicious parties. In our work, we consider feature reconstruction attacks, a common risk targeting input data compromise. We theoretically claim that feature reconstruction attacks cannot succeed without knowledge of the prior distribution on data. Consequently, we demonstrate that even simple model architecture transformations can significantly impact the protection of input data during VFL. Confirming these findings with experimental results, we show that MLP-based models are resistant to state-of-the-art feature reconstruction attacks.
Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis Testing: A Lesson From Fano
Differential privacy (DP) is by far the most widely accepted framework for mitigating privacy risks in machine learning. However, exactly how small the privacy parameter epsilon needs to be to protect against certain privacy risks in practice is still not well-understood. In this work, we study data reconstruction attacks for discrete data and analyze it under the framework of multiple hypothesis testing. We utilize different variants of the celebrated Fano's inequality to derive upper bounds on the inferential power of a data reconstruction adversary when the model is trained differentially privately. Importantly, we show that if the underlying private data takes values from a set of size M, then the target privacy parameter epsilon can be O(log M) before the adversary gains significant inferential power. Our analysis offers theoretical evidence for the empirical effectiveness of DP against data reconstruction attacks even at relatively large values of epsilon.
Person Re-Identification without Identification via Event Anonymization
Wide-scale use of visual surveillance in public spaces puts individual privacy at stake while increasing resource consumption (energy, bandwidth, and computation). Neuromorphic vision sensors (event-cameras) have been recently considered a valid solution to the privacy issue because they do not capture detailed RGB visual information of the subjects in the scene. However, recent deep learning architectures have been able to reconstruct images from event cameras with high fidelity, reintroducing a potential threat to privacy for event-based vision applications. In this paper, we aim to anonymize event-streams to protect the identity of human subjects against such image reconstruction attacks. To achieve this, we propose an end-to-end network architecture jointly optimized for the twofold objective of preserving privacy and performing a downstream task such as person ReId. Our network learns to scramble events, enforcing the degradation of images recovered from the privacy attacker. In this work, we also bring to the community the first ever event-based person ReId dataset gathered to evaluate the performance of our approach. We validate our approach with extensive experiments and report results on the synthetic event data simulated from the publicly available SoftBio dataset and our proposed Event-ReId dataset.
Analyzing Leakage of Personally Identifiable Information in Language Models
Language Models (LMs) have been shown to leak information about training data through sentence-level membership inference and reconstruction attacks. Understanding the risk of LMs leaking Personally Identifiable Information (PII) has received less attention, which can be attributed to the false assumption that dataset curation techniques such as scrubbing are sufficient to prevent PII leakage. Scrubbing techniques reduce but do not prevent the risk of PII leakage: in practice scrubbing is imperfect and must balance the trade-off between minimizing disclosure and preserving the utility of the dataset. On the other hand, it is unclear to which extent algorithmic defenses such as differential privacy, designed to guarantee sentence- or user-level privacy, prevent PII disclosure. In this work, we introduce rigorous game-based definitions for three types of PII leakage via black-box extraction, inference, and reconstruction attacks with only API access to an LM. We empirically evaluate the attacks against GPT-2 models fine-tuned with and without defenses in three domains: case law, health care, and e-mails. Our main contributions are (i) novel attacks that can extract up to 10times more PII sequences than existing attacks, (ii) showing that sentence-level differential privacy reduces the risk of PII disclosure but still leaks about 3% of PII sequences, and (iii) a subtle connection between record-level membership inference and PII reconstruction. Code to reproduce all experiments in the paper is available at https://github.com/microsoft/analysing_pii_leakage.
IPProtect: protecting the intellectual property of visual datasets during data valuation
Data trading is essential to accelerate the development of data-driven machine learning pipelines. The central problem in data trading is to estimate the utility of a seller's dataset with respect to a given buyer's machine learning task, also known as data valuation. Typically, data valuation requires one or more participants to share their raw dataset with others, leading to potential risks of intellectual property (IP) violations. In this paper, we tackle the novel task of preemptively protecting the IP of datasets that need to be shared during data valuation. First, we identify and formalize two kinds of novel IP risks in visual datasets: data-item (image) IP and statistical (dataset) IP. Then, we propose a novel algorithm to convert the raw dataset into a sanitized version, that provides resistance to IP violations, while at the same time allowing accurate data valuation. The key idea is to limit the transfer of information from the raw dataset to the sanitized dataset, thereby protecting against potential intellectual property violations. Next, we analyze our method for the likely existence of a solution and immunity against reconstruction attacks. Finally, we conduct extensive experiments on three computer vision datasets demonstrating the advantages of our method in comparison to other baselines.
SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning
Deploying machine learning models in production may allow adversaries to infer sensitive information about training data. There is a vast literature analyzing different types of inference risks, ranging from membership inference to reconstruction attacks. Inspired by the success of games (i.e., probabilistic experiments) to study security properties in cryptography, some authors describe privacy inference risks in machine learning using a similar game-based style. However, adversary capabilities and goals are often stated in subtly different ways from one presentation to the other, which makes it hard to relate and compose results. In this paper, we present a game-based framework to systematize the body of knowledge on privacy inference risks in machine learning. We use this framework to (1) provide a unifying structure for definitions of inference risks, (2) formally establish known relations among definitions, and (3) to uncover hitherto unknown relations that would have been difficult to spot otherwise.
Confidential Prompting: Protecting User Prompts from Cloud LLM Providers
Our work tackles the challenge of securing user inputs in cloud-hosted large language model (LLM) serving while ensuring output invariance, model confidentiality, and compute efficiency. We introduce secure multi-party decoding (SMD), which leverages confidential computing to confine user prompts to a trusted execution environment (TEE), namely a confidential virtual machine (CVM), while allowing service providers to generate tokens efficiently. We also introduce a novel cryptographic method, prompt obfuscation (PO), to ensure robustness against reconstruction attacks on SMD. We demonstrate that our approach preserves both prompt confidentiality and LLM serving efficiency. Our solution can enable privacy-preserving cloud LLM serving that handles sensitive prompts, such as clinical records, financial data, and personal information.
Evaluating Privacy-Utility Tradeoffs in Synthetic Smart Grid Data
The widespread adoption of dynamic Time-of-Use (dToU) electricity tariffs requires accurately identifying households that would benefit from such pricing structures. However, the use of real consumption data poses serious privacy concerns, motivating the adoption of synthetic alternatives. In this study, we conduct a comparative evaluation of four synthetic data generation methods, Wasserstein-GP Generative Adversarial Networks (WGAN), Conditional Tabular GAN (CTGAN), Diffusion Models, and Gaussian noise augmentation, under different synthetic regimes. We assess classification utility, distribution fidelity, and privacy leakage. Our results show that architectural design plays a key role: diffusion models achieve the highest utility (macro-F1 up to 88.2%), while CTGAN provide the strongest resistance to reconstruction attacks. These findings highlight the potential of structured generative models for developing privacy-preserving, data-driven energy systems.
Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?
Hand-crafted image quality metrics, such as PSNR and SSIM, are commonly used to evaluate model privacy risk under reconstruction attacks. Under these metrics, reconstructed images that are determined to resemble the original one generally indicate more privacy leakage. Images determined as overall dissimilar, on the other hand, indicate higher robustness against attack. However, there is no guarantee that these metrics well reflect human opinions, which, as a judgement for model privacy leakage, are more trustworthy. In this paper, we comprehensively study the faithfulness of these hand-crafted metrics to human perception of privacy information from the reconstructed images. On 5 datasets ranging from natural images, faces, to fine-grained classes, we use 4 existing attack methods to reconstruct images from many different classification models and, for each reconstructed image, we ask multiple human annotators to assess whether this image is recognizable. Our studies reveal that the hand-crafted metrics only have a weak correlation with the human evaluation of privacy leakage and that even these metrics themselves often contradict each other. These observations suggest risks of current metrics in the community. To address this potential risk, we propose a learning-based measure called SemSim to evaluate the Semantic Similarity between the original and reconstructed images. SemSim is trained with a standard triplet loss, using an original image as an anchor, one of its recognizable reconstructed images as a positive sample, and an unrecognizable one as a negative. By training on human annotations, SemSim exhibits a greater reflection of privacy leakage on the semantic level. We show that SemSim has a significantly higher correlation with human judgment compared with existing metrics. Moreover, this strong correlation generalizes to unseen datasets, models and attack methods.
