- Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings Machine translation is highly sensitive to the size and quality of the training data, which has led to an increasing interest in collecting and filtering large parallel corpora. In this paper, we propose a new method for this task based on multilingual sentence embeddings. In contrast to previous approaches, which rely on nearest neighbor retrieval with a hard threshold over cosine similarity, our proposed method accounts for the scale inconsistencies of this measure, considering the margin between a given sentence pair and its closest candidates instead. Our experiments show large improvements over existing methods. We outperform the best published results on the BUCC mining task and the UN reconstruction task by more than 10 F1 and 30 precision points, respectively. Filtering the English-German ParaCrawl corpus with our approach, we obtain 31.2 BLEU points on newstest2014, an improvement of more than one point over the best official filtered version. 2 authors · Nov 2, 2018
- Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond We introduce an architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different families and written in 28 different scripts. Our system uses a single BiLSTM encoder with a shared BPE vocabulary for all languages, which is coupled with an auxiliary decoder and trained on publicly available parallel corpora. This enables us to learn a classifier on top of the resulting embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification. Our experiments in cross-lingual natural language inference (XNLI dataset), cross-lingual document classification (MLDoc dataset) and parallel corpus mining (BUCC dataset) show the effectiveness of our approach. We also introduce a new test set of aligned sentences in 112 languages, and show that our sentence embeddings obtain strong results in multilingual similarity search even for low-resource languages. Our implementation, the pre-trained encoder and the multilingual test set are available at https://github.com/facebookresearch/LASER 2 authors · Dec 26, 2018
- Give your Text Representation Models some Love: the Case for Basque Word embeddings and pre-trained language models allow to build rich representations of text and have enabled improvements across most NLP tasks. Unfortunately they are very expensive to train, and many small companies and research groups tend to use models that have been pre-trained and made available by third parties, rather than building their own. This is suboptimal as, for many languages, the models have been trained on smaller (or lower quality) corpora. In addition, monolingual pre-trained models for non-English languages are not always available. At best, models for those languages are included in multilingual versions, where each language shares the quota of substrings and parameters with the rest of the languages. This is particularly true for smaller languages such as Basque. In this paper we show that a number of monolingual models (FastText word embeddings, FLAIR and BERT language models) trained with larger Basque corpora produce much better results than publicly available versions in downstream NLP tasks, including topic classification, sentiment classification, PoS tagging and NER. This work sets a new state-of-the-art in those tasks for Basque. All benchmarks and models used in this work are publicly available. 7 authors · Mar 31, 2020
- Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation We present an easy and efficient method to extend existing sentence embedding models to new languages. This allows to create multilingual versions from previously monolingual models. The training is based on the idea that a translated sentence should be mapped to the same location in the vector space as the original sentence. We use the original (monolingual) model to generate sentence embeddings for the source language and then train a new system on translated sentences to mimic the original model. Compared to other methods for training multilingual sentence embeddings, this approach has several advantages: It is easy to extend existing models with relatively few samples to new languages, it is easier to ensure desired properties for the vector space, and the hardware requirements for training is lower. We demonstrate the effectiveness of our approach for 50+ languages from various language families. Code to extend sentence embeddings models to more than 400 languages is publicly available. 2 authors · Apr 21, 2020
- A Common Semantic Space for Monolingual and Cross-Lingual Meta-Embeddings This paper presents a new technique for creating monolingual and cross-lingual meta-embeddings. Our method integrates multiple word embeddings created from complementary techniques, textual sources, knowledge bases and languages. Existing word vectors are projected to a common semantic space using linear transformations and averaging. With our method the resulting meta-embeddings maintain the dimensionality of the original embeddings without losing information while dealing with the out-of-vocabulary problem. An extensive empirical evaluation demonstrates the effectiveness of our technique with respect to previous work on various intrinsic and extrinsic multilingual evaluations, obtaining competitive results for Semantic Textual Similarity and state-of-the-art performance for word similarity and POS tagging (English and Spanish). The resulting cross-lingual meta-embeddings also exhibit excellent cross-lingual transfer learning capabilities. In other words, we can leverage pre-trained source embeddings from a resource-rich language in order to improve the word representations for under-resourced languages. 3 authors · Jan 17, 2020
- Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation Pretrained contextual and non-contextual subword embeddings have become available in over 250 languages, allowing massively multilingual NLP. However, while there is no dearth of pretrained embeddings, the distinct lack of systematic evaluations makes it difficult for practitioners to choose between them. In this work, we conduct an extensive evaluation comparing non-contextual subword embeddings, namely FastText and BPEmb, and a contextual representation method, namely BERT, on multilingual named entity recognition and part-of-speech tagging. We find that overall, a combination of BERT, BPEmb, and character representations works best across languages and tasks. A more detailed analysis reveals different strengths and weaknesses: Multilingual BERT performs well in medium- to high-resource languages, but is outperformed by non-contextual subword embeddings in a low-resource setting. 2 authors · Jun 4, 2019
- Are Multilingual Models Effective in Code-Switching? Multilingual language models have shown decent performance in multilingual and cross-lingual natural language understanding tasks. However, the power of these multilingual models in code-switching tasks has not been fully explored. In this paper, we study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting by considering the inference speed, performance, and number of parameters to measure their practicality. We conduct experiments in three language pairs on named entity recognition and part-of-speech tagging and compare them with existing methods, such as using bilingual embeddings and multilingual meta-embeddings. Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching, while using meta-embeddings achieves similar results with significantly fewer parameters. 6 authors · Mar 24, 2021
- InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training In this work, we present an information-theoretic framework that formulates cross-lingual language model pre-training as maximizing mutual information between multilingual-multi-granularity texts. The unified view helps us to better understand the existing methods for learning cross-lingual representations. More importantly, inspired by the framework, we propose a new pre-training task based on contrastive learning. Specifically, we regard a bilingual sentence pair as two views of the same meaning and encourage their encoded representations to be more similar than the negative examples. By leveraging both monolingual and parallel corpora, we jointly train the pretext tasks to improve the cross-lingual transferability of pre-trained models. Experimental results on several benchmarks show that our approach achieves considerably better performance. The code and pre-trained models are available at https://aka.ms/infoxlm. 10 authors · Jul 15, 2020
2 Language-agnostic BERT Sentence Embedding While BERT is an effective method for learning monolingual sentence embeddings for semantic similarity and embedding based transfer learning (Reimers and Gurevych, 2019), BERT based cross-lingual sentence embeddings have yet to be explored. We systematically investigate methods for learning multilingual sentence embeddings by combining the best methods for learning monolingual and cross-lingual representations including: masked language modeling (MLM), translation language modeling (TLM) (Conneau and Lample, 2019), dual encoder translation ranking (Guo et al., 2018), and additive margin softmax (Yang et al., 2019a). We show that introducing a pre-trained multilingual language model dramatically reduces the amount of parallel training data required to achieve good performance by 80%. Composing the best of these methods produces a model that achieves 83.7% bi-text retrieval accuracy over 112 languages on Tatoeba, well above the 65.5% achieved by Artetxe and Schwenk (2019b), while still performing competitively on monolingual transfer learning benchmarks (Conneau and Kiela, 2018). Parallel data mined from CommonCrawl using our best model is shown to train competitive NMT models for en-zh and en-de. We publicly release our best multilingual sentence embedding model for 109+ languages at https://tfhub.dev/google/LaBSE. 5 authors · Jul 3, 2020
- Multilingual Sentence-T5: Scalable Sentence Encoders for Multilingual Applications Prior work on multilingual sentence embedding has demonstrated that the efficient use of natural language inference (NLI) data to build high-performance models can outperform conventional methods. However, the potential benefits from the recent ``exponential'' growth of language models with billions of parameters have not yet been fully explored. In this paper, we introduce Multilingual Sentence T5 (m-ST5), as a larger model of NLI-based multilingual sentence embedding, by extending Sentence T5, an existing monolingual model. By employing the low-rank adaptation (LoRA) technique, we have achieved a successful scaling of the model's size to 5.7 billion parameters. We conducted experiments to evaluate the performance of sentence embedding and verified that the method outperforms the NLI-based prior approach. Furthermore, we also have confirmed a positive correlation between the size of the model and its performance. It was particularly noteworthy that languages with fewer resources or those with less linguistic similarity to English benefited more from the parameter increase. Our model is available at https://huggingface.co/pkshatech/m-ST5. 5 authors · Mar 26, 2024
- LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings Sentence embedding models play a key role in various Natural Language Processing tasks, such as in Topic Modeling, Document Clustering and Recommendation Systems. However, these models rely heavily on parallel data, which can be scarce for many low-resource languages, including Luxembourgish. This scarcity results in suboptimal performance of monolingual and cross-lingual sentence embedding models for these languages. To address this issue, we compile a relatively small but high-quality human-generated cross-lingual parallel dataset to train \tool, an enhanced sentence embedding model for Luxembourgish with strong cross-lingual capabilities. Additionally, we present evidence suggesting that including low-resource languages in parallel training datasets can be more advantageous for other low-resource languages than relying solely on high-resource language pairs. Furthermore, recognizing the lack of sentence embedding benchmarks for low-resource languages, we create a paraphrase detection benchmark specifically for Luxembourgish, aiming to partially fill this gap and promote further research. 4 authors · Dec 4, 2024
- mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models Recent studies have shown that multilingual pretrained language models can be effectively improved with cross-lingual alignment information from Wikipedia entities. However, existing methods only exploit entity information in pretraining and do not explicitly use entities in downstream tasks. In this study, we explore the effectiveness of leveraging entity representations for downstream cross-lingual tasks. We train a multilingual language model with 24 languages with entity representations and show the model consistently outperforms word-based pretrained models in various cross-lingual transfer tasks. We also analyze the model and the key insight is that incorporating entity representations into the input allows us to extract more language-agnostic features. We also evaluate the model with a multilingual cloze prompt task with the mLAMA dataset. We show that entity-based prompt elicits correct factual knowledge more likely than using only word representations. Our source code and pretrained models are available at https://github.com/studio-ousia/luke. 3 authors · Oct 15, 2021
- Align after Pre-train: Improving Multilingual Generative Models with Cross-lingual Alignment Multilingual generative models obtain remarkable cross-lingual capabilities through pre-training on large-scale corpora. However, they still exhibit a performance bias toward high-resource languages, and learn isolated distributions of sentence representations across languages. To bridge this gap, we propose a simple yet effective alignment framework exploiting pairs of translation sentences. It aligns the internal sentence representations across different languages via multilingual contrastive learning and aligns model outputs by answering prompts in different languages. Experimental results demonstrate that even with less than 0.1 {\textperthousand} of pre-training tokens, our alignment framework significantly boosts the cross-lingual abilities of generative models and mitigates the performance gap. Further analysis reveals that it results in a better internal multilingual representation distribution of multilingual models. 4 authors · Nov 14, 2023
- DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations Sentence embeddings are an important component of many natural language processing (NLP) systems. Like word embeddings, sentence embeddings are typically learned on large text corpora and then transferred to various downstream tasks, such as clustering and retrieval. Unlike word embeddings, the highest performing solutions for learning sentence embeddings require labelled data, limiting their usefulness to languages and domains where labelled data is abundant. In this paper, we present DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations. Inspired by recent advances in deep metric learning (DML), we carefully design a self-supervised objective for learning universal sentence embeddings that does not require labelled training data. When used to extend the pretraining of transformer-based language models, our approach closes the performance gap between unsupervised and supervised pretraining for universal sentence encoders. Importantly, our experiments suggest that the quality of the learned embeddings scale with both the number of trainable parameters and the amount of unlabelled training data. Our code and pretrained models are publicly available and can be easily adapted to new domains or used to embed unseen text. 4 authors · Jun 5, 2020
- Combining Static and Contextualised Multilingual Embeddings Static and contextual multilingual embeddings have complementary strengths. Static embeddings, while less expressive than contextual language models, can be more straightforwardly aligned across multiple languages. We combine the strengths of static and contextual models to improve multilingual representations. We extract static embeddings for 40 languages from XLM-R, validate those embeddings with cross-lingual word retrieval, and then align them using VecMap. This results in high-quality, highly multilingual static embeddings. Then we apply a novel continued pre-training approach to XLM-R, leveraging the high quality alignment of our static embeddings to better align the representation space of XLM-R. We show positive results for multiple complex semantic tasks. We release the static embeddings and the continued pre-training code. Unlike most previous work, our continued pre-training approach does not require parallel text. 3 authors · Mar 17, 2022
- L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi Sentence representation from vanilla BERT models does not work well on sentence similarity tasks. Sentence-BERT models specifically trained on STS or NLI datasets are shown to provide state-of-the-art performance. However, building these models for low-resource languages is not straightforward due to the lack of these specialized datasets. This work focuses on two low-resource Indian languages, Hindi and Marathi. We train sentence-BERT models for these languages using synthetic NLI and STS datasets prepared using machine translation. We show that the strategy of NLI pre-training followed by STSb fine-tuning is effective in generating high-performance sentence-similarity models for Hindi and Marathi. The vanilla BERT models trained using this simple strategy outperform the multilingual LaBSE trained using a complex training strategy. These models are evaluated on downstream text classification and similarity tasks. We evaluate these models on real text classification datasets to show embeddings obtained from synthetic data training are generalizable to real datasets as well and thus represent an effective training strategy for low-resource languages. We also provide a comparative analysis of sentence embeddings from fast text models, multilingual BERT models (mBERT, IndicBERT, xlm-RoBERTa, MuRIL), multilingual sentence embedding models (LASER, LaBSE), and monolingual BERT models based on L3Cube-MahaBERT and HindBERT. We release L3Cube-MahaSBERT and HindSBERT, the state-of-the-art sentence-BERT models for Marathi and Hindi respectively. Our work also serves as a guide to building low-resource sentence embedding models. 5 authors · Nov 21, 2022
1 LangSAMP: Language-Script Aware Multilingual Pretraining Recent multilingual pretrained language models (mPLMs) often avoid using language embeddings -- learnable vectors assigned to different languages. These embeddings are discarded for two main reasons: (1) mPLMs are expected to have a single, unified parameter set across all languages, and (2) they need to function seamlessly as universal text encoders without requiring language IDs as input. However, this removal increases the burden on token embeddings to encode all language-specific information, which may hinder the model's ability to produce more language-neutral representations. To address this challenge, we propose Language-Script Aware Multilingual Pretraining (LangSAMP), a method that incorporates both language and script embeddings to enhance representation learning while maintaining a simple architecture. Specifically, we integrate these embeddings into the output of the transformer blocks before passing the final representations to the language modeling head for prediction. We apply LangSAMP to the continual pretraining of XLM-R on a highly multilingual corpus covering more than 500 languages. The resulting model consistently outperforms the baseline. Extensive analysis further shows that language/script embeddings encode language/script-specific information, which improves the selection of source languages for crosslingual transfer. We make our code and models publicly available at https://github.com/cisnlp/LangSAMP. 5 authors · Sep 26, 2024
- Czert -- Czech BERT-like Model for Language Representation This paper describes the training process of the first Czech monolingual language representation models based on BERT and ALBERT architectures. We pre-train our models on more than 340K of sentences, which is 50 times more than multilingual models that include Czech data. We outperform the multilingual models on 9 out of 11 datasets. In addition, we establish the new state-of-the-art results on nine datasets. At the end, we discuss properties of monolingual and multilingual models based upon our results. We publish all the pre-trained and fine-tuned models freely for the research community. 6 authors · Mar 24, 2021
12 In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. In this paper, we focus on machine translation (MT), a task that has been shown to benefit from in-context translation examples. However no systematic studies have been published on how best to select examples, and mixed results have been reported on the usefulness of similarity-based selection over random selection. We provide a study covering multiple LLMs and multiple in-context example retrieval strategies, comparing multilingual sentence embeddings. We cover several language directions, representing different levels of language resourcedness (English into French, German, Swahili and Wolof). Contrarily to previously published results, we find that sentence embedding similarity can improve MT, especially for low-resource language directions, and discuss the balance between selection pool diversity and quality. We also highlight potential problems with the evaluation of LLM-based MT and suggest a more appropriate evaluation protocol, adapting the COMET metric to the evaluation of LLMs. Code and outputs are freely available at https://github.com/ArmelRandy/ICL-MT. 3 authors · Aug 1, 2024 2
2 Extending the Massive Text Embedding Benchmark to French In recent years, numerous embedding models have been made available and widely used for various NLP tasks. Choosing a model that performs well for several tasks in English has been largely simplified by the Massive Text Embedding Benchmark (MTEB), but extensions to other languages remain challenging. This is why we expand MTEB to propose the first massive benchmark of sentence embeddings for French. Not only we gather 22 existing datasets in an easy-to-use interface, but we also create three new French datasets for a global evaluation over 8 different tasks. We perform a large scale comparison with 46 carefully selected embedding models, conduct comprehensive statistical tests, and analyze the correlation between model performance and many of their characteristics. We find out that even if no model is the best on all tasks, large multilingual models pre-trained on sentence similarity perform particularly well. Our work comes with open-source code, new datasets and a public leaderboard. 4 authors · May 30, 2024
- UNKs Everywhere: Adapting Multilingual Language Models to New Scripts Massively multilingual language models such as multilingual BERT offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks. However, due to limited capacity and large differences in pretraining data sizes, there is a profound performance gap between resource-rich and resource-poor target languages. The ultimate challenge is dealing with under-resourced languages not covered at all by the models and written in scripts unseen during pretraining. In this work, we propose a series of novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts. Relying on matrix factorization, our methods capitalize on the existing latent knowledge about multiple languages already available in the pretrained model's embedding matrix. Furthermore, we show that learning of the new dedicated embedding matrix in the target language can be improved by leveraging a small number of vocabulary items (i.e., the so-called lexically overlapping tokens) shared between mBERT's and target language vocabulary. Our adaptation techniques offer substantial performance gains for languages with unseen scripts. We also demonstrate that they can yield improvements for low-resource languages written in scripts covered by the pretrained model. 4 authors · Dec 31, 2020
5 Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings We introduce a novel suite of state-of-the-art bilingual text embedding models that are designed to support English and another target language. These models are capable of processing lengthy text inputs with up to 8192 tokens, making them highly versatile for a range of natural language processing tasks such as text retrieval, clustering, and semantic textual similarity (STS) calculations. By focusing on bilingual models and introducing a unique multi-task learning objective, we have significantly improved the model performance on STS tasks, which outperforms the capabilities of existing multilingual models in both target language understanding and cross-lingual evaluation tasks. Moreover, our bilingual models are more efficient, requiring fewer parameters and less memory due to their smaller vocabulary needs. Furthermore, we have expanded the Massive Text Embedding Benchmark (MTEB) to include benchmarks for German and Spanish embedding models. This integration aims to stimulate further research and advancement in text embedding technologies for these languages. 19 authors · Feb 26, 2024
- Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese Multilingual language models such as mBERT have seen impressive cross-lingual transfer to a variety of languages, but many languages remain excluded from these models. In this paper, we analyse the effect of pre-training with monolingual data for a low-resource language that is not included in mBERT -- Maltese -- with a range of pre-training set ups. We conduct evaluations with the newly pre-trained models on three morphosyntactic tasks -- dependency parsing, part-of-speech tagging, and named-entity recognition -- and one semantic classification task -- sentiment analysis. We also present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance. Our results show that using a mixture of pre-training domains is often superior to using Wikipedia text only. We also find that a fraction of this corpus is enough to make significant leaps in performance over Wikipedia-trained models. We pre-train and compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu). The models achieve state-of-the-art performance on these tasks, despite the new corpus being considerably smaller than typically used corpora for high-resourced languages. On average, BERTu outperforms or performs competitively with mBERTu, and the largest gains are observed for higher-level tasks. 5 authors · May 21, 2022
- Learning High-Quality and General-Purpose Phrase Representations Phrase representations play an important role in data science and natural language processing, benefiting various tasks like Entity Alignment, Record Linkage, Fuzzy Joins, and Paraphrase Classification. The current state-of-the-art method involves fine-tuning pre-trained language models for phrasal embeddings using contrastive learning. However, we have identified areas for improvement. First, these pre-trained models tend to be unnecessarily complex and require to be pre-trained on a corpus with context sentences. Second, leveraging the phrase type and morphology gives phrase representations that are both more precise and more flexible. We propose an improved framework to learn phrase representations in a context-free fashion. The framework employs phrase type classification as an auxiliary task and incorporates character-level information more effectively into the phrase representation. Furthermore, we design three granularities of data augmentation to increase the diversity of training samples. Our experiments across a wide range of tasks show that our approach generates superior phrase embeddings compared to previous methods while requiring a smaller model size. The code is available at \faGithub~ https://github.com/tigerchen52/PEARL abstract 3 authors · Jan 18, 2024
5 OFA: A Framework of Initializing Unseen Subword Embeddings for Efficient Large-scale Multilingual Continued Pretraining Pretraining multilingual language models from scratch requires considerable computational resources and substantial training data. Therefore, a more efficient method is to adapt existing pretrained language models (PLMs) to new languages via vocabulary extension and continued pretraining. However, this method usually randomly initializes the embeddings of new subwords and introduces substantially more embedding parameters to the language model, thus weakening the efficiency. To address these issues, we propose a novel framework: One For All (\textsc{Ofa}), which wisely initializes the embeddings of unseen subwords from target languages and thus can adapt a PLM to multiple languages efficiently and effectively. Ofa takes advantage of external well-aligned multilingual word embeddings and injects the alignment knowledge into the new embeddings. In addition, Ofa applies matrix factorization and replaces the cumbersome embeddings with two lower-dimensional matrices, which significantly reduces the number of parameters while not sacrificing the performance. Through extensive experiments, we show models initialized by Ofa are efficient and outperform several baselines. Ofa not only accelerates the convergence of continued pretraining, which is friendly to a limited computation budget, but also improves the zero-shot crosslingual transfer on a wide range of downstream tasks. We make our code and models publicly available. 4 authors · Nov 15, 2023 4
- Comparison and Combination of Sentence Embeddings Derived from Different Supervision Signals There have been many successful applications of sentence embedding methods. However, it has not been well understood what properties are captured in the resulting sentence embeddings depending on the supervision signals. In this paper, we focus on two types of sentence embedding methods with similar architectures and tasks: one fine-tunes pre-trained language models on the natural language inference task, and the other fine-tunes pre-trained language models on word prediction task from its definition sentence, and investigate their properties. Specifically, we compare their performances on semantic textual similarity (STS) tasks using STS datasets partitioned from two perspectives: 1) sentence source and 2) superficial similarity of the sentence pairs, and compare their performances on the downstream and probing tasks. Furthermore, we attempt to combine the two methods and demonstrate that combining the two methods yields substantially better performance than the respective methods on unsupervised STS tasks and downstream tasks. 3 authors · Feb 7, 2022
- Multilingual Universal Sentence Encoder for Semantic Retrieval We introduce two pre-trained retrieval focused multilingual sentence encoding models, respectively based on the Transformer and CNN model architectures. The models embed text from 16 languages into a single semantic space using a multi-task trained dual-encoder that learns tied representations using translation based bridge tasks (Chidambaram al., 2018). The models provide performance that is competitive with the state-of-the-art on: semantic retrieval (SR), translation pair bitext retrieval (BR) and retrieval question answering (ReQA). On English transfer learning tasks, our sentence-level embeddings approach, and in some cases exceed, the performance of monolingual, English only, sentence embedding models. Our models are made available for download on TensorFlow Hub. 12 authors · Jul 9, 2019
- Embedding structure matters: Comparing methods to adapt multilingual vocabularies to new languages Pre-trained multilingual language models underpin a large portion of modern NLP tools outside of English. A strong baseline for specializing these models for specific languages is Language-Adaptive Pre-Training (LAPT). However, retaining a large cross-lingual vocabulary and embedding matrix comes at considerable excess computational cost during adaptation. In this study, we propose several simple techniques to replace a cross-lingual vocabulary with a compact, language-specific one. Namely, we address strategies for re-initializing the token embedding matrix after vocabulary specialization. We then provide a systematic experimental comparison of our techniques, in addition to the recently-proposed Focus method. We demonstrate that: 1) Embedding-replacement techniques in the monolingual transfer literature are inadequate for adapting multilingual models. 2) Replacing cross-lingual vocabularies with smaller specialized ones provides an efficient method to improve performance in low-resource languages. 3) Simple embedding re-initialization techniques based on script-wise sub-distributions rival techniques such as Focus, which rely on similarity scores obtained from an auxiliary model. 4 authors · Sep 9, 2023
14 KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model As retrieval-augmented generation prevails in large language models, embedding models are becoming increasingly crucial. Despite the growing number of general embedding models, prior work often overlooks the critical role of training data quality. In this work, we introduce KaLM-Embedding, a general multilingual embedding model that leverages a large quantity of cleaner, more diverse, and domain-specific training data. Our model has been trained with key techniques proven to enhance performance: (1) persona-based synthetic data to create diversified examples distilled from LLMs, (2) ranking consistency filtering to remove less informative samples, and (3) semi-homogeneous task batch sampling to improve training efficacy. Departing from traditional BERT-like architectures, we adopt Qwen2-0.5B as the pre-trained model, facilitating the adaptation of auto-regressive language models for general embedding tasks. Extensive evaluations of the MTEB benchmark across multiple languages show that our model outperforms others of comparable size, setting a new standard for multilingual embedding models with <1B parameters. 11 authors · Jan 1
1 Dual-Alignment Pre-training for Cross-lingual Sentence Embedding Recent studies have shown that dual encoder models trained with the sentence-level translation ranking task are effective methods for cross-lingual sentence embedding. However, our research indicates that token-level alignment is also crucial in multilingual scenarios, which has not been fully explored previously. Based on our findings, we propose a dual-alignment pre-training (DAP) framework for cross-lingual sentence embedding that incorporates both sentence-level and token-level alignment. To achieve this, we introduce a novel representation translation learning (RTL) task, where the model learns to use one-side contextualized token representation to reconstruct its translation counterpart. This reconstruction objective encourages the model to embed translation information into the token representation. Compared to other token-level alignment methods such as translation language modeling, RTL is more suitable for dual encoder architectures and is computationally efficient. Extensive experiments on three sentence-level cross-lingual benchmarks demonstrate that our approach can significantly improve sentence embedding. Our code is available at https://github.com/ChillingDream/DAP. 10 authors · May 15, 2023
- WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia We present an approach based on multilingual sentence embeddings to automatically extract parallel sentences from the content of Wikipedia articles in 85 languages, including several dialects or low-resource languages. We do not limit the the extraction process to alignments with English, but systematically consider all possible language pairs. In total, we are able to extract 135M parallel sentences for 1620 different language pairs, out of which only 34M are aligned with English. This corpus of parallel sentences is freely available at https://github.com/facebookresearch/LASER/tree/master/tasks/WikiMatrix. To get an indication on the quality of the extracted bitexts, we train neural MT baseline systems on the mined data only for 1886 languages pairs, and evaluate them on the TED corpus, achieving strong BLEU scores for many language pairs. The WikiMatrix bitexts seem to be particularly interesting to train MT systems between distant languages without the need to pivot through English. 5 authors · Jul 10, 2019
- L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT The multilingual Sentence-BERT (SBERT) models map different languages to common representation space and are useful for cross-language similarity and mining tasks. We propose a simple yet effective approach to convert vanilla multilingual BERT models into multilingual sentence BERT models using synthetic corpus. We simply aggregate translated NLI or STS datasets of the low-resource target languages together and perform SBERT-like fine-tuning of the vanilla multilingual BERT model. We show that multilingual BERT models are inherent cross-lingual learners and this simple baseline fine-tuning approach without explicit cross-lingual training yields exceptional cross-lingual properties. We show the efficacy of our approach on 10 major Indic languages and also show the applicability of our approach to non-Indic languages German and French. Using this approach, we further present L3Cube-IndicSBERT, the first multilingual sentence representation model specifically for Indian languages Hindi, Marathi, Kannada, Telugu, Malayalam, Tamil, Gujarati, Odia, Bengali, and Punjabi. The IndicSBERT exhibits strong cross-lingual capabilities and performs significantly better than alternatives like LaBSE, LASER, and paraphrase-multilingual-mpnet-base-v2 on Indic cross-lingual and monolingual sentence similarity tasks. We also release monolingual SBERT models for each of the languages and show that IndicSBERT performs competitively with its monolingual counterparts. These models have been evaluated using embedding similarity scores and classification accuracy. 5 authors · Apr 22, 2023
32 MMTEB: Massive Multilingual Text Embedding Benchmark Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost. 86 authors · Feb 19 3
- MINERS: Multilingual Language Models as Semantic Retrievers Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning. 3 authors · Jun 11, 2024
5 German Text Embedding Clustering Benchmark This work introduces a benchmark assessing the performance of clustering German text embeddings in different domains. This benchmark is driven by the increasing use of clustering neural text embeddings in tasks that require the grouping of texts (such as topic modeling) and the need for German resources in existing benchmarks. We provide an initial analysis for a range of pre-trained mono- and multilingual models evaluated on the outcome of different clustering algorithms. Results include strong performing mono- and multilingual models. Reducing the dimensions of embeddings can further improve clustering. Additionally, we conduct experiments with continued pre-training for German BERT models to estimate the benefits of this additional training. Our experiments suggest that significant performance improvements are possible for short text. All code and datasets are publicly available. 3 authors · Jan 5, 2024 2
- Linear Cross-Lingual Mapping of Sentence Embeddings Semantics of a sentence is defined with much less ambiguity than semantics of a single word, and it should be better preserved by translation to another language. If multilingual sentence embeddings intend to represent sentence semantics, then the similarity between embeddings of any two sentences must be invariant with respect to translation. Based on this suggestion, we consider a simple linear cross-lingual mapping as a possible improvement of the multilingual embeddings. We also consider deviation from orthogonality conditions as a measure of deficiency of the embeddings. 3 authors · May 23, 2023
- Introducing various Semantic Models for Amharic: Experimentation and Evaluation with multiple Tasks and Datasets The availability of different pre-trained semantic models enabled the quick development of machine learning components for downstream applications. Despite the availability of abundant text data for low resource languages, only a few semantic models are publicly available. Publicly available pre-trained models are usually built as a multilingual version of semantic models that can not fit well for each language due to context variations. In this work, we introduce different semantic models for Amharic. After we experiment with the existing pre-trained semantic models, we trained and fine-tuned nine new different models using a monolingual text corpus. The models are build using word2Vec embeddings, distributional thesaurus (DT), contextual embeddings, and DT embeddings obtained via network embedding algorithms. Moreover, we employ these models for different NLP tasks and investigate their impact. We find that newly trained models perform better than pre-trained multilingual models. Furthermore, models based on contextual embeddings from RoBERTA perform better than the word2Vec models. 5 authors · Nov 2, 2020
- Mapping Supervised Bilingual Word Embeddings from English to low-resource languages It is very challenging to work with low-resource languages due to the inadequate availability of data. Using a dictionary to map independently trained word embeddings into a shared vector space has proved to be very useful in learning bilingual embeddings in the past. Here we have tried to map individual embeddings of words in English and their corresponding translated words in low-resource languages like Estonian, Slovenian, Slovakian, and Hungarian. We have used a supervised learning approach. We report accuracy scores through various retrieval strategies which show that it is possible to approach challenging tasks in Natural Language Processing like machine translation for such languages, provided that we have at least some amount of proper bilingual data. We also conclude that we can follow an unsupervised learning path on monolingual text data as that is more suitable for low-resource languages. 1 authors · Oct 14, 2019
1 Language Models are Universal Embedders In the large language model (LLM) revolution, embedding is a key component of various systems. For example, it is used to retrieve knowledge or memories for LLMs, to build content moderation filters, etc. As such cases span from English to other natural or programming languages, from retrieval to classification and beyond, it is desirable to build a unified embedding model rather than dedicated ones for each scenario. In this work, we make an initial step towards this goal, demonstrating that multiple languages (both natural and programming) pre-trained transformer decoders can embed universally when finetuned on limited English data. We provide a comprehensive practice with thorough evaluations. On English MTEB, our models achieve competitive performance on different embedding tasks by minimal training data. On other benchmarks, such as multilingual classification and code search, our models (without any supervision) perform comparably to, or even surpass heavily supervised baselines and/or APIs. These results provide evidence of a promising path towards building powerful unified embedders that can be applied across tasks and languages. 7 authors · Oct 12, 2023
- FinEst BERT and CroSloEngual BERT: less is more in multilingual models Large pretrained masked language models have become state-of-the-art solutions for many NLP problems. The research has been mostly focused on English language, though. While massively multilingual models exist, studies have shown that monolingual models produce much better results. We train two trilingual BERT-like models, one for Finnish, Estonian, and English, the other for Croatian, Slovenian, and English. We evaluate their performance on several downstream tasks, NER, POS-tagging, and dependency parsing, using the multilingual BERT and XLM-R as baselines. The newly created FinEst BERT and CroSloEngual BERT improve the results on all tasks in most monolingual and cross-lingual situations 2 authors · Jun 14, 2020
- Exploiting Twitter as Source of Large Corpora of Weakly Similar Pairs for Semantic Sentence Embeddings Semantic sentence embeddings are usually supervisedly built minimizing distances between pairs of embeddings of sentences labelled as semantically similar by annotators. Since big labelled datasets are rare, in particular for non-English languages, and expensive, recent studies focus on unsupervised approaches that require not-paired input sentences. We instead propose a language-independent approach to build large datasets of pairs of informal texts weakly similar, without manual human effort, exploiting Twitter's intrinsic powerful signals of relatedness: replies and quotes of tweets. We use the collected pairs to train a Transformer model with triplet-like structures, and we test the generated embeddings on Twitter NLP similarity tasks (PIT and TURL) and STSb. We also introduce four new sentence ranking evaluation benchmarks of informal texts, carefully extracted from the initial collections of tweets, proving not only that our best model learns classical Semantic Textual Similarity, but also excels on tasks where pairs of sentences are not exact paraphrases. Ablation studies reveal how increasing the corpus size influences positively the results, even at 2M samples, suggesting that bigger collections of Tweets still do not contain redundant information about semantic similarities. 2 authors · Oct 5, 2021
- ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is generally acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for low-resource languages. In this paper, we propose ERNIE-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that ERNIE-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks. 7 authors · Dec 31, 2020
- Adapting Multilingual Embedding Models to Historical Luxembourgish The growing volume of digitized historical texts requires effective semantic search using text embeddings. However, pre-trained multilingual models, typically evaluated on contemporary texts, face challenges with historical digitized content due to OCR noise and outdated spellings. We explore the use of multilingual embeddings for cross-lingual semantic search on historical Luxembourgish, a low-resource language. We collect historical Luxembourgish news articles spanning various time periods and use GPT-4o to segment and translate them into closely related languages, creating 20,000 parallel training sentences per language pair. We further create a historical bitext mining evaluation set and find that these models struggle to perform cross-lingual search on historical Luxembourgish. To address this, we propose a simple adaptation method using in-domain training data, achieving up to 98\% accuracy in cross-lingual evaluations. We release our adapted models and historical Luxembourgish-German/French bitexts to support further research. 4 authors · Feb 11
1 Massively Multilingual Lexical Specialization of Multilingual Transformers While pretrained language models (PLMs) primarily serve as general-purpose text encoders that can be fine-tuned for a wide variety of downstream tasks, recent work has shown that they can also be rewired to produce high-quality word representations (i.e., static word embeddings) and yield good performance in type-level lexical tasks. While existing work primarily focused on the lexical specialization of monolingual PLMs with immense quantities of monolingual constraints, in this work we expose massively multilingual transformers (MMTs, e.g., mBERT or XLM-R) to multilingual lexical knowledge at scale, leveraging BabelNet as the readily available rich source of multilingual and cross-lingual type-level lexical knowledge. Concretely, we use BabelNet's multilingual synsets to create synonym pairs (or synonym-gloss pairs) across 50 languages and then subject the MMTs (mBERT and XLM-R) to a lexical specialization procedure guided by a contrastive objective. We show that such massively multilingual lexical specialization brings substantial gains in two standard cross-lingual lexical tasks, bilingual lexicon induction and cross-lingual word similarity, as well as in cross-lingual sentence retrieval. Crucially, we observe gains for languages unseen in specialization, indicating that multilingual lexical specialization enables generalization to languages with no lexical constraints. In a series of subsequent controlled experiments, we show that the number of specialization constraints plays a much greater role than the set of languages from which they originate. 3 authors · Aug 1, 2022
- MonoByte: A Pool of Monolingual Byte-level Language Models The zero-shot cross-lingual ability of models pretrained on multilingual and even monolingual corpora has spurred many hypotheses to explain this intriguing empirical result. However, due to the costs of pretraining, most research uses public models whose pretraining methodology, such as the choice of tokenization, corpus size, and computational budget, might differ drastically. When researchers pretrain their own models, they often do so under a constrained budget, and the resulting models might underperform significantly compared to SOTA models. These experimental differences led to various inconsistent conclusions about the nature of the cross-lingual ability of these models. To help further research on the topic, we released 10 monolingual byte-level models rigorously pretrained under the same configuration with a large compute budget (equivalent to 420 days on a V100) and corpora that are 4 times larger than the original BERT's. Because they are tokenizer-free, the problem of unseen token embeddings is eliminated, thus allowing researchers to try a wider range of cross-lingual experiments in languages with different scripts. Additionally, we release two models pretrained on non-natural language texts that can be used in sanity-check experiments. Experiments on QA and NLI tasks show that our monolingual models achieve competitive performance to the multilingual one, and hence can be served to strengthen our understanding of cross-lingual transferability in language models. 4 authors · Sep 22, 2022
1 SONAR: Sentence-Level Multimodal and Language-Agnostic Representations We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space. Our single text encoder, covering 200 languages, substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks. Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. Our encoders outperform existing speech encoders on similarity search tasks. We also provide a text decoder for 200 languages, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations. Our text-to-text results are competitive compared to the state-of-the-art NLLB~1B model, despite the fixed-size bottleneck representation. Our zero-shot speech-to-text translation results compare favorably with strong supervised baselines such as Whisper. 3 authors · Aug 22, 2023
- Improving Domain-Specific Retrieval by NLI Fine-Tuning The aim of this article is to investigate the fine-tuning potential of natural language inference (NLI) data to improve information retrieval and ranking. We demonstrate this for both English and Polish languages, using data from one of the largest Polish e-commerce sites and selected open-domain datasets. We employ both monolingual and multilingual sentence encoders fine-tuned by a supervised method utilizing contrastive loss and NLI data. Our results point to the fact that NLI fine-tuning increases the performance of the models in both tasks and both languages, with the potential to improve mono- and multilingual models. Finally, we investigate uniformity and alignment of the embeddings to explain the effect of NLI-based fine-tuning for an out-of-domain use-case. 4 authors · Aug 6, 2023
- Models and Datasets for Cross-Lingual Summarisation We present a cross-lingual summarisation corpus with long documents in a source language associated with multi-sentence summaries in a target language. The corpus covers twelve language pairs and directions for four European languages, namely Czech, English, French and German, and the methodology for its creation can be applied to several other languages. We derive cross-lingual document-summary instances from Wikipedia by combining lead paragraphs and articles' bodies from language aligned Wikipedia titles. We analyse the proposed cross-lingual summarisation task with automatic metrics and validate it with a human study. To illustrate the utility of our dataset we report experiments with multi-lingual pre-trained models in supervised, zero- and few-shot, and out-of-domain scenarios. 2 authors · Feb 19, 2022
- Unsupervised Context Aware Sentence Representation Pretraining for Multi-lingual Dense Retrieval Recent research demonstrates the effectiveness of using pretrained language models (PLM) to improve dense retrieval and multilingual dense retrieval. In this work, we present a simple but effective monolingual pretraining task called contrastive context prediction~(CCP) to learn sentence representation by modeling sentence level contextual relation. By pushing the embedding of sentences in a local context closer and pushing random negative samples away, different languages could form isomorphic structure, then sentence pairs in two different languages will be automatically aligned. Our experiments show that model collapse and information leakage are very easy to happen during contrastive training of language model, but language-specific memory bank and asymmetric batch normalization operation play an essential role in preventing collapsing and information leakage, respectively. Besides, a post-processing for sentence embedding is also very effective to achieve better retrieval performance. On the multilingual sentence retrieval task Tatoeba, our model achieves new SOTA results among methods without using bilingual data. Our model also shows larger gain on Tatoeba when transferring between non-English pairs. On two multi-lingual query-passage retrieval tasks, XOR Retrieve and Mr.TYDI, our model even achieves two SOTA results in both zero-shot and supervised setting among all pretraining models using bilingual data. 7 authors · Jun 7, 2022
3 CamemBERT: a Tasty French Language Model Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available models have either been trained on English data or on the concatenation of data in multiple languages. This makes practical use of such models --in all languages except English-- very limited. In this paper, we investigate the feasibility of training monolingual Transformer-based language models for other languages, taking French as an example and evaluating our language models on part-of-speech tagging, dependency parsing, named entity recognition and natural language inference tasks. We show that the use of web crawled data is preferable to the use of Wikipedia data. More surprisingly, we show that a relatively small web crawled dataset (4GB) leads to results that are as good as those obtained using larger datasets (130+GB). Our best performing model CamemBERT reaches or improves the state of the art in all four downstream tasks. 8 authors · Nov 10, 2019
- MFAQ: a Multilingual FAQ Dataset In this paper, we present the first multilingual FAQ dataset publicly available. We collected around 6M FAQ pairs from the web, in 21 different languages. Although this is significantly larger than existing FAQ retrieval datasets, it comes with its own challenges: duplication of content and uneven distribution of topics. We adopt a similar setup as Dense Passage Retrieval (DPR) and test various bi-encoders on this dataset. Our experiments reveal that a multilingual model based on XLM-RoBERTa achieves the best results, except for English. Lower resources languages seem to learn from one another as a multilingual model achieves a higher MRR than language-specific ones. Our qualitative analysis reveals the brittleness of the model on simple word changes. We publicly release our dataset, model and training script. 4 authors · Sep 27, 2021
4 Sabiá: Portuguese Large Language Models As the capabilities of language models continue to advance, it is conceivable that "one-size-fits-all" model will remain as the main paradigm. For instance, given the vast number of languages worldwide, many of which are low-resource, the prevalent practice is to pretrain a single model on multiple languages. In this paper, we add to the growing body of evidence that challenges this practice, demonstrating that monolingual pretraining on the target language significantly improves models already extensively trained on diverse corpora. More specifically, we further pretrain GPT-J and LLaMA models on Portuguese texts using 3% or less of their original pretraining budget. Few-shot evaluations on Poeta, a suite of 14 Portuguese datasets, reveal that our models outperform English-centric and multilingual counterparts by a significant margin. Our best model, Sabi\'a-65B, performs on par with GPT-3.5-turbo. By evaluating on datasets originally conceived in the target language as well as translated ones, we study the contributions of language-specific pretraining in terms of 1) capturing linguistic nuances and structures inherent to the target language, and 2) enriching the model's knowledge about a domain or culture. Our results indicate that the majority of the benefits stem from the domain-specific knowledge acquired through monolingual pretraining. 4 authors · Apr 16, 2023
1 Arctic-Embed 2.0: Multilingual Retrieval Without Compromise This paper presents the training methodology of Arctic-Embed 2.0, a set of open-source text embedding models built for accurate and efficient multilingual retrieval. While prior works have suffered from degraded English retrieval quality, Arctic-Embed 2.0 delivers competitive retrieval quality on multilingual and English-only benchmarks, and supports Matryoshka Representation Learning (MRL) for efficient embedding storage with significantly lower compressed quality degradation compared to alternatives. We detail the design and implementation, presenting several important open research questions that arose during model development. We conduct experiments exploring these research questions and include extensive discussion aimed at fostering further discussion in this field. 4 authors · Dec 3, 2024
3 Spanish Pre-trained BERT Model and Evaluation Data The Spanish language is one of the top 5 spoken languages in the world. Nevertheless, finding resources to train or evaluate Spanish language models is not an easy task. In this paper we help bridge this gap by presenting a BERT-based language model pre-trained exclusively on Spanish data. As a second contribution, we also compiled several tasks specifically for the Spanish language in a single repository much in the spirit of the GLUE benchmark. By fine-tuning our pre-trained Spanish model, we obtain better results compared to other BERT-based models pre-trained on multilingual corpora for most of the tasks, even achieving a new state-of-the-art on some of them. We have publicly released our model, the pre-training data, and the compilation of the Spanish benchmarks. 6 authors · Aug 5, 2023
- Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining The world of language models is going through turbulent times, better and ever larger models are coming out at an unprecedented speed. However, we argue that, especially for the scientific community, encoder models of up to 1 billion parameters are still very much needed, their primary usage being in enriching large collections of data with metadata necessary for downstream research. We investigate the best way to ensure the existence of such encoder models on the set of very closely related languages - Croatian, Serbian, Bosnian and Montenegrin, by setting up a diverse benchmark for these languages, and comparing the trained-from-scratch models with the new models constructed via additional pretraining of existing multilingual models. We show that comparable performance to dedicated from-scratch models can be obtained by additionally pretraining available multilingual models even with a limited amount of computation. We also show that neighboring languages, in our case Slovenian, can be included in the additional pretraining with little to no loss in the performance of the final model. 5 authors · Apr 8, 2024
- Beyond Contrastive Learning: A Variational Generative Model for Multilingual Retrieval Contrastive learning has been successfully used for retrieval of semantically aligned sentences, but it often requires large batch sizes or careful engineering to work well. In this paper, we instead propose a generative model for learning multilingual text embeddings which can be used to retrieve or score sentence pairs. Our model operates on parallel data in N languages and, through an approximation we introduce, efficiently encourages source separation in this multilingual setting, separating semantic information that is shared between translations from stylistic or language-specific variation. We show careful large-scale comparisons between contrastive and generation-based approaches for learning multilingual text embeddings, a comparison that has not been done to the best of our knowledge despite the popularity of these approaches. We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval -- the last of which we introduce in this paper. Overall, our Variational Multilingual Source-Separation Transformer (VMSST) model outperforms both a strong contrastive and generative baseline on these tasks. 5 authors · Dec 20, 2022
- ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot Multilingual Information Retrieval State-of-the-art neural retrievers predominantly focus on high-resource languages like English, which impedes their adoption in retrieval scenarios involving other languages. Current approaches circumvent the lack of high-quality labeled data in non-English languages by leveraging multilingual pretrained language models capable of cross-lingual transfer. However, these models require substantial task-specific fine-tuning across multiple languages, often perform poorly in languages with minimal representation in the pretraining corpus, and struggle to incorporate new languages after the pretraining phase. In this work, we present a novel modular dense retrieval model that learns from the rich data of a single high-resource language and effectively zero-shot transfers to a wide array of languages, thereby eliminating the need for language-specific labeled data. Our model, ColBERT-XM, demonstrates competitive performance against existing state-of-the-art multilingual retrievers trained on more extensive datasets in various languages. Further analysis reveals that our modular approach is highly data-efficient, effectively adapts to out-of-distribution data, and significantly reduces energy consumption and carbon emissions. By demonstrating its proficiency in zero-shot scenarios, ColBERT-XM marks a shift towards more sustainable and inclusive retrieval systems, enabling effective information accessibility in numerous languages. We publicly release our code and models for the community. 4 authors · Feb 22, 2024
- CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB We show that margin-based bitext mining in a multilingual sentence space can be applied to monolingual corpora of billions of sentences. We are using ten snapshots of a curated common crawl corpus (Wenzek et al., 2019) totalling 32.7 billion unique sentences. Using one unified approach for 38 languages, we were able to mine 4.5 billions parallel sentences, out of which 661 million are aligned with English. 20 language pairs have more then 30 million parallel sentences, 112 more then 10 million, and most more than one million, including direct alignments between many European or Asian languages. To evaluate the quality of the mined bitexts, we train NMT systems for most of the language pairs and evaluate them on TED, WMT and WAT test sets. Using our mined bitexts only and no human translated parallel data, we achieve a new state-of-the-art for a single system on the WMT'19 test set for translation between English and German, Russian and Chinese, as well as German/French. In particular, our English/German system outperforms the best single one by close to 4 BLEU points and is almost on pair with best WMT'19 evaluation system which uses system combination and back-translation. We also achieve excellent results for distant languages pairs like Russian/Japanese, outperforming the best submission at the 2019 workshop on Asian Translation (WAT). 5 authors · Nov 10, 2019
- Sinhala-English Word Embedding Alignment: Introducing Datasets and Benchmark for a Low Resource Language Since their inception, embeddings have become a primary ingredient in many flavours of Natural Language Processing (NLP) tasks supplanting earlier types of representation. Even though multilingual embeddings have been used for the increasing number of multilingual tasks, due to the scarcity of parallel training data, low-resource languages such as Sinhala, tend to focus more on monolingual embeddings. Then when it comes to the aforementioned multi-lingual tasks, it is challenging to utilize these monolingual embeddings given that even if the embedding spaces have a similar geometric arrangement due to an identical training process, the embeddings of the languages considered are not aligned. This is solved by the embedding alignment task. Even in this, high-resource language pairs are in the limelight while low-resource languages such as Sinhala which is in dire need of help seem to have fallen by the wayside. In this paper, we try to align Sinhala and English word embedding spaces based on available alignment techniques and introduce a benchmark for Sinhala language embedding alignment. In addition to that, to facilitate the supervised alignment, as an intermediate task, we also introduce Sinhala-English alignment datasets. These datasets serve as our anchor datasets for supervised word embedding alignment. Even though we do not obtain results comparable to the high-resource languages such as French, German, or Chinese, we believe our work lays the groundwork for more specialized alignment between English and Sinhala embeddings. 2 authors · Nov 17, 2023
- POLYGLOT-NER: Massive Multilingual Named Entity Recognition The increasing diversity of languages used on the web introduces a new level of complexity to Information Retrieval (IR) systems. We can no longer assume that textual content is written in one language or even the same language family. In this paper, we demonstrate how to build massive multilingual annotators with minimal human expertise and intervention. We describe a system that builds Named Entity Recognition (NER) annotators for 40 major languages using Wikipedia and Freebase. Our approach does not require NER human annotated datasets or language specific resources like treebanks, parallel corpora, and orthographic rules. The novelty of approach lies therein - using only language agnostic techniques, while achieving competitive performance. Our method learns distributed word representations (word embeddings) which encode semantic and syntactic features of words in each language. Then, we automatically generate datasets from Wikipedia link structure and Freebase attributes. Finally, we apply two preprocessing stages (oversampling and exact surface form matching) which do not require any linguistic expertise. Our evaluation is two fold: First, we demonstrate the system performance on human annotated datasets. Second, for languages where no gold-standard benchmarks are available, we propose a new method, distant evaluation, based on statistical machine translation. 4 authors · Oct 14, 2014