A Linear Reconstruction Approach for Attribute Inference Attacks against Synthetic Data
Recent advances in synthetic data generation (SDG) have been hailed as a solution to the difficult problem of sharing sensitive data while protecting privacy. SDG aims to learn statistical properties of real data in order to generate "artificial" data that are structurally and statistically similar to sensitive data. However, prior research suggests that inference attacks on synthetic data can undermine privacy, but only for specific outlier records. In this work, we introduce a new attribute inference attack against synthetic data. The attack is based on linear reconstruction methods for aggregate statistics, which target all records in the dataset, not only outliers. We evaluate our attack on state-of-the-art SDG algorithms, including Probabilistic Graphical Models, Generative Adversarial Networks, and recent differentially private SDG mechanisms. By defining a formal privacy game, we show that our attack can be highly accurate even on arbitrary records, and that this is the result of individual information leakage (as opposed to population-level inference). We then systematically evaluate the tradeoff between protecting privacy and preserving statistical utility. Our findings suggest that current SDG methods cannot consistently provide sufficient privacy protection against inference attacks while retaining reasonable utility. The best method evaluated, a differentially private SDG mechanism, can provide both protection against inference attacks and reasonable utility, but only in very specific settings. Lastly, we show that releasing a larger number of synthetic records can improve utility but at the cost of making attacks far more effective.
Towards Eliminating Hard Label Constraints in Gradient Inversion Attacks
Gradient inversion attacks aim to reconstruct local training data from intermediate gradients exposed in the federated learning framework. Despite successful attacks, all previous methods, starting from reconstructing a single data point and then relaxing the single-image limit to batch level, are only tested under hard label constraints. Even for single-image reconstruction, we still lack an analysis-based algorithm to recover augmented soft labels. In this work, we change the focus from enlarging batchsize to investigating the hard label constraints, considering a more realistic circumstance where label smoothing and mixup techniques are used in the training process. In particular, we are the first to initiate a novel algorithm to simultaneously recover the ground-truth augmented label and the input feature of the last fully-connected layer from single-input gradients, and provide a necessary condition for any analytical-based label recovery methods. Extensive experiments testify to the label recovery accuracy, as well as the benefits to the following image reconstruction. We believe soft labels in classification tasks are worth further attention in gradient inversion attacks.
Re-thinking Model Inversion Attacks Against Deep Neural Networks
Model inversion (MI) attacks aim to infer and reconstruct private training data by abusing access to a model. MI attacks have raised concerns about the leaking of sensitive information (e.g. private face images used in training a face recognition system). Recently, several algorithms for MI have been proposed to improve the attack performance. In this work, we revisit MI, study two fundamental issues pertaining to all state-of-the-art (SOTA) MI algorithms, and propose solutions to these issues which lead to a significant boost in attack performance for all SOTA MI. In particular, our contributions are two-fold: 1) We analyze the optimization objective of SOTA MI algorithms, argue that the objective is sub-optimal for achieving MI, and propose an improved optimization objective that boosts attack performance significantly. 2) We analyze "MI overfitting", show that it would prevent reconstructed images from learning semantics of training data, and propose a novel "model augmentation" idea to overcome this issue. Our proposed solutions are simple and improve all SOTA MI attack accuracy significantly. E.g., in the standard CelebA benchmark, our solutions improve accuracy by 11.8% and achieve for the first time over 90% attack accuracy. Our findings demonstrate that there is a clear risk of leaking sensitive information from deep learning models. We urge serious consideration to be given to the privacy implications. Our code, demo, and models are available at https://ngoc-nguyen-0.github.io/re-thinking_model_inversion_attacks/
Practical No-box Adversarial Attacks against DNNs
The study of adversarial vulnerabilities of deep neural networks (DNNs) has progressed rapidly. Existing attacks require either internal access (to the architecture, parameters, or training set of the victim model) or external access (to query the model). However, both the access may be infeasible or expensive in many scenarios. We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model. Instead, the attacker can only gather a small number of examples from the same problem domain as that of the victim model. Such a stronger threat model greatly expands the applicability of adversarial attacks. We propose three mechanisms for training with a very small dataset (on the order of tens of examples) and find that prototypical reconstruction is the most effective. Our experiments show that adversarial examples crafted on prototypical auto-encoding models transfer well to a variety of image classification and face verification models. On a commercial celebrity recognition system held by clarifai.com, our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.