- LowREm: A Repository of Word Embeddings for 87 Low-Resource Languages Enhanced with Multilingual Graph Knowledge Contextualized embeddings based on large language models (LLMs) are available for various languages, but their coverage is often limited for lower resourced languages. Training LLMs for such languages is often difficult due to insufficient data and high computational cost. Especially for very low resource languages, static word embeddings thus still offer a viable alternative. There is, however, a notable lack of comprehensive repositories with such embeddings for diverse languages. To address this, we present LowREm, a centralized repository of static embeddings for 87 low-resource languages. We also propose a novel method to enhance GloVe-based embeddings by integrating multilingual graph knowledge, utilizing another source of knowledge. We demonstrate the superior performance of our enhanced embeddings as compared to contextualized embeddings extracted from XLM-R on sentiment analysis. Our code and data are publicly available under https://huggingface.co/DFKI. 3 authors · Sep 26, 2024
1 From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models. 15 authors · Nov 6, 2024
4 mT5: A massively multilingual pre-trained text-to-text transformer The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model checkpoints used in this work are publicly available. 8 authors · Oct 22, 2020
22 Multilingual E5 Text Embeddings: A Technical Report This technical report presents the training methodology and evaluation results of the open-source multilingual E5 text embedding models, released in mid-2023. Three embedding models of different sizes (small / base / large) are provided, offering a balance between the inference efficiency and embedding quality. The training procedure adheres to the English E5 model recipe, involving contrastive pre-training on 1 billion multilingual text pairs, followed by fine-tuning on a combination of labeled datasets. Additionally, we introduce a new instruction-tuned embedding model, whose performance is on par with state-of-the-art, English-only models of similar sizes. Information regarding the model release can be found at https://github.com/microsoft/unilm/tree/master/e5 . 6 authors · Feb 8, 2024 4
- The Less the Merrier? Investigating Language Representation in Multilingual Models Multilingual Language Models offer a way to incorporate multiple languages in one model and utilize cross-language transfer learning to improve performance for different Natural Language Processing (NLP) tasks. Despite progress in multilingual models, not all languages are supported as well, particularly in low-resource settings. In this work, we investigate the linguistic representation of different languages in multilingual models. We start by asking the question which languages are supported in popular multilingual models and which languages are left behind. Then, for included languages, we look at models' learned representations based on language family and dialect and try to understand how models' learned representations for~(1) seen and~(2) unseen languages vary across different language groups. In addition, we test and analyze performance on downstream tasks such as text generation and Named Entity Recognition. We observe from our experiments that community-centered models -- models that focus on languages of a given family or geographical location and are built by communities who speak them -- perform better at distinguishing between languages in the same family for low-resource languages. Our paper contributes to the literature in understanding multilingual models and their shortcomings and offers insights on potential ways to improve them. 3 authors · Oct 19, 2023
1 How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models In this work, we provide a systematic and comprehensive empirical comparison of pretrained multilingual language models versus their monolingual counterparts with regard to their monolingual task performance. We study a set of nine typologically diverse languages with readily available pretrained monolingual models on a set of five diverse monolingual downstream tasks. We first aim to establish, via fair and controlled comparisons, if a gap between the multilingual and the corresponding monolingual representation of that language exists, and subsequently investigate the reason for any performance difference. To disentangle conflating factors, we train new monolingual models on the same data, with monolingually and multilingually trained tokenizers. We find that while the pretraining data size is an important factor, a designated monolingual tokenizer plays an equally important role in the downstream performance. Our results show that languages that are adequately represented in the multilingual model's vocabulary exhibit negligible performance decreases over their monolingual counterparts. We further find that replacing the original multilingual tokenizer with the specialized monolingual tokenizer improves the downstream performance of the multilingual model for almost every task and language. 5 authors · Dec 31, 2020 1
- LEALLA: Learning Lightweight Language-agnostic Sentence Embeddings with Knowledge Distillation Large-scale language-agnostic sentence embedding models such as LaBSE (Feng et al., 2022) obtain state-of-the-art performance for parallel sentence alignment. However, these large-scale models can suffer from inference speed and computation overhead. This study systematically explores learning language-agnostic sentence embeddings with lightweight models. We demonstrate that a thin-deep encoder can construct robust low-dimensional sentence embeddings for 109 languages. With our proposed distillation methods, we achieve further improvements by incorporating knowledge from a teacher model. Empirical results on Tatoeba, United Nations, and BUCC show the effectiveness of our lightweight models. We release our lightweight language-agnostic sentence embedding models LEALLA on TensorFlow Hub. 2 authors · Feb 16, 2023
- CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval We present the Charles University system for the MRL~2023 Shared Task on Multi-lingual Multi-task Information Retrieval. The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages. Our solutions to both subtasks rely on the translate-test approach. We first translate the unlabeled examples into English using a multilingual machine translation model. Then, we run inference on the translated data using a strong task-specific model. Finally, we project the labeled data back into the original language. To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model. In both settings, we experiment with finetuning the classification models on the translated data. However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines. 2 authors · Oct 25, 2023
13 LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models Recent advancements in large language models (LLMs) based embedding models have established new state-of-the-art benchmarks for text embedding tasks, particularly in dense vector-based retrieval. However, these models predominantly focus on English, leaving multilingual embedding capabilities largely unexplored. To address this limitation, we present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision. LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks. These components are seamlessly integrated through a minimal set of trainable parameters that act as a connector, effectively transferring the multilingual encoder's language understanding capabilities to the specialized embedding model. Additionally, to comprehensively evaluate multilingual embedding performance, we introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages. Extensive experimental results demonstrate that LUSIFER significantly enhances the multilingual performance across various embedding tasks, particularly for medium and low-resource languages, without requiring explicit multilingual training data. 6 authors · Jan 1 2
- WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach Producing the embedding of a sentence in an unsupervised way is valuable to natural language matching and retrieval problems in practice. In this work, we conduct a thorough examination of pretrained model based unsupervised sentence embeddings. We study on four pretrained models and conduct massive experiments on seven datasets regarding sentence semantics. We have there main findings. First, averaging all tokens is better than only using [CLS] vector. Second, combining both top andbottom layers is better than only using top layers. Lastly, an easy whitening-based vector normalization strategy with less than 10 lines of code consistently boosts the performance. 8 authors · Apr 5, 2021
- Comparison of Czech Transformers on Text Classification Tasks In this paper, we present our progress in pre-training monolingual Transformers for Czech and contribute to the research community by releasing our models for public. The need for such models emerged from our effort to employ Transformers in our language-specific tasks, but we found the performance of the published multilingual models to be very limited. Since the multilingual models are usually pre-trained from 100+ languages, most of low-resourced languages (including Czech) are under-represented in these models. At the same time, there is a huge amount of monolingual training data available in web archives like Common Crawl. We have pre-trained and publicly released two monolingual Czech Transformers and compared them with relevant public models, trained (at least partially) for Czech. The paper presents the Transformers pre-training procedure as well as a comparison of pre-trained models on text classification task from various domains. 2 authors · Jul 21, 2021
- On the Language Neutrality of Pre-trained Multilingual Representations Multilingual contextual embeddings, such as multilingual BERT and XLM-RoBERTa, have proved useful for many multi-lingual tasks. Previous work probed the cross-linguality of the representations indirectly using zero-shot transfer learning on morphological and syntactic tasks. We instead investigate the language-neutrality of multilingual contextual embeddings directly and with respect to lexical semantics. Our results show that contextual embeddings are more language-neutral and, in general, more informative than aligned static word-type embeddings, which are explicitly trained for language neutrality. Contextual embeddings are still only moderately language-neutral by default, so we propose two simple methods for achieving stronger language neutrality: first, by unsupervised centering of the representation for each language and second, by fitting an explicit projection on small parallel data. Besides, we show how to reach state-of-the-art accuracy on language identification and match the performance of statistical methods for word alignment of parallel sentences without using parallel data. 3 authors · Apr 9, 2020
- Understanding Cross-Lingual Alignment -- A Survey Cross-lingual alignment, the meaningful similarity of representations across languages in multilingual language models, has been an active field of research in recent years. We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field. We present different understandings of cross-lingual alignment and their limitations. We provide a qualitative summary of results from a large number of surveyed papers. Finally, we discuss how these insights may be applied not only to encoder models, where this topic has been heavily studied, but also to encoder-decoder or even decoder-only models, and argue that an effective trade-off between language-neutral and language-specific information is key. 3 authors · Apr 9, 2024
1 MEXMA: Token-level objectives improve sentence representations Current pre-trained cross-lingual sentence encoders approaches use sentence-level objectives only. This can lead to loss of information, especially for tokens, which then degrades the sentence representation. We propose MEXMA, a novel approach that integrates both sentence-level and token-level objectives. The sentence representation in one language is used to predict masked tokens in another language, with both the sentence representation and all tokens directly updating the encoder. We show that adding token-level objectives greatly improves the sentence representation quality across several tasks. Our approach outperforms current pre-trained cross-lingual sentence encoders on bi-text mining as well as several downstream tasks. We also analyse the information encoded in our tokens, and how the sentence representation is built from them. 4 authors · Sep 19, 2024
- Facebook AI WMT21 News Translation Task Submission We describe Facebook's multilingual model submission to the WMT2021 shared task on news translation. We participate in 14 language directions: English to and from Czech, German, Hausa, Icelandic, Japanese, Russian, and Chinese. To develop systems covering all these directions, we focus on multilingual models. We utilize data from all available sources --- WMT, large-scale data mining, and in-domain backtranslation --- to create high quality bilingual and multilingual baselines. Subsequently, we investigate strategies for scaling multilingual model size, such that one system has sufficient capacity for high quality representations of all eight languages. Our final submission is an ensemble of dense and sparse Mixture-of-Expert multilingual translation models, followed by finetuning on in-domain news data and noisy channel reranking. Compared to previous year's winning submissions, our multilingual system improved the translation quality on all language directions, with an average improvement of 2.0 BLEU. In the WMT2021 task, our system ranks first in 10 directions based on automatic evaluation. 6 authors · Aug 6, 2021
- Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP Tasks Contextualized representations from a pre-trained language model are central to achieve a high performance on downstream NLP task. The pre-trained BERT and A Lite BERT (ALBERT) models can be fine-tuned to give state-ofthe-art results in sentence-pair regressions such as semantic textual similarity (STS) and natural language inference (NLI). Although BERT-based models yield the [CLS] token vector as a reasonable sentence embedding, the search for an optimal sentence embedding scheme remains an active research area in computational linguistics. This paper explores on sentence embedding models for BERT and ALBERT. In particular, we take a modified BERT network with siamese and triplet network structures called Sentence-BERT (SBERT) and replace BERT with ALBERT to create Sentence-ALBERT (SALBERT). We also experiment with an outer CNN sentence-embedding network for SBERT and SALBERT. We evaluate performances of all sentence-embedding models considered using the STS and NLI datasets. The empirical results indicate that our CNN architecture improves ALBERT models substantially more than BERT models for STS benchmark. Despite significantly fewer model parameters, ALBERT sentence embedding is highly competitive to BERT in downstream NLP evaluations. 4 authors · Jan 26, 2021
- Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages Scaling multilingual representation learning beyond the hundred most frequent languages is challenging, in particular to cover the long tail of low-resource languages. A promising approach has been to train one-for-all multilingual models capable of cross-lingual transfer, but these models often suffer from insufficient capacity and interference between unrelated languages. Instead, we move away from this approach and focus on training multiple language (family) specific representations, but most prominently enable all languages to still be encoded in the same representational space. To achieve this, we focus on teacher-student training, allowing all encoders to be mutually compatible for bitext mining, and enabling fast learning of new languages. We introduce a new teacher-student training scheme which combines supervised and self-supervised training, allowing encoders to take advantage of monolingual training data, which is valuable in the low-resource setting. Our approach significantly outperforms the original LASER encoder. We study very low-resource languages and handle 50 African languages, many of which are not covered by any other model. For these languages, we train sentence encoders, mine bitexts, and validate the bitexts by training NMT systems. 3 authors · May 25, 2022
1 A General-Purpose Multilingual Document Encoder Massively multilingual pretrained transformers (MMTs) have tremendously pushed the state of the art on multilingual NLP and cross-lingual transfer of NLP models in particular. While a large body of work leveraged MMTs to mine parallel data and induce bilingual document embeddings, much less effort has been devoted to training general-purpose (massively) multilingual document encoder that can be used for both supervised and unsupervised document-level tasks. In this work, we pretrain a massively multilingual document encoder as a hierarchical transformer model (HMDE) in which a shallow document transformer contextualizes sentence representations produced by a state-of-the-art pretrained multilingual sentence encoder. We leverage Wikipedia as a readily available source of comparable documents for creating training data, and train HMDE by means of a cross-lingual contrastive objective, further exploiting the category hierarchy of Wikipedia for creation of difficult negatives. We evaluate the effectiveness of HMDE in two arguably most common and prominent cross-lingual document-level tasks: (1) cross-lingual transfer for topical document classification and (2) cross-lingual document retrieval. HMDE is significantly more effective than (i) aggregations of segment-based representations and (ii) multilingual Longformer. Crucially, owing to its massively multilingual lower transformer, HMDE successfully generalizes to languages unseen in document-level pretraining. We publicly release our code and models at https://github.com/ogaloglu/pre-training-multilingual-document-encoders . 3 authors · May 11, 2023
- CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia. 7 authors · Nov 1, 2019
- Multilingual Alignment of Contextual Word Representations We propose procedures for evaluating and strengthening contextual embedding alignment and show that they are useful in analyzing and improving multilingual BERT. In particular, after our proposed alignment procedure, BERT exhibits significantly improved zero-shot performance on XNLI compared to the base model, remarkably matching pseudo-fully-supervised translate-train models for Bulgarian and Greek. Further, to measure the degree of alignment, we introduce a contextual version of word retrieval and show that it correlates well with downstream zero-shot transfer. Using this word retrieval task, we also analyze BERT and find that it exhibits systematic deficiencies, e.g. worse alignment for open-class parts-of-speech and word pairs written in different scripts, that are corrected by the alignment procedure. These results support contextual alignment as a useful concept for understanding large multilingual pre-trained models. 3 authors · Feb 9, 2020
- Regionalized models for Spanish language variations based on Twitter Spanish is one of the most spoken languages in the globe, but not necessarily Spanish is written and spoken in the same way in different countries. Understanding local language variations can help to improve model performances on regional tasks, both understanding local structures and also improving the message's content. For instance, think about a machine learning engineer who automatizes some language classification task on a particular region or a social scientist trying to understand a regional event with echoes on social media; both can take advantage of dialect-based language models to understand what is happening with more contextual information hence more precision. This manuscript presents and describes a set of regionalized resources for the Spanish language built on four-year Twitter public messages geotagged in 26 Spanish-speaking countries. We introduce word embeddings based on FastText, language models based on BERT, and per-region sample corpora. We also provide a broad comparison among regions covering lexical and semantical similarities; as well as examples of using regional resources on message classification tasks. 5 authors · Oct 12, 2021
- Bridging Subword Gaps in Pretrain-Finetune Paradigm for Natural Language Generation A well-known limitation in pretrain-finetune paradigm lies in its inflexibility caused by the one-size-fits-all vocabulary. This potentially weakens the effect when applying pretrained models into natural language generation (NLG) tasks, especially for the subword distributions between upstream and downstream tasks with significant discrepancy. Towards approaching this problem, we extend the vanilla pretrain-finetune pipeline with an extra embedding transfer step. Specifically, a plug-and-play embedding generator is introduced to produce the representation of any input token, according to pre-trained embeddings of its morphologically similar ones. Thus, embeddings of mismatch tokens in downstream tasks can also be efficiently initialized. We conduct experiments on a variety of NLG tasks under the pretrain-finetune fashion. Experimental results and extensive analyses show that the proposed strategy offers us opportunities to feel free to transfer the vocabulary, leading to more efficient and better performed downstream NLG models. 8 authors · Jun 10, 2021
1 Word Alignment by Fine-tuning Embeddings on Parallel Corpora Word alignment over parallel corpora has a wide variety of applications, including learning translation lexicons, cross-lingual transfer of language processing tools, and automatic evaluation or analysis of translation outputs. The great majority of past work on word alignment has worked by performing unsupervised learning on parallel texts. Recently, however, other work has demonstrated that pre-trained contextualized word embeddings derived from multilingually trained language models (LMs) prove an attractive alternative, achieving competitive results on the word alignment task even in the absence of explicit training on parallel data. In this paper, we examine methods to marry the two approaches: leveraging pre-trained LMs but fine-tuning them on parallel text with objectives designed to improve alignment quality, and proposing methods to effectively extract alignments from these fine-tuned models. We perform experiments on five language pairs and demonstrate that our model can consistently outperform previous state-of-the-art models of all varieties. In addition, we demonstrate that we are able to train multilingual word aligners that can obtain robust performance on different language pairs. Our aligner, AWESOME (Aligning Word Embedding Spaces of Multilingual Encoders), with pre-trained models is available at https://github.com/neulab/awesome-align 2 authors · Jan 20, 2021 2