Knowledge-Enriched Distributional Model Inversion Attacks
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters. Such attacks have triggered increasing concerns about privacy, especially given a growing number of online model repositories. However, existing MI attacks against deep neural networks (DNNs) have large room for performance improvement. We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data. In particular, we train the discriminator to differentiate not only the real and fake samples but the soft-labels provided by the target model. Moreover, unlike previous work that directly searches for a single data point to represent a target class, we propose to model a private data distribution for each target class. Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%, and generalize better to a variety of datasets and models. Our code is available at https://github.com/SCccc21/Knowledge-Enriched-DMI.
Backdoor Attacks Against Deep Image Compression via Adaptive Frequency Trigger
Recent deep-learning-based compression methods have achieved superior performance compared with traditional approaches. However, deep learning models have proven to be vulnerable to backdoor attacks, where some specific trigger patterns added to the input can lead to malicious behavior of the models. In this paper, we present a novel backdoor attack with multiple triggers against learned image compression models. Motivated by the widely used discrete cosine transform (DCT) in existing compression systems and standards, we propose a frequency-based trigger injection model that adds triggers in the DCT domain. In particular, we design several attack objectives for various attacking scenarios, including: 1) attacking compression quality in terms of bit-rate and reconstruction quality; 2) attacking task-driven measures, such as down-stream face recognition and semantic segmentation. Moreover, a novel simple dynamic loss is designed to balance the influence of different loss terms adaptively, which helps achieve more efficient training. Extensive experiments show that with our trained trigger injection models and simple modification of encoder parameters (of the compression model), the proposed attack can successfully inject several backdoors with corresponding triggers in a single image compression model.
DrAttack: Prompt Decomposition and Reconstruction Makes Powerful LLM Jailbreakers
The safety alignment of Large Language Models (LLMs) is vulnerable to both manual and automated jailbreak attacks, which adversarially trigger LLMs to output harmful content. However, current methods for jailbreaking LLMs, which nest entire harmful prompts, are not effective at concealing malicious intent and can be easily identified and rejected by well-aligned LLMs. This paper discovers that decomposing a malicious prompt into separated sub-prompts can effectively obscure its underlying malicious intent by presenting it in a fragmented, less detectable form, thereby addressing these limitations. We introduce an automatic prompt Decomposition and Reconstruction framework for jailbreak Attack (DrAttack). DrAttack includes three key components: (a) `Decomposition' of the original prompt into sub-prompts, (b) `Reconstruction' of these sub-prompts implicitly by in-context learning with semantically similar but harmless reassembling demo, and (c) a `Synonym Search' of sub-prompts, aiming to find sub-prompts' synonyms that maintain the original intent while jailbreaking LLMs. An extensive empirical study across multiple open-source and closed-source LLMs demonstrates that, with a significantly reduced number of queries, DrAttack obtains a substantial gain of success rate over prior SOTA prompt-only attackers. Notably, the success rate of 78.0\% on GPT-4 with merely 15 queries surpassed previous art by 33.1\%. The project is available at https://github.com/xirui-li/DrAttack.
Geometric Adversarial Attacks and Defenses on 3D Point Clouds
Deep neural networks are prone to adversarial examples that maliciously alter the network's outcome. Due to the increasing popularity of 3D sensors in safety-critical systems and the vast deployment of deep learning models for 3D point sets, there is a growing interest in adversarial attacks and defenses for such models. So far, the research has focused on the semantic level, namely, deep point cloud classifiers. However, point clouds are also widely used in a geometric-related form that includes encoding and reconstructing the geometry. In this work, we are the first to consider the problem of adversarial examples at a geometric level. In this setting, the question is how to craft a small change to a clean source point cloud that leads, after passing through an autoencoder model, to the reconstruction of a different target shape. Our attack is in sharp contrast to existing semantic attacks on 3D point clouds. While such works aim to modify the predicted label by a classifier, we alter the entire reconstructed geometry. Additionally, we demonstrate the robustness of our attack in the case of defense, where we show that remnant characteristics of the target shape are still present at the output after applying the defense to the adversarial input. Our code is publicly available at https://github.com/itailang/geometric_adv.