- PreAlign: Boosting Cross-Lingual Transfer by Early Establishment of Multilingual Alignment Large language models demonstrate reasonable multilingual abilities, despite predominantly English-centric pretraining. However, the spontaneous multilingual alignment in these models is shown to be weak, leading to unsatisfactory cross-lingual transfer and knowledge sharing. Previous works attempt to address this issue by explicitly injecting multilingual alignment information during or after pretraining. Thus for the early stage in pretraining, the alignment is weak for sharing information or knowledge across languages. In this paper, we propose PreAlign, a framework that establishes multilingual alignment prior to language model pretraining. PreAlign injects multilingual alignment by initializing the model to generate similar representations of aligned words and preserves this alignment using a code-switching strategy during pretraining. Extensive experiments in a synthetic English to English-Clone setting demonstrate that PreAlign significantly outperforms standard multilingual joint training in language modeling, zero-shot cross-lingual transfer, and cross-lingual knowledge application. Further experiments in real-world scenarios further validate PreAlign's effectiveness across various model sizes. 5 authors · Jul 23, 2024
- BERTweet: A pre-trained language model for English Tweets We present BERTweet, the first public large-scale pre-trained language model for English Tweets. Our BERTweet, having the same architecture as BERT-base (Devlin et al., 2019), is trained using the RoBERTa pre-training procedure (Liu et al., 2019). Experiments show that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base (Conneau et al., 2020), producing better performance results than the previous state-of-the-art models on three Tweet NLP tasks: Part-of-speech tagging, Named-entity recognition and text classification. We release BERTweet under the MIT License to facilitate future research and applications on Tweet data. Our BERTweet is available at https://github.com/VinAIResearch/BERTweet 3 authors · May 20, 2020 1
1 Bootstrapping Multilingual AMR with Contextual Word Alignments We develop high performance multilingualAbstract Meaning Representation (AMR) sys-tems by projecting English AMR annotationsto other languages with weak supervision. Weachieve this goal by bootstrapping transformer-based multilingual word embeddings, in partic-ular those from cross-lingual RoBERTa (XLM-R large). We develop a novel technique forforeign-text-to-English AMR alignment, usingthe contextual word alignment between En-glish and foreign language tokens. This wordalignment is weakly supervised and relies onthe contextualized XLM-R word embeddings.We achieve a highly competitive performancethat surpasses the best published results forGerman, Italian, Spanish and Chinese. 7 authors · Feb 3, 2021
- Bridging Cross-Lingual Gaps During Leveraging the Multilingual Sequence-to-Sequence Pretraining for Text Generation and Understanding For multilingual sequence-to-sequence pretrained language models (multilingual Seq2Seq PLMs), e.g. mBART, the self-supervised pretraining task is trained on a wide range of monolingual languages, e.g. 25 languages from CommonCrawl, while the downstream cross-lingual tasks generally progress on a bilingual language subset, e.g. English-German, making there exists the data discrepancy, namely domain discrepancy, and cross-lingual learning objective discrepancy, namely task discrepancy, between the pretraining and finetuning stages. To bridge the above cross-lingual domain and task gaps, we extend the vanilla pretrain-finetune pipeline with extra code-switching restore task. Specifically, the first stage employs the self-supervised code-switching restore task as a pretext task, allowing the multilingual Seq2Seq PLMs to acquire some in-domain alignment information. And for the second stage, we fine-tune the model on downstream data normally. Experiments on both NLG evaluation (12 bilingual translation tasks, 30 zero-shot translation tasks, and 2 cross-lingual summarization tasks) and NLU evaluation (7 cross-lingual natural language inference tasks) show our model outperforms the strong baseline mBART with standard finetuning strategy, consistently. Analyses indicate our approach could narrow the Euclidean distance of cross-lingual sentence representations, and improve the model generalization with trivial computational cost. We release the code at: https://github.com/zanchangtong/CSR4mBART. 6 authors · Apr 16, 2022
- A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation Recent advances in the pre-training of language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages are not well represented on the web and therefore excluded from the large-scale crawls used to create datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pre-training? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a new African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both to additional languages and to additional domains is to fine-tune large pre-trained models on small quantities of high-quality translation data. 45 authors · May 4, 2022
- Multilingual Sentence Transformer as A Multilingual Word Aligner Multilingual pretrained language models (mPLMs) have shown their effectiveness in multilingual word alignment induction. However, these methods usually start from mBERT or XLM-R. In this paper, we investigate whether multilingual sentence Transformer LaBSE is a strong multilingual word aligner. This idea is non-trivial as LaBSE is trained to learn language-agnostic sentence-level embeddings, while the alignment extraction task requires the more fine-grained word-level embeddings to be language-agnostic. We demonstrate that the vanilla LaBSE outperforms other mPLMs currently used in the alignment task, and then propose to finetune LaBSE on parallel corpus for further improvement. Experiment results on seven language pairs show that our best aligner outperforms previous state-of-the-art models of all varieties. In addition, our aligner supports different language pairs in a single model, and even achieves new state-of-the-art on zero-shot language pairs that does not appear in the finetuning process. 5 authors · Jan 28, 2023
- Bertinho: Galician BERT Representations This paper presents a monolingual BERT model for Galician. We follow the recent trend that shows that it is feasible to build robust monolingual BERT models even for relatively low-resource languages, while performing better than the well-known official multilingual BERT (mBERT). More particularly, we release two monolingual Galician BERT models, built using 6 and 12 transformer layers, respectively; trained with limited resources (~45 million tokens on a single GPU of 24GB). We then provide an exhaustive evaluation on a number of tasks such as POS-tagging, dependency parsing and named entity recognition. For this purpose, all these tasks are cast in a pure sequence labeling setup in order to run BERT without the need to include any additional layers on top of it (we only use an output classification layer to map the contextualized representations into the predicted label). The experiments show that our models, especially the 12-layer one, outperform the results of mBERT in most tasks. 3 authors · Mar 25, 2021
- How multilingual is Multilingual BERT? In this paper, we show that Multilingual BERT (M-BERT), released by Devlin et al. (2018) as a single language model pre-trained from monolingual corpora in 104 languages, is surprisingly good at zero-shot cross-lingual model transfer, in which task-specific annotations in one language are used to fine-tune the model for evaluation in another language. To understand why, we present a large number of probing experiments, showing that transfer is possible even to languages in different scripts, that transfer works best between typologically similar languages, that monolingual corpora can train models for code-switching, and that the model can find translation pairs. From these results, we can conclude that M-BERT does create multilingual representations, but that these representations exhibit systematic deficiencies affecting certain language pairs. 3 authors · Jun 4, 2019
- Pretrained Language Models for Sequential Sentence Classification As a step toward better document-level understanding, we explore classification of a sequence of sentences into their corresponding categories, a task that requires understanding sentences in context of the document. Recent successful models for this task have used hierarchical models to contextualize sentence representations, and Conditional Random Fields (CRFs) to incorporate dependencies between subsequent labels. In this work, we show that pretrained language models, BERT (Devlin et al., 2018) in particular, can be used for this task to capture contextual dependencies without the need for hierarchical encoding nor a CRF. Specifically, we construct a joint sentence representation that allows BERT Transformer layers to directly utilize contextual information from all words in all sentences. Our approach achieves state-of-the-art results on four datasets, including a new dataset of structured scientific abstracts. 5 authors · Sep 9, 2019
- TwHIN-BERT: A Socially-Enriched Pre-trained Language Model for Multilingual Tweet Representations We present TwHIN-BERT, a multilingual language model trained on in-domain data from the popular social network Twitter. TwHIN-BERT differs from prior pre-trained language models as it is trained with not only text-based self-supervision, but also with a social objective based on the rich social engagements within a Twitter heterogeneous information network (TwHIN). Our model is trained on 7 billion tweets covering over 100 distinct languages providing a valuable representation to model short, noisy, user-generated text. We evaluate our model on a variety of multilingual social recommendation and semantic understanding tasks and demonstrate significant metric improvement over established pre-trained language models. We will freely open-source TwHIN-BERT and our curated hashtag prediction and social engagement benchmark datasets to the research community. 7 authors · Sep 15, 2022
- Translation Aligned Sentence Embeddings for Turkish Language Due to the limited availability of high quality datasets for training sentence embeddings in Turkish, we propose a training methodology and a regimen to develop a sentence embedding model. The central idea is simple but effective : is to fine-tune a pretrained encoder-decoder model in two consecutive stages, where the first stage involves aligning the embedding space with translation pairs. Thanks to this alignment, the prowess of the main model can be better projected onto the target language in a sentence embedding setting where it can be fine-tuned with high accuracy in short duration with limited target language dataset. 2 authors · Nov 16, 2023
- Universal Text Representation from BERT: An Empirical Study We present a systematic investigation of layer-wise BERT activations for general-purpose text representations to understand what linguistic information they capture and how transferable they are across different tasks. Sentence-level embeddings are evaluated against two state-of-the-art models on downstream and probing tasks from SentEval, while passage-level embeddings are evaluated on four question-answering (QA) datasets under a learning-to-rank problem setting. Embeddings from the pre-trained BERT model perform poorly in semantic similarity and sentence surface information probing tasks. Fine-tuning BERT on natural language inference data greatly improves the quality of the embeddings. Combining embeddings from different BERT layers can further boost performance. BERT embeddings outperform BM25 baseline significantly on factoid QA datasets at the passage level, but fail to perform better than BM25 on non-factoid datasets. For all QA datasets, there is a gap between embedding-based method and in-domain fine-tuned BERT (we report new state-of-the-art results on two datasets), which suggests deep interactions between question and answer pairs are critical for those hard tasks. 5 authors · Oct 17, 2019
- A Supervised Word Alignment Method based on Cross-Language Span Prediction using Multilingual BERT We present a novel supervised word alignment method based on cross-language span prediction. We first formalize a word alignment problem as a collection of independent predictions from a token in the source sentence to a span in the target sentence. As this is equivalent to a SQuAD v2.0 style question answering task, we then solve this problem by using multilingual BERT, which is fine-tuned on a manually created gold word alignment data. We greatly improved the word alignment accuracy by adding the context of the token to the question. In the experiments using five word alignment datasets among Chinese, Japanese, German, Romanian, French, and English, we show that the proposed method significantly outperformed previous supervised and unsupervised word alignment methods without using any bitexts for pretraining. For example, we achieved an F1 score of 86.7 for the Chinese-English data, which is 13.3 points higher than the previous state-of-the-art supervised methods. 3 authors · Apr 29, 2020
1 Multilingual Pretraining Using a Large Corpus Machine-Translated from a Single Source Language English, as a very high-resource language, enables the pretraining of high-quality large language models (LLMs). The same cannot be said for most other languages, as leading LLMs still underperform for non-English languages, likely due to a gap in the quality and diversity of the available multilingual pretraining corpora. In this work, we find that machine-translated text from a single high-quality source language can contribute significantly to the pretraining of multilingual LLMs. We translate FineWeb-Edu, a high-quality English web dataset, into French, German, and Spanish, resulting in a final 300B-token dataset, which we call TransWeb-Edu, and pretrain a 1.3B-parameter model, CuatroLLM, from scratch on this dataset. Across five non-English reasoning tasks, we show that CuatroLLM matches or outperforms state-of-the-art multilingual models trained using closed data, such as Llama3.2 and Gemma2, despite using an order of magnitude less data, such as about 6% of the tokens used for Llama3.2's training. We further demonstrate that with additional domain-specific pretraining, amounting to less than 1% of TransWeb-Edu, CuatroLLM surpasses the state of the art in multilingual reasoning. To promote reproducibility, we release our corpus, models, and training pipeline under open licenses at hf.co/britllm/CuatroLLM. 7 authors · Oct 31, 2024
- Pre-trained Models for Natural Language Processing: A Survey Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks. 6 authors · Mar 18, 2020
3 Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases. 52 authors · Mar 22, 2021
- Scaling up COMETKIWI: Unbabel-IST 2023 Submission for the Quality Estimation Shared Task We present the joint contribution of Unbabel and Instituto Superior T\'ecnico to the WMT 2023 Shared Task on Quality Estimation (QE). Our team participated on all tasks: sentence- and word-level quality prediction (task 1) and fine-grained error span detection (task 2). For all tasks, we build on the COMETKIWI-22 model (Rei et al., 2022b). Our multilingual approaches are ranked first for all tasks, reaching state-of-the-art performance for quality estimation at word-, span- and sentence-level granularity. Compared to the previous state-of-the-art COMETKIWI-22, we show large improvements in correlation with human judgements (up to 10 Spearman points). Moreover, we surpass the second-best multilingual submission to the shared-task with up to 3.8 absolute points. 8 authors · Sep 21, 2023
2 EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models In this work, we introduce EMMA-500, a large-scale multilingual language model continue-trained on texts across 546 languages designed for enhanced multilingual performance, focusing on improving language coverage for low-resource languages. To facilitate continual pre-training, we compile the MaLA corpus, a comprehensive multilingual dataset enriched with curated datasets across diverse domains. Leveraging this corpus, we conduct extensive continual pre-training of the Llama 2 7B model, resulting in EMMA-500, which demonstrates robust performance across a wide collection of benchmarks, including a comprehensive set of multilingual tasks and PolyWrite, an open-ended generation benchmark developed in this study. Our results highlight the effectiveness of continual pre-training in expanding large language models' language capacity, particularly for underrepresented languages, demonstrating significant gains in cross-lingual transfer, task generalization, and language adaptability. 11 authors · Sep 26, 2024
5 Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new state-of-the-art performance on sentence-pair regression tasks like semantic textual similarity (STS). However, it requires that both sentences are fed into the network, which causes a massive computational overhead: Finding the most similar pair in a collection of 10,000 sentences requires about 50 million inference computations (~65 hours) with BERT. The construction of BERT makes it unsuitable for semantic similarity search as well as for unsupervised tasks like clustering. In this publication, we present Sentence-BERT (SBERT), a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. This reduces the effort for finding the most similar pair from 65 hours with BERT / RoBERTa to about 5 seconds with SBERT, while maintaining the accuracy from BERT. We evaluate SBERT and SRoBERTa on common STS tasks and transfer learning tasks, where it outperforms other state-of-the-art sentence embeddings methods. 2 authors · Aug 27, 2019
- A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained Models Recent work on tokenizer-free multilingual pretrained models show promising results in improving cross-lingual transfer and reducing engineering overhead (Clark et al., 2022; Xue et al., 2022). However, these works mainly focus on reporting accuracy on a limited set of tasks and data settings, placing less emphasis on other important factors when tuning and deploying the models in practice, such as memory usage, inference speed, and fine-tuning data robustness. We attempt to fill this gap by performing a comprehensive empirical comparison of multilingual tokenizer-free and subword-based models considering these various dimensions. Surprisingly, we find that subword-based models might still be the most practical choice in many settings, achieving better performance for lower inference latency and memory usage. Based on these results, we encourage future work in tokenizer-free methods to consider these factors when designing and evaluating new models. 4 authors · Oct 13, 2022
- Graph-Based Multilingual Label Propagation for Low-Resource Part-of-Speech Tagging Part-of-Speech (POS) tagging is an important component of the NLP pipeline, but many low-resource languages lack labeled data for training. An established method for training a POS tagger in such a scenario is to create a labeled training set by transferring from high-resource languages. In this paper, we propose a novel method for transferring labels from multiple high-resource source to low-resource target languages. We formalize POS tag projection as graph-based label propagation. Given translations of a sentence in multiple languages, we create a graph with words as nodes and alignment links as edges by aligning words for all language pairs. We then propagate node labels from source to target using a Graph Neural Network augmented with transformer layers. We show that our propagation creates training sets that allow us to train POS taggers for a diverse set of languages. When combined with enhanced contextualized embeddings, our method achieves a new state-of-the-art for unsupervised POS tagging of low-resource languages. 5 authors · Oct 18, 2022
- Learning Word Vectors for 157 Languages Distributed word representations, or word vectors, have recently been applied to many tasks in natural language processing, leading to state-of-the-art performance. A key ingredient to the successful application of these representations is to train them on very large corpora, and use these pre-trained models in downstream tasks. In this paper, we describe how we trained such high quality word representations for 157 languages. We used two sources of data to train these models: the free online encyclopedia Wikipedia and data from the common crawl project. We also introduce three new word analogy datasets to evaluate these word vectors, for French, Hindi and Polish. Finally, we evaluate our pre-trained word vectors on 10 languages for which evaluation datasets exists, showing very strong performance compared to previous models. 5 authors · Feb 19, 2018
1 Zero Resource Cross-Lingual Part Of Speech Tagging Part of speech tagging in zero-resource settings can be an effective approach for low-resource languages when no labeled training data is available. Existing systems use two main techniques for POS tagging i.e. pretrained multilingual large language models(LLM) or project the source language labels into the zero resource target language and train a sequence labeling model on it. We explore the latter approach using the off-the-shelf alignment module and train a hidden Markov model(HMM) to predict the POS tags. We evaluate transfer learning setup with English as a source language and French, German, and Spanish as target languages for part-of-speech tagging. Our conclusion is that projected alignment data in zero-resource language can be beneficial to predict POS tags. 1 authors · Jan 11, 2024
- Exploring Anisotropy and Outliers in Multilingual Language Models for Cross-Lingual Semantic Sentence Similarity Previous work has shown that the representations output by contextual language models are more anisotropic than static type embeddings, and typically display outlier dimensions. This seems to be true for both monolingual and multilingual models, although much less work has been done on the multilingual context. Why these outliers occur and how they affect the representations is still an active area of research. We investigate outlier dimensions and their relationship to anisotropy in multiple pre-trained multilingual language models. We focus on cross-lingual semantic similarity tasks, as these are natural tasks for evaluating multilingual representations. Specifically, we examine sentence representations. Sentence transformers which are fine-tuned on parallel resources (that are not always available) perform better on this task, and we show that their representations are more isotropic. However, we aim to improve multilingual representations in general. We investigate how much of the performance difference can be made up by only transforming the embedding space without fine-tuning, and visualise the resulting spaces. We test different operations: Removing individual outlier dimensions, cluster-based isotropy enhancement, and ZCA whitening. We publish our code for reproducibility. 4 authors · Jun 1, 2023
- ParaNMT-50M: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations We describe PARANMT-50M, a dataset of more than 50 million English-English sentential paraphrase pairs. We generated the pairs automatically by using neural machine translation to translate the non-English side of a large parallel corpus, following Wieting et al. (2017). Our hope is that ParaNMT-50M can be a valuable resource for paraphrase generation and can provide a rich source of semantic knowledge to improve downstream natural language understanding tasks. To show its utility, we use ParaNMT-50M to train paraphrastic sentence embeddings that outperform all supervised systems on every SemEval semantic textual similarity competition, in addition to showing how it can be used for paraphrase generation. 2 authors · Nov 15, 2017
- Yseop at FinSim-3 Shared Task 2021: Specializing Financial Domain Learning with Phrase Representations In this paper, we present our approaches for the FinSim-3 Shared Task 2021: Learning Semantic Similarities for the Financial Domain. The aim of this shared task is to correctly classify a list of given terms from the financial domain into the most relevant hypernym (or top-level) concept in an external ontology. For our system submission, we evaluate two methods: a Sentence-RoBERTa (SRoBERTa) embeddings model pre-trained on a custom corpus, and a dual word-sentence embeddings model that builds on the first method by improving the proposed baseline word embeddings construction using the FastText model to boost the classification performance. Our system ranks 2nd overall on both metrics, scoring 0.917 on Average Accuracy and 1.141 on Mean Rank. 3 authors · Aug 21, 2021
- Efficient Domain Adaptation of Sentence Embeddings using Adapters Sentence embeddings enable us to capture the semantic similarity of short texts. Most sentence embedding models are trained for general semantic textual similarity (STS) tasks. Therefore, to use sentence embeddings in a particular domain, the model must be adapted to it in order to achieve good results. Usually, this is done by fine-tuning the entire sentence embedding model for the domain of interest. While this approach yields state-of-the-art results, all of the model's weights are updated during fine-tuning, making this method resource-intensive. Therefore, instead of fine-tuning entire sentence embedding models for each target domain individually, we propose to train lightweight adapters. These domain-specific adapters do not require fine-tuning all underlying sentence embedding model parameters. Instead, we only train a small number of additional parameters while keeping the weights of the underlying sentence embedding model fixed. Training domain-specific adapters allows always using the same base model and only exchanging the domain-specific adapters to adapt sentence embeddings to a specific domain. We show that using adapters for parameter-efficient domain adaptation of sentence embeddings yields competitive performance within 1% of a domain-adapted, entirely fine-tuned sentence embedding model while only training approximately 3.6% of the parameters. 3 authors · Jul 6, 2023
- WangchanBERTa: Pretraining transformer-based Thai Language Models Transformer-based language models, more specifically BERT-based architectures have achieved state-of-the-art performance in many downstream tasks. However, for a relatively low-resource language such as Thai, the choices of models are limited to training a BERT-based model based on a much smaller dataset or finetuning multi-lingual models, both of which yield suboptimal downstream performance. Moreover, large-scale multi-lingual pretraining does not take into account language-specific features for Thai. To overcome these limitations, we pretrain a language model based on RoBERTa-base architecture on a large, deduplicated, cleaned training set (78GB in total size), curated from diverse domains of social media posts, news articles and other publicly available datasets. We apply text processing rules that are specific to Thai most importantly preserving spaces, which are important chunk and sentence boundaries in Thai before subword tokenization. We also experiment with word-level, syllable-level and SentencePiece tokenization with a smaller dataset to explore the effects on tokenization on downstream performance. Our model wangchanberta-base-att-spm-uncased trained on the 78.5GB dataset outperforms strong baselines (NBSVM, CRF and ULMFit) and multi-lingual models (XLMR and mBERT) on both sequence classification and token classification tasks in human-annotated, mono-lingual contexts. 4 authors · Jan 23, 2021
1 Mapping distributional to model-theoretic semantic spaces: a baseline Word embeddings have been shown to be useful across state-of-the-art systems in many natural language processing tasks, ranging from question answering systems to dependency parsing. (Herbelot and Vecchi, 2015) explored word embeddings and their utility for modeling language semantics. In particular, they presented an approach to automatically map a standard distributional semantic space onto a set-theoretic model using partial least squares regression. We show in this paper that a simple baseline achieves a +51% relative improvement compared to their model on one of the two datasets they used, and yields competitive results on the second dataset. 1 authors · Jul 10, 2016
- Linguistic Entity Masking to Improve Cross-Lingual Representation of Multilingual Language Models for Low-Resource Languages Multilingual Pre-trained Language models (multiPLMs), trained on the Masked Language Modelling (MLM) objective are commonly being used for cross-lingual tasks such as bitext mining. However, the performance of these models is still suboptimal for low-resource languages (LRLs). To improve the language representation of a given multiPLM, it is possible to further pre-train it. This is known as continual pre-training. Previous research has shown that continual pre-training with MLM and subsequently with Translation Language Modelling (TLM) improves the cross-lingual representation of multiPLMs. However, during masking, both MLM and TLM give equal weight to all tokens in the input sequence, irrespective of the linguistic properties of the tokens. In this paper, we introduce a novel masking strategy, Linguistic Entity Masking (LEM) to be used in the continual pre-training step to further improve the cross-lingual representations of existing multiPLMs. In contrast to MLM and TLM, LEM limits masking to the linguistic entity types nouns, verbs and named entities, which hold a higher prominence in a sentence. Secondly, we limit masking to a single token within the linguistic entity span thus keeping more context, whereas, in MLM and TLM, tokens are masked randomly. We evaluate the effectiveness of LEM using three downstream tasks, namely bitext mining, parallel data curation and code-mixed sentiment analysis using three low-resource language pairs English-Sinhala, English-Tamil, and Sinhala-Tamil. Experiment results show that continually pre-training a multiPLM with LEM outperforms a multiPLM continually pre-trained with MLM+TLM for all three tasks. 2 authors · Jan 9
2 Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models We provide the first exploration of sentence embeddings from text-to-text transformers (T5). Sentence embeddings are broadly useful for language processing tasks. While T5 achieves impressive performance on language tasks cast as sequence-to-sequence mapping problems, it is unclear how to produce sentence embeddings from encoder-decoder models. We investigate three methods for extracting T5 sentence embeddings: two utilize only the T5 encoder and one uses the full T5 encoder-decoder model. To support our investigation, we establish a new sentence representation transfer benchmark, SentGLUE, which extends the SentEval toolkit to nine tasks from the GLUE benchmark. Our encoder-only models outperforms Sentence-BERT and SimCSE sentence embeddings on both SentEval and SentGLUE transfer tasks, including semantic textual similarity (STS). Scaling up T5 from millions to billions of parameters is found to produce consistent further improvements. Finally, our encoder-decoder method achieves a new state-of-the-art on STS when using sentence embeddings. Our models are released at https://tfhub.dev/google/collections/sentence-t5/1. 7 authors · Aug 19, 2021
- Improving Sequence Tagging for Vietnamese Text Using Transformer-based Neural Models This paper describes our study on using mutilingual BERT embeddings and some new neural models for improving sequence tagging tasks for the Vietnamese language. We propose new model architectures and evaluate them extensively on two named entity recognition datasets of VLSP 2016 and VLSP 2018, and on two part-of-speech tagging datasets of VLSP 2010 and VLSP 2013. Our proposed models outperform existing methods and achieve new state-of-the-art results. In particular, we have pushed the accuracy of part-of-speech tagging to 95.40% on the VLSP 2010 corpus, to 96.77% on the VLSP 2013 corpus; and the F1 score of named entity recognition to 94.07% on the VLSP 2016 corpus, to 90.31% on the VLSP 2018 corpus. Our code and pre-trained models viBERT and vELECTRA are released as open source to facilitate adoption and further research. 3 authors · Jun 29, 2020
- RoBERTuito: a pre-trained language model for social media text in Spanish Since BERT appeared, Transformer language models and transfer learning have become state-of-the-art for Natural Language Understanding tasks. Recently, some works geared towards pre-training specially-crafted models for particular domains, such as scientific papers, medical documents, user-generated texts, among others. These domain-specific models have been shown to improve performance significantly in most tasks. However, for languages other than English such models are not widely available. In this work, we present RoBERTuito, a pre-trained language model for user-generated text in Spanish, trained on over 500 million tweets. Experiments on a benchmark of tasks involving user-generated text showed that RoBERTuito outperformed other pre-trained language models in Spanish. In addition to this, our model achieves top results for some English-Spanish tasks of the Linguistic Code-Switching Evaluation benchmark (LinCE) and has also competitive performance against monolingual models in English tasks. To facilitate further research, we make RoBERTuito publicly available at the HuggingFace model hub together with the dataset used to pre-train it. 4 authors · Nov 17, 2021
- The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding The evaluation of English text embeddings has transitioned from evaluating a handful of datasets to broad coverage across many tasks through benchmarks such as MTEB. However, this is not the case for multilingual text embeddings due to a lack of available benchmarks. To address this problem, we introduce the Scandinavian Embedding Benchmark (SEB). SEB is a comprehensive framework that enables text embedding evaluation for Scandinavian languages across 24 tasks, 10 subtasks, and 4 task categories. Building on SEB, we evaluate more than 26 models, uncovering significant performance disparities between public and commercial solutions not previously captured by MTEB. We open-source SEB and integrate it with MTEB, thus bridging the text embedding evaluation gap for Scandinavian languages. 4 authors · Jun 4, 2024
- PTT5: Pretraining and validating the T5 model on Brazilian Portuguese data In natural language processing (NLP), there is a need for more resources in Portuguese, since much of the data used in the state-of-the-art research is in other languages. In this paper, we pretrain a T5 model on the BrWac corpus, an extensive collection of web pages in Portuguese, and evaluate its performance against other Portuguese pretrained models and multilingual models on three different tasks. We show that our Portuguese pretrained models have significantly better performance over the original T5 models. Moreover, we demonstrate the positive impact of using a Portuguese vocabulary. Our code and models are available at https://github.com/unicamp-dl/PTT5. 5 authors · Aug 20, 2020
1 Decomposed Prompting: Unveiling Multilingual Linguistic Structure Knowledge in English-Centric Large Language Models Despite the predominance of English in their training data, English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks, raising questions about the depth and nature of their cross-lingual capabilities. This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks. Diverging from the single text-to-text prompt, our method generates for each token of the input sentence an individual prompt which asks for its linguistic label. We assess our method on the Universal Dependencies part-of-speech tagging dataset for 38 languages, utilizing both English-centric and multilingual LLMs. Our findings show that decomposed prompting surpasses the iterative prompting baseline in efficacy and efficiency under zero- and few-shot settings. Further analysis reveals the influence of evaluation methods and the use of instructions in prompts. Our multilingual investigation shows that English-centric language models perform better on average than multilingual models. Our study offers insights into the multilingual transferability of English-centric LLMs, contributing to the understanding of their multilingual linguistic knowledge. 7 authors · Feb 28, 2024
1 LACoS-BLOOM: Low-rank Adaptation with Contrastive objective on 8 bits Siamese-BLOOM Text embeddings are useful features for several NLP applications, such as sentence similarity, text clustering, and semantic search. In this paper, we present a Low-rank Adaptation with a Contrastive objective on top of 8-bit Siamese-BLOOM, a multilingual large language model optimized to produce semantically meaningful word embeddings. The innovation is threefold. First, we cast BLOOM weights to 8-bit values. Second, we fine-tune BLOOM with a scalable adapter (LoRA) and 8-bit Adam optimizer for sentence similarity classification. Third, we apply a Siamese architecture on BLOOM model with a contrastive objective to ease the multi-lingual labeled data scarcity. The experiment results show the quality of learned embeddings from LACoS-BLOOM is proportional to the number of model parameters and the amount of unlabeled training data. With the parameter efficient fine-tuning design, we are able to run BLOOM 7.1 billion parameters end-to-end on a single GPU machine with 32GB memory. Compared to previous solution Sentence-BERT, we achieve significant improvement on both English and multi-lingual STS tasks. 3 authors · May 10, 2023
- Enhancing Answer Boundary Detection for Multilingual Machine Reading Comprehension Multilingual pre-trained models could leverage the training data from a rich source language (such as English) to improve performance on low resource languages. However, the transfer quality for multilingual Machine Reading Comprehension (MRC) is significantly worse than sentence classification tasks mainly due to the requirement of MRC to detect the word level answer boundary. In this paper, we propose two auxiliary tasks in the fine-tuning stage to create additional phrase boundary supervision: (1) A mixed MRC task, which translates the question or passage to other languages and builds cross-lingual question-passage pairs; (2) A language-agnostic knowledge masking task by leveraging knowledge phrases mined from web. Besides, extensive experiments on two cross-lingual MRC datasets show the effectiveness of our proposed approach. 8 authors · Apr 29, 2020
- Training Multilingual Pre-trained Language Model with Byte-level Subwords The pre-trained language models have achieved great successes in various natural language understanding (NLU) tasks due to its capacity to capture the deep contextualized information in text by pre-training on large-scale corpora. One of the fundamental components in pre-trained language models is the vocabulary, especially for training multilingual models on many different languages. In the technical report, we present our practices on training multilingual pre-trained language models with BBPE: Byte-Level BPE (i.e., Byte Pair Encoding). In the experiment, we adopted the architecture of NEZHA as the underlying pre-trained language model and the results show that NEZHA trained with byte-level subwords consistently outperforms Google multilingual BERT and vanilla NEZHA by a notable margin in several multilingual NLU tasks. We release the source code of our byte-level vocabulary building tools and the multilingual pre-trained language models. 4 authors · Jan 23, 2021
- Hyperpolyglot LLMs: Cross-Lingual Interpretability in Token Embeddings Cross-lingual transfer learning is an important property of multilingual large language models (LLMs). But how do LLMs represent relationships between languages? Every language model has an input layer that maps tokens to vectors. This ubiquitous layer of language models is often overlooked. We find that similarities between these input embeddings are highly interpretable and that the geometry of these embeddings differs between model families. In one case (XLM-RoBERTa), embeddings encode language: tokens in different writing systems can be linearly separated with an average of 99.2% accuracy. Another family (mT5) represents cross-lingual semantic similarity: the 50 nearest neighbors for any token represent an average of 7.61 writing systems, and are frequently translations. This result is surprising given that there is no explicit parallel cross-lingual training corpora and no explicit incentive for translations in pre-training objectives. Our research opens the door for investigations in 1) The effect of pre-training and model architectures on representations of languages and 2) The applications of cross-lingual representations embedded in language models. 2 authors · Nov 29, 2023
1 XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation In this paper, we introduce XGLUE, a new benchmark dataset that can be used to train large-scale cross-lingual pre-trained models using multilingual and bilingual corpora and evaluate their performance across a diverse set of cross-lingual tasks. Comparing to GLUE(Wang et al., 2019), which is labeled in English for natural language understanding tasks only, XGLUE has two main advantages: (1) it provides 11 diversified tasks that cover both natural language understanding and generation scenarios; (2) for each task, it provides labeled data in multiple languages. We extend a recent cross-lingual pre-trained model Unicoder(Huang et al., 2019) to cover both understanding and generation tasks, which is evaluated on XGLUE as a strong baseline. We also evaluate the base versions (12-layer) of Multilingual BERT, XLM and XLM-R for comparison. 24 authors · Apr 3, 2020
2 Retrieving Texts based on Abstract Descriptions In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model. 5 authors · May 21, 2023
- MultiLegalSBD: A Multilingual Legal Sentence Boundary Detection Dataset Sentence Boundary Detection (SBD) is one of the foundational building blocks of Natural Language Processing (NLP), with incorrectly split sentences heavily influencing the output quality of downstream tasks. It is a challenging task for algorithms, especially in the legal domain, considering the complex and different sentence structures used. In this work, we curated a diverse multilingual legal dataset consisting of over 130'000 annotated sentences in 6 languages. Our experimental results indicate that the performance of existing SBD models is subpar on multilingual legal data. We trained and tested monolingual and multilingual models based on CRF, BiLSTM-CRF, and transformers, demonstrating state-of-the-art performance. We also show that our multilingual models outperform all baselines in the zero-shot setting on a Portuguese test set. To encourage further research and development by the community, we have made our dataset, models, and code publicly available. 3 authors · May 2, 2023 1
5 BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation In this paper, we present a new embedding model, called M3-Embedding, which is distinguished for its versatility in Multi-Linguality, Multi-Functionality, and Multi-Granularity. It can support more than 100 working languages, leading to new state-of-the-art performances on multi-lingual and cross-lingual retrieval tasks. It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval, which provides a unified model foundation for real-world IR applications. It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens. The effective training of M3-Embedding involves the following technical contributions. We propose a novel self-knowledge distillation approach, where the relevance scores from different retrieval functionalities can be integrated as the teacher signal to enhance the training quality. We also optimize the batching strategy, enabling a large batch size and high training throughput to ensure the discriminativeness of embeddings. To the best of our knowledge, M3-Embedding is the first embedding model which realizes such a strong versatility. The model and code will be publicly available at https://github.com/FlagOpen/FlagEmbedding. 6 authors · Feb 5, 2024