MedForget: Hierarchy-Aware Multimodal Unlearning Testbed for Medical AI
Pretrained Multimodal Large Language Models (MLLMs) are increasingly deployed in medical AI systems for clinical reasoning, diagnosis support, and report generation. However, their training on sensitive patient data raises critical privacy and compliance challenges under regulations such as HIPAA and GDPR, which enforce the "right to be forgotten". Unlearning, the process of tuning models to selectively remove the influence of specific training data points, offers a potential solution, yet its effectiveness in complex medical settings remains underexplored. To systematically study this, we introduce MedForget, a Hierarchy-Aware Multimodal Unlearning Testbed with explicit retain and forget splits and evaluation sets containing rephrased variants. MedForget models hospital data as a nested hierarchy (Institution -> Patient -> Study -> Section), enabling fine-grained assessment across eight organizational levels. The benchmark contains 3840 multimodal (image, question, answer) instances, each hierarchy level having a dedicated unlearning target, reflecting distinct unlearning challenges. Experiments with four SOTA unlearning methods on three tasks (generation, classification, cloze) show that existing methods struggle to achieve complete, hierarchy-aware forgetting without reducing diagnostic performance. To test whether unlearning truly deletes hierarchical pathways, we introduce a reconstruction attack that progressively adds hierarchical level context to prompts. Models unlearned at a coarse granularity show strong resistance, while fine-grained unlearning leaves models vulnerable to such reconstruction. MedForget provides a practical, HIPAA-aligned testbed for building compliant medical AI systems.
OPC: One-Point-Contraction Unlearning Toward Deep Feature Forgetting
Machine unlearning seeks to remove the influence of particular data or class from trained models to meet privacy, legal, or ethical requirements. Existing unlearning methods tend to forget shallowly: phenomenon of an unlearned model pretend to forget by adjusting only the model response, while its internal representations retain information sufficiently to restore the forgotten data or behavior. We empirically confirm the widespread shallowness by reverting the forgetting effect of various unlearning methods via training-free performance recovery attack and gradient-inversion-based data reconstruction attack. To address this vulnerability fundamentally, we define a theoretical criterion of ``deep forgetting'' based on one-point-contraction of feature representations of data to forget. We also propose an efficient approximation algorithm, and use it to construct a novel general-purpose unlearning algorithm: One-Point-Contraction (OPC). Empirical evaluations on image classification unlearning benchmarks show that OPC achieves not only effective unlearning performance but also superior resilience against both performance recovery attack and gradient-inversion attack. The distinctive unlearning performance of OPC arises from the deep feature forgetting enforced by its theoretical foundation, and recaps the need for improved robustness of machine unlearning methods.
Private Frequency Estimation Via Residue Number Systems
We present ModularSubsetSelection (MSS), a new algorithm for locally differentially private (LDP) frequency estimation. Given a universe of size k and n users, our varepsilon-LDP mechanism encodes each input via a Residue Number System (RNS) over ell pairwise-coprime moduli m_0, ldots, m_{ell-1}, and reports a randomly chosen index j in [ell] along with the perturbed residue using the statistically optimal SubsetSelection (SS) (Wang et al. 2016). This design reduces the user communication cost from Θbigl(ωlog_2(k/ω)bigr) bits required by standard SS (with ωapprox k/(e^varepsilon+1)) down to lceil log_2 ell rceil + lceil log_2 m_j rceil bits, where m_j < k. Server-side decoding runs in Θ(n + r k ell) time, where r is the number of LSMR (Fong and Saunders 2011) iterations. In practice, with well-conditioned moduli (i.e., constant r and ell = Θ(log k)), this becomes Θ(n + k log k). We prove that MSS achieves worst-case MSE within a constant factor of state-of-the-art protocols such as SS and ProjectiveGeometryResponse (PGR) (Feldman et al. 2022) while avoiding the algebraic prerequisites and dynamic-programming decoder required by PGR. Empirically, MSS matches the estimation accuracy of SS, PGR, and RAPPOR (Erlingsson, Pihur, and Korolova 2014) across realistic (k, varepsilon) settings, while offering faster decoding than PGR and shorter user messages than SS. Lastly, by sampling from multiple moduli and reporting only a single perturbed residue, MSS achieves the lowest reconstruction-attack success rate among all evaluated LDP protocols.