5 IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation The T5 model and its unified text-to-text paradigm contributed in advancing the state-of-the-art for many natural language processing tasks. While some multilingual variants of the T5 model have recently been introduced, their performances were found to provide suboptimal performances for languages other than English if compared to monolingual variants. We are motivated by these findings to introduce IT5, the first family of encoder-decoder transformer models pretrained specifically on Italian. We perform a thorough cleaning of a web-crawled Italian corpus including more than 40 billion words and use it to pretrain three IT5 models of different sizes. The performance of IT5 models and their multilingual counterparts is then evaluated on a broad range of natural language understanding and generation benchmarks for Italian. We find the monolingual IT5 models to provide the best scale-to-performance ratio across tested models, consistently outperforming their multilingual counterparts and setting a new state-of-the-art for most Italian conditional language generation tasks. 2 authors · Mar 7, 2022
- LAReQA: Language-agnostic answer retrieval from a multilingual pool We present LAReQA, a challenging new benchmark for language-agnostic answer retrieval from a multilingual candidate pool. Unlike previous cross-lingual tasks, LAReQA tests for "strong" cross-lingual alignment, requiring semantically related cross-language pairs to be closer in representation space than unrelated same-language pairs. Building on multilingual BERT (mBERT), we study different strategies for achieving strong alignment. We find that augmenting training data via machine translation is effective, and improves significantly over using mBERT out-of-the-box. Interestingly, the embedding baseline that performs the best on LAReQA falls short of competing baselines on zero-shot variants of our task that only target "weak" alignment. This finding underscores our claim that languageagnostic retrieval is a substantively new kind of cross-lingual evaluation. 6 authors · Apr 11, 2020
- Heidelberg-Boston @ SIGTYP 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers Historical languages present unique challenges to the NLP community, with one prominent hurdle being the limited resources available in their closed corpora. This work describes our submission to the constrained subtask of the SIGTYP 2024 shared task, focusing on PoS tagging, morphological tagging, and lemmatization for 13 historical languages. For PoS and morphological tagging we adapt a hierarchical tokenization method from Sun et al. (2023) and combine it with the advantages of the DeBERTa-V3 architecture, enabling our models to efficiently learn from every character in the training data. We also demonstrate the effectiveness of character-level T5 models on the lemmatization task. Pre-trained from scratch with limited data, our models achieved first place in the constrained subtask, nearly reaching the performance levels of the unconstrained task's winner. Our code is available at https://github.com/bowphs/SIGTYP-2024-hierarchical-transformers 2 authors · May 30, 2024
- A Part-of-Speech Tagger for Yiddish: First Steps in Tagging the Yiddish Book Center Corpus We describe the construction and evaluation of a part-of-speech tagger for Yiddish (the first one, to the best of our knowledge). This is the first step in a larger project of automatically assigning part-of-speech tags and syntactic structure to Yiddish text for purposes of linguistic research. We combine two resources for the current work - an 80K word subset of the Penn Parsed Corpus of Historical Yiddish (PPCHY) (Santorini, 2021) and 650 million words of OCR'd Yiddish text from the Yiddish Book Center (YBC). We compute word embeddings on the YBC corpus, and these embeddings are used with a tagger model trained and evaluated on the PPCHY. Yiddish orthography in the YBC corpus has many spelling inconsistencies, and we present some evidence that even simple non-contextualized embeddings are able to capture the relationships among spelling variants without the need to first "standardize" the corpus. We evaluate the tagger performance on a 10-fold cross-validation split, with and without the embeddings, showing that the embeddings improve tagger performance. However, a great deal of work remains to be done, and we conclude by discussing some next steps, including the need for additional annotated training and test data. 4 authors · Apr 3, 2022
- Cross-lingual Back-Parsing: Utterance Synthesis from Meaning Representation for Zero-Resource Semantic Parsing Recent efforts have aimed to utilize multilingual pretrained language models (mPLMs) to extend semantic parsing (SP) across multiple languages without requiring extensive annotations. However, achieving zero-shot cross-lingual transfer for SP remains challenging, leading to a performance gap between source and target languages. In this study, we propose Cross-Lingual Back-Parsing (CBP), a novel data augmentation methodology designed to enhance cross-lingual transfer for SP. Leveraging the representation geometry of the mPLMs, CBP synthesizes target language utterances from source meaning representations. Our methodology effectively performs cross-lingual data augmentation in challenging zero-resource settings, by utilizing only labeled data in the source language and monolingual corpora. Extensive experiments on two cross-language SP benchmarks (Mschema2QA and Xspider) demonstrate that CBP brings substantial gains in the target language. Further analysis of the synthesized utterances shows that our method successfully generates target language utterances with high slot value alignment rates while preserving semantic integrity. Our codes and data are publicly available at https://github.com/deokhk/CBP. 4 authors · Oct 1, 2024
- Bad Form: Comparing Context-Based and Form-Based Few-Shot Learning in Distributional Semantic Models Word embeddings are an essential component in a wide range of natural language processing applications. However, distributional semantic models are known to struggle when only a small number of context sentences are available. Several methods have been proposed to obtain higher-quality vectors for these words, leveraging both this context information and sometimes the word forms themselves through a hybrid approach. We show that the current tasks do not suffice to evaluate models that use word-form information, as such models can easily leverage word forms in the training data that are related to word forms in the test data. We introduce 3 new tasks, allowing for a more balanced comparison between models. Furthermore, we show that hyperparameters that have largely been ignored in previous work can consistently improve the performance of both baseline and advanced models, achieving a new state of the art on 4 out of 6 tasks. 3 authors · Oct 1, 2019
- UMBCLU at SemEval-2024 Task 1A and 1C: Semantic Textual Relatedness with and without machine translation This paper describes the system we developed for SemEval-2024 Task 1, "Semantic Textual Relatedness for African and Asian Languages." The aim of the task is to build a model that can identify semantic textual relatedness (STR) between two sentences of a target language belonging to a collection of African and Asian languages. We participated in Subtasks A and C and explored supervised and cross-lingual training leveraging large language models (LLMs). Pre-trained large language models have been extensively used for machine translation and semantic similarity. Using a combination of machine translation and sentence embedding LLMs, we developed a unified STR model, TranSem, for subtask A and fine-tuned the T5 family of models on the STR data, FineSem, for use in subtask C. Our model results for 7 languages in subtask A were better than the official baseline for 3 languages and on par with the baseline for the remaining 4 languages. Our model results for the 12 languages in subtask C resulted in 1st place for Africaans, 2nd place for Indonesian, and 3rd place for English with low performance for the remaining 9 languages. 2 authors · Feb 20, 2024
1 XNLI: Evaluating Cross-lingual Sentence Representations State-of-the-art natural language processing systems rely on supervision in the form of annotated data to learn competent models. These models are generally trained on data in a single language (usually English), and cannot be directly used beyond that language. Since collecting data in every language is not realistic, there has been a growing interest in cross-lingual language understanding (XLU) and low-resource cross-language transfer. In this work, we construct an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus (MultiNLI) to 15 languages, including low-resource languages such as Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual sentence understanding by providing an informative standard evaluation task. In addition, we provide several baselines for multilingual sentence understanding, including two based on machine translation systems, and two that use parallel data to train aligned multilingual bag-of-words and LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and that directly translating the test data yields the best performance among available baselines. 7 authors · Sep 13, 2018
- Zero-shot Sentiment Analysis in Low-Resource Languages Using a Multilingual Sentiment Lexicon Improving multilingual language models capabilities in low-resource languages is generally difficult due to the scarcity of large-scale data in those languages. In this paper, we relax the reliance on texts in low-resource languages by using multilingual lexicons in pretraining to enhance multilingual capabilities. Specifically, we focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets. We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets, and large language models like GPT--3.5, BLOOMZ, and XGLM. These findings are observable for unseen low-resource languages to code-mixed scenarios involving high-resource languages. 5 authors · Feb 3, 2024
- Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi. 4 authors · Aug 19, 2021
1 SERENGETI: Massively Multilingual Language Models for Africa Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\href{https://github.com/UBC-NLP/serengeti{https://github.com/UBC-NLP/serengeti}} 4 authors · Dec 21, 2022
- Playing with Words at the National Library of Sweden -- Making a Swedish BERT This paper introduces the Swedish BERT ("KB-BERT") developed by the KBLab for data-driven research at the National Library of Sweden (KB). Building on recent efforts to create transformer-based BERT models for languages other than English, we explain how we used KB's collections to create and train a new language-specific BERT model for Swedish. We also present the results of our model in comparison with existing models - chiefly that produced by the Swedish Public Employment Service, Arbetsf\"ormedlingen, and Google's multilingual M-BERT - where we demonstrate that KB-BERT outperforms these in a range of NLP tasks from named entity recognition (NER) to part-of-speech tagging (POS). Our discussion highlights the difficulties that continue to exist given the lack of training data and testbeds for smaller languages like Swedish. We release our model for further exploration and research here: https://github.com/Kungbib/swedish-bert-models . 3 authors · Jul 3, 2020
- Cross-lingual Language Model Pretraining Recent studies have demonstrated the efficiency of generative pretraining for English natural language understanding. In this work, we extend this approach to multiple languages and show the effectiveness of cross-lingual pretraining. We propose two methods to learn cross-lingual language models (XLMs): one unsupervised that only relies on monolingual data, and one supervised that leverages parallel data with a new cross-lingual language model objective. We obtain state-of-the-art results on cross-lingual classification, unsupervised and supervised machine translation. On XNLI, our approach pushes the state of the art by an absolute gain of 4.9% accuracy. On unsupervised machine translation, we obtain 34.3 BLEU on WMT'16 German-English, improving the previous state of the art by more than 9 BLEU. On supervised machine translation, we obtain a new state of the art of 38.5 BLEU on WMT'16 Romanian-English, outperforming the previous best approach by more than 4 BLEU. Our code and pretrained models will be made publicly available. 2 authors · Jan 22, 2019
- Detecting Fine-Grained Cross-Lingual Semantic Divergences without Supervision by Learning to Rank Detecting fine-grained differences in content conveyed in different languages matters for cross-lingual NLP and multilingual corpora analysis, but it is a challenging machine learning problem since annotation is expensive and hard to scale. This work improves the prediction and annotation of fine-grained semantic divergences. We introduce a training strategy for multilingual BERT models by learning to rank synthetic divergent examples of varying granularity. We evaluate our models on the Rationalized English-French Semantic Divergences, a new dataset released with this work, consisting of English-French sentence-pairs annotated with semantic divergence classes and token-level rationales. Learning to rank helps detect fine-grained sentence-level divergences more accurately than a strong sentence-level similarity model, while token-level predictions have the potential of further distinguishing between coarse and fine-grained divergences. 2 authors · Oct 7, 2020
- MUSS: Multilingual Unsupervised Sentence Simplification by Mining Paraphrases Progress in sentence simplification has been hindered by a lack of labeled parallel simplification data, particularly in languages other than English. We introduce MUSS, a Multilingual Unsupervised Sentence Simplification system that does not require labeled simplification data. MUSS uses a novel approach to sentence simplification that trains strong models using sentence-level paraphrase data instead of proper simplification data. These models leverage unsupervised pretraining and controllable generation mechanisms to flexibly adjust attributes such as length and lexical complexity at inference time. We further present a method to mine such paraphrase data in any language from Common Crawl using semantic sentence embeddings, thus removing the need for labeled data. We evaluate our approach on English, French, and Spanish simplification benchmarks and closely match or outperform the previous best supervised results, despite not using any labeled simplification data. We push the state of the art further by incorporating labeled simplification data. 5 authors · May 1, 2020
- A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias Based on the foundation of Large Language Models (LLMs), Multilingual Large Language Models (MLLMs) have been developed to address the challenges of multilingual natural language processing tasks, hoping to achieve knowledge transfer from high-resource to low-resource languages. However, significant limitations and challenges still exist, such as language imbalance, multilingual alignment, and inherent bias. In this paper, we aim to provide a comprehensive analysis of MLLMs, delving deeply into discussions surrounding these critical issues. First of all, we start by presenting an overview of MLLMs, covering their evolution, key techniques, and multilingual capacities. Secondly, we explore widely utilized multilingual corpora for MLLMs' training and multilingual datasets oriented for downstream tasks that are crucial for enhancing the cross-lingual capability of MLLMs. Thirdly, we survey the existing studies on multilingual representations and investigate whether the current MLLMs can learn a universal language representation. Fourthly, we discuss bias on MLLMs including its category and evaluation metrics, and summarize the existing debiasing techniques. Finally, we discuss existing challenges and point out promising research directions. By demonstrating these aspects, this paper aims to facilitate a deeper understanding of MLLMs and their potentiality in various domains. 6 authors · Apr 1, 2024
- MultiCoNER: A Large-scale Multilingual dataset for Complex Named Entity Recognition We present MultiCoNER, a large multilingual dataset for Named Entity Recognition that covers 3 domains (Wiki sentences, questions, and search queries) across 11 languages, as well as multilingual and code-mixing subsets. This dataset is designed to represent contemporary challenges in NER, including low-context scenarios (short and uncased text), syntactically complex entities like movie titles, and long-tail entity distributions. The 26M token dataset is compiled from public resources using techniques such as heuristic-based sentence sampling, template extraction and slotting, and machine translation. We applied two NER models on our dataset: a baseline XLM-RoBERTa model, and a state-of-the-art GEMNET model that leverages gazetteers. The baseline achieves moderate performance (macro-F1=54%), highlighting the difficulty of our data. GEMNET, which uses gazetteers, improvement significantly (average improvement of macro-F1=+30%). MultiCoNER poses challenges even for large pre-trained language models, and we believe that it can help further research in building robust NER systems. MultiCoNER is publicly available at https://registry.opendata.aws/multiconer/ and we hope that this resource will help advance research in various aspects of NER. 5 authors · Aug 30, 2022
8 Ruri: Japanese General Text Embeddings We report the development of Ruri, a series of Japanese general text embedding models. While the development of general-purpose text embedding models in English and multilingual contexts has been active in recent years, model development in Japanese remains insufficient. The primary reasons for this are the lack of datasets and the absence of necessary expertise. In this report, we provide a detailed account of the development process of Ruri. Specifically, we discuss the training of embedding models using synthesized datasets generated by LLMs, the construction of the reranker for dataset filtering and knowledge distillation, and the performance evaluation of the resulting general-purpose text embedding models. 2 authors · Sep 12, 2024
1 WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method -- called WECHSEL -- to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available. 3 authors · Dec 13, 2021
- Embedding-Enhanced Giza++: Improving Alignment in Low- and High- Resource Scenarios Using Embedding Space Geometry A popular natural language processing task decades ago, word alignment has been dominated until recently by GIZA++, a statistical method based on the 30-year-old IBM models. New methods that outperform GIZA++ primarily rely on large machine translation models, massively multilingual language models, or supervision from GIZA++ alignments itself. We introduce Embedding-Enhanced GIZA++, and outperform GIZA++ without any of the aforementioned factors. Taking advantage of monolingual embedding spaces of source and target language only, we exceed GIZA++'s performance in every tested scenario for three languages pairs. In the lowest-resource setting, we outperform GIZA++ by 8.5, 10.9, and 12 AER for Ro-En, De-En, and En-Fr, respectively. We release our code at https://github.com/kellymarchisio/ee-giza. 3 authors · Apr 18, 2021
- Nugget: Neural Agglomerative Embeddings of Text Embedding text sequences is a widespread requirement in modern language understanding. Existing approaches focus largely on constant-size representations. This is problematic, as the amount of information contained in text often varies with the length of the input. We propose a solution called Nugget, which encodes language into a representation based on a dynamically selected subset of input tokens. These nuggets are learned through tasks like autoencoding and machine translation, and intuitively segment language into meaningful units. We demonstrate Nugget outperforms related approaches in tasks involving semantic comparison. Finally, we illustrate these compact units allow for expanding the contextual window of a language model (LM), suggesting new future LMs that can condition on significantly larger amounts of content. 2 authors · Oct 2, 2023
- How Language-Neutral is Multilingual BERT? Multilingual BERT (mBERT) provides sentence representations for 104 languages, which are useful for many multi-lingual tasks. Previous work probed the cross-linguality of mBERT using zero-shot transfer learning on morphological and syntactic tasks. We instead focus on the semantic properties of mBERT. We show that mBERT representations can be split into a language-specific component and a language-neutral component, and that the language-neutral component is sufficiently general in terms of modeling semantics to allow high-accuracy word-alignment and sentence retrieval but is not yet good enough for the more difficult task of MT quality estimation. Our work presents interesting challenges which must be solved to build better language-neutral representations, particularly for tasks requiring linguistic transfer of semantics. 3 authors · Nov 8, 2019
31 jina-embeddings-v3: Multilingual Embeddings With Task LoRA We introduce jina-embeddings-v3, a novel text embedding model with 570 million parameters, achieves state-of-the-art performance on multilingual data and long-context retrieval tasks, supporting context lengths of up to 8192 tokens. The model includes a set of task-specific Low-Rank Adaptation (LoRA) adapters to generate high-quality embeddings for query-document retrieval, clustering, classification, and text matching. Additionally, Matryoshka Representation Learning is integrated into the training process, allowing flexible truncation of embedding dimensions without compromising performance. Evaluation on the MTEB benchmark shows that jina-embeddings-v3 outperforms the latest proprietary embeddings from OpenAI and Cohere on English tasks, while achieving superior performance compared to multilingual-e5-large-instruct across all multilingual tasks. 12 authors · Sep 16, 2024 6
- Universal Sentence Encoder We present models for encoding sentences into embedding vectors that specifically target transfer learning to other NLP tasks. The models are efficient and result in accurate performance on diverse transfer tasks. Two variants of the encoding models allow for trade-offs between accuracy and compute resources. For both variants, we investigate and report the relationship between model complexity, resource consumption, the availability of transfer task training data, and task performance. Comparisons are made with baselines that use word level transfer learning via pretrained word embeddings as well as baselines do not use any transfer learning. We find that transfer learning using sentence embeddings tends to outperform word level transfer. With transfer learning via sentence embeddings, we observe surprisingly good performance with minimal amounts of supervised training data for a transfer task. We obtain encouraging results on Word Embedding Association Tests (WEAT) targeted at detecting model bias. Our pre-trained sentence encoding models are made freely available for download and on TF Hub. 13 authors · Mar 29, 2018
- Some Like It Small: Czech Semantic Embedding Models for Industry Applications This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance. 4 authors · Nov 23, 2023
1 A New Massive Multilingual Dataset for High-Performance Language Technologies We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ~5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work. 13 authors · Mar 20, 2024
- LLMs are Also Effective Embedding Models: An In-depth Overview Large language models (LLMs) have revolutionized natural language processing by achieving state-of-the-art performance across various tasks. Recently, their effectiveness as embedding models has gained attention, marking a paradigm shift from traditional encoder-only models like ELMo and BERT to decoder-only, large-scale LLMs such as GPT, LLaMA, and Mistral. This survey provides an in-depth overview of this transition, beginning with foundational techniques before the LLM era, followed by LLM-based embedding models through two main strategies to derive embeddings from LLMs. 1) Direct prompting: We mainly discuss the prompt designs and the underlying rationale for deriving competitive embeddings. 2) Data-centric tuning: We cover extensive aspects that affect tuning an embedding model, including model architecture, training objectives, data constructions, etc. Upon the above, we also cover advanced methods, such as handling longer texts, and multilingual and cross-modal data. Furthermore, we discuss factors affecting choices of embedding models, such as performance/efficiency comparisons, dense vs sparse embeddings, pooling strategies, and scaling law. Lastly, the survey highlights the limitations and challenges in adapting LLMs for embeddings, including cross-task embedding quality, trade-offs between efficiency and accuracy, low-resource, long-context, data bias, robustness, etc. This survey serves as a valuable resource for researchers and practitioners by synthesizing current advancements, highlighting key challenges, and offering a comprehensive framework for future work aimed at enhancing the effectiveness and efficiency of LLMs as embedding models. 7 authors · Dec 17, 2024
1 KBioXLM: A Knowledge-anchored Biomedical Multilingual Pretrained Language Model Most biomedical pretrained language models are monolingual and cannot handle the growing cross-lingual requirements. The scarcity of non-English domain corpora, not to mention parallel data, poses a significant hurdle in training multilingual biomedical models. Since knowledge forms the core of domain-specific corpora and can be translated into various languages accurately, we propose a model called KBioXLM, which transforms the multilingual pretrained model XLM-R into the biomedical domain using a knowledge-anchored approach. We achieve a biomedical multilingual corpus by incorporating three granularity knowledge alignments (entity, fact, and passage levels) into monolingual corpora. Then we design three corresponding training tasks (entity masking, relation masking, and passage relation prediction) and continue training on top of the XLM-R model to enhance its domain cross-lingual ability. To validate the effectiveness of our model, we translate the English benchmarks of multiple tasks into Chinese. Experimental results demonstrate that our model significantly outperforms monolingual and multilingual pretrained models in cross-lingual zero-shot and few-shot scenarios, achieving improvements of up to 10+ points. Our code is publicly available at https://github.com/ngwlh-gl/KBioXLM. 9 authors · Nov 20, 2023
- 75 Languages, 1 Model: Parsing Universal Dependencies Universally We present UDify, a multilingual multi-task model capable of accurately predicting universal part-of-speech, morphological features, lemmas, and dependency trees simultaneously for all 124 Universal Dependencies treebanks across 75 languages. By leveraging a multilingual BERT self-attention model pretrained on 104 languages, we found that fine-tuning it on all datasets concatenated together with simple softmax classifiers for each UD task can result in state-of-the-art UPOS, UFeats, Lemmas, UAS, and LAS scores, without requiring any recurrent or language-specific components. We evaluate UDify for multilingual learning, showing that low-resource languages benefit the most from cross-linguistic annotations. We also evaluate for zero-shot learning, with results suggesting that multilingual training provides strong UD predictions even for languages that neither UDify nor BERT have ever been trained on. Code for UDify is available at https://github.com/hyperparticle/udify. 2 authors · Apr 3, 2019
- CometKiwi: IST-Unbabel 2022 Submission for the Quality Estimation Shared Task We present the joint contribution of IST and Unbabel to the WMT 2022 Shared Task on Quality Estimation (QE). Our team participated on all three subtasks: (i) Sentence and Word-level Quality Prediction; (ii) Explainable QE; and (iii) Critical Error Detection. For all tasks we build on top of the COMET framework, connecting it with the predictor-estimator architecture of OpenKiwi, and equipping it with a word-level sequence tagger and an explanation extractor. Our results suggest that incorporating references during pretraining improves performance across several language pairs on downstream tasks, and that jointly training with sentence and word-level objectives yields a further boost. Furthermore, combining attention and gradient information proved to be the top strategy for extracting good explanations of sentence-level QE models. Overall, our submissions achieved the best results for all three tasks for almost all language pairs by a considerable margin. 12 authors · Sep 13, 2022
- Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods, however, exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity. 3 authors · Jul 9, 2023
- Evaluation Benchmarks and Learning Criteria for Discourse-Aware Sentence Representations Prior work on pretrained sentence embeddings and benchmarks focus on the capabilities of stand-alone sentences. We propose DiscoEval, a test suite of tasks to evaluate whether sentence representations include broader context information. We also propose a variety of training objectives that makes use of natural annotations from Wikipedia to build sentence encoders capable of modeling discourse. We benchmark sentence encoders pretrained with our proposed training objectives, as well as other popular pretrained sentence encoders on DiscoEval and other sentence evaluation tasks. Empirically, we show that these training objectives help to encode different aspects of information in document structures. Moreover, BERT and ELMo demonstrate strong performances over DiscoEval with individual hidden layers showing different characteristics. 3 authors · Aug 31, 2019
- MT4CrossOIE: Multi-stage Tuning for Cross-lingual Open Information Extraction Cross-lingual open information extraction aims to extract structured information from raw text across multiple languages. Previous work uses a shared cross-lingual pre-trained model to handle the different languages but underuses the potential of the language-specific representation. In this paper, we propose an effective multi-stage tuning framework called MT4CrossIE, designed for enhancing cross-lingual open information extraction by injecting language-specific knowledge into the shared model. Specifically, the cross-lingual pre-trained model is first tuned in a shared semantic space (e.g., embedding matrix) in the fixed encoder and then other components are optimized in the second stage. After enough training, we freeze the pre-trained model and tune the multiple extra low-rank language-specific modules using mixture-of-LoRAs for model-based cross-lingual transfer. In addition, we leverage two-stage prompting to encourage the large language model (LLM) to annotate the multi-lingual raw data for data-based cross-lingual transfer. The model is trained with multi-lingual objectives on our proposed dataset OpenIE4++ by combing the model-based and data-based transfer techniques. Experimental results on various benchmarks emphasize the importance of aggregating multiple plug-in-and-play language-specific modules and demonstrate the effectiveness of MT4CrossIE in cross-lingual OIE\url{https://github.com/CSJianYang/Multilingual-Multimodal-NLP}. 11 authors · Aug 12, 2023
- On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation Pre-training (PT) and back-translation (BT) are two simple and powerful methods to utilize monolingual data for improving the model performance of neural machine translation (NMT). This paper takes the first step to investigate the complementarity between PT and BT. We introduce two probing tasks for PT and BT respectively and find that PT mainly contributes to the encoder module while BT brings more benefits to the decoder. Experimental results show that PT and BT are nicely complementary to each other, establishing state-of-the-art performances on the WMT16 English-Romanian and English-Russian benchmarks. Through extensive analyses on sentence originality and word frequency, we also demonstrate that combining Tagged BT with PT is more helpful to their complementarity, leading to better translation quality. Source code is freely available at https://github.com/SunbowLiu/PTvsBT. 7 authors · Oct 5, 2021
2 mSLAM: Massively multilingual joint pre-training for speech and text We present mSLAM, a multilingual Speech and LAnguage Model that learns cross-lingual cross-modal representations of speech and text by pre-training jointly on large amounts of unlabeled speech and text in multiple languages. mSLAM combines w2v-BERT pre-training on speech with SpanBERT pre-training on character-level text, along with Connectionist Temporal Classification (CTC) losses on paired speech and transcript data, to learn a single model capable of learning from and representing both speech and text signals in a shared representation space. We evaluate mSLAM on several downstream speech understanding tasks and find that joint pre-training with text improves quality on speech translation, speech intent classification and speech language-ID while being competitive on multilingual ASR, when compared against speech-only pre-training. Our speech translation model demonstrates zero-shot text translation without seeing any text translation data, providing evidence for cross-modal alignment of representations. mSLAM also benefits from multi-modal fine-tuning, further improving the quality of speech translation by directly leveraging text translation data during the fine-tuning process. Our empirical analysis highlights several opportunities and challenges arising from large-scale multimodal pre-training, suggesting directions for future research. 9 authors · Feb 2, 2022
- Multilingual is not enough: BERT for Finnish Deep learning-based language models pretrained on large unannotated text corpora have been demonstrated to allow efficient transfer learning for natural language processing, with recent approaches such as the transformer-based BERT model advancing the state of the art across a variety of tasks. While most work on these models has focused on high-resource languages, in particular English, a number of recent efforts have introduced multilingual models that can be fine-tuned to address tasks in a large number of different languages. However, we still lack a thorough understanding of the capabilities of these models, in particular for lower-resourced languages. In this paper, we focus on Finnish and thoroughly evaluate the multilingual BERT model on a range of tasks, comparing it with a new Finnish BERT model trained from scratch. The new language-specific model is shown to systematically and clearly outperform the multilingual. While the multilingual model largely fails to reach the performance of previously proposed methods, the custom Finnish BERT model establishes new state-of-the-art results on all corpora for all reference tasks: part-of-speech tagging, named entity recognition, and dependency parsing. We release the model and all related resources created for this study with open licenses at https://turkunlp.org/finbert . 8 authors · Dec 15, 2019
- LaoPLM: Pre-trained Language Models for Lao Trained on the large corpus, pre-trained language models (PLMs) can capture different levels of concepts in context and hence generate universal language representations. They can benefit multiple downstream natural language processing (NLP) tasks. Although PTMs have been widely used in most NLP applications, especially for high-resource languages such as English, it is under-represented in Lao NLP research. Previous work on Lao has been hampered by the lack of annotated datasets and the sparsity of language resources. In this work, we construct a text classification dataset to alleviate the resource-scare situation of the Lao language. We additionally present the first transformer-based PTMs for Lao with four versions: BERT-small, BERT-base, ELECTRA-small and ELECTRA-base, and evaluate it over two downstream tasks: part-of-speech tagging and text classification. Experiments demonstrate the effectiveness of our Lao models. We will release our models and datasets to the community, hoping to facilitate the future development of Lao NLP applications. 5 authors · Oct 12, 2021
1 How Transliterations Improve Crosslingual Alignment Recent studies have shown that post-aligning multilingual pretrained language models (mPLMs) using alignment objectives on both original and transliterated data can improve crosslingual alignment. This improvement further leads to better crosslingual transfer performance. However, it remains unclear how and why a better crosslingual alignment is achieved, as this technique only involves transliterations, and does not use any parallel data. This paper attempts to explicitly evaluate the crosslingual alignment and identify the key elements in transliteration-based approaches that contribute to better performance. For this, we train multiple models under varying setups for two pairs of related languages: (1) Polish and Ukrainian and (2) Hindi and Urdu. To assess alignment, we define four types of similarities based on sentence representations. Our experiments show that adding transliterations alone improves the overall similarities, even for random sentence pairs. With the help of auxiliary alignment objectives, especially the contrastive objective, the model learns to distinguish matched from random pairs, leading to better alignments. However, we also show that better alignment does not always yield better downstream performance, suggesting that further research is needed to clarify the connection between alignment and performance. 9 authors · Sep 25, 2024
- Exploring the Representation of Word Meanings in Context: A Case Study on Homonymy and Synonymy This paper presents a multilingual study of word meaning representations in context. We assess the ability of both static and contextualized models to adequately represent different lexical-semantic relations, such as homonymy and synonymy. To do so, we created a new multilingual dataset that allows us to perform a controlled evaluation of several factors such as the impact of the surrounding context or the overlap between words, conveying the same or different senses. A systematic assessment on four scenarios shows that the best monolingual models based on Transformers can adequately disambiguate homonyms in context. However, as they rely heavily on context, these models fail at representing words with different senses when occurring in similar sentences. Experiments are performed in Galician, Portuguese, English, and Spanish, and both the dataset (with more than 3,000 evaluation items) and new models are freely released with this study. 1 authors · Jun 25, 2021
1 ToPro: Token-Level Prompt Decomposition for Cross-Lingual Sequence Labeling Tasks Prompt-based methods have been successfully applied to multilingual pretrained language models for zero-shot cross-lingual understanding. However, most previous studies primarily focused on sentence-level classification tasks, and only a few considered token-level labeling tasks such as Named Entity Recognition (NER) and Part-of-Speech (POS) tagging. In this paper, we propose Token-Level Prompt Decomposition (ToPro), which facilitates the prompt-based method for token-level sequence labeling tasks. The ToPro method decomposes an input sentence into single tokens and applies one prompt template to each token. Our experiments on multilingual NER and POS tagging datasets demonstrate that ToPro-based fine-tuning outperforms Vanilla fine-tuning and Prompt-Tuning in zero-shot cross-lingual transfer, especially for languages that are typologically different from the source language English. Our method also attains state-of-the-art performance when employed with the mT5 model. Besides, our exploratory study in multilingual large language models shows that ToPro performs much better than the current in-context learning method. Overall, the performance improvements show that ToPro could potentially serve as a novel and simple benchmarking method for sequence labeling tasks. 7 authors · Jan 29, 2024 1
10 Marco-LLM: Bridging Languages via Massive Multilingual Training for Cross-Lingual Enhancement Large Language Models (LLMs) have achieved remarkable progress in recent years; however, their excellent performance is still largely limited to major world languages, primarily English. Many LLMs continue to face challenges with multilingual tasks, especially when it comes to low-resource languages. To address this issue, we introduced Marco-LLM: Massive multilingual training for cross-lingual enhancement LLM. We have collected a substantial amount of multilingual data for several low-resource languages and conducted extensive continual pre-training using the Qwen2 models. This effort has resulted in a multilingual LLM named Marco-LLM. Through comprehensive evaluations on various multilingual benchmarks, including MMMLU, AGIEval, Belebele, Flores-200, XCOPA and many others, Marco-LLM has demonstrated substantial improvements over state-of-the-art LLMs. Furthermore, Marco-LLM achieved substantial enhancements in any-to-any machine translation tasks, showing the effectiveness of our multilingual LLM. Marco-LLM is a pioneering multilingual LLM designed to not only perform exceptionally well in multilingual tasks, including low-resource languages, but also maintain strong performance in English and other major languages, closing the performance gap between high- and low-resource language capabilities. By bridging languages, this effort demonstrates our dedication to ensuring LLMs work accurately across various languages. 20 authors · Dec 5, 2024 2
- mRobust04: A Multilingual Version of the TREC Robust 2004 Benchmark Robust 2004 is an information retrieval benchmark whose large number of judgments per query make it a reliable evaluation dataset. In this paper, we present mRobust04, a multilingual version of Robust04 that was translated to 8 languages using Google Translate. We also provide results of three different multilingual retrievers on this dataset. The dataset is available at https://huggingface.co/datasets/unicamp-dl/mrobust 4 authors · Sep 27, 2022
- An Empirical Comparison of Vocabulary Expansion and Initialization Approaches for Language Models Language Models (LMs) excel in natural language processing tasks for English but show reduced performance in most other languages. This problem is commonly tackled by continually pre-training and fine-tuning these models for said languages. A significant issue in this process is the limited vocabulary coverage in the original model's tokenizer, leading to inadequate representation of new languages and necessitating an expansion of the tokenizer. The initialization of the embeddings corresponding to new vocabulary items presents a further challenge. Current strategies require cross-lingual embeddings and lack a solid theoretical foundation as well as comparisons with strong baselines. In this paper, we first establish theoretically that initializing within the convex hull of existing embeddings is a good initialization, followed by a novel but simple approach, Constrained Word2Vec (CW2V), which does not require cross-lingual embeddings. Our study evaluates different initialization methods for expanding RoBERTa and LLaMA 2 across four languages and five tasks. The results show that CW2V performs equally well or even better than more advanced techniques. Additionally, simpler approaches like multivariate initialization perform on par with these advanced methods indicating that efficient large-scale multilingual continued pretraining can be achieved even with simpler initialization methods. 6 authors · Jul 8, 2024
2 mLongT5: A Multilingual and Efficient Text-To-Text Transformer for Longer Sequences We present our work on developing a multilingual, efficient text-to-text transformer that is suitable for handling long inputs. This model, called mLongT5, builds upon the architecture of LongT5, while leveraging the multilingual datasets used for pretraining mT5 and the pretraining tasks of UL2. We evaluate this model on a variety of multilingual summarization and question-answering tasks, and the results show stronger performance for mLongT5 when compared to existing multilingual models such as mBART or M-BERT. 4 authors · May 18, 2023 1
- Better Low-Resource Entity Recognition Through Translation and Annotation Fusion Pre-trained multilingual language models have enabled significant advancements in cross-lingual transfer. However, these models often exhibit a performance disparity when transferring from high-resource languages to low-resource languages, especially for languages that are underrepresented or not in the pre-training data. Motivated by the superior performance of these models on high-resource languages compared to low-resource languages, we introduce a Translation-and-fusion framework, which translates low-resource language text into a high-resource language for annotation using fully supervised models before fusing the annotations back into the low-resource language. Based on this framework, we present TransFusion, a model trained to fuse predictions from a high-resource language to make robust predictions on low-resource languages. We evaluate our methods on two low-resource named entity recognition (NER) datasets, MasakhaNER2.0 and LORELEI NER, covering 25 languages, and show consistent improvement up to +16 F_1 over English fine-tuning systems, achieving state-of-the-art performance compared to Translate-train systems. Our analysis depicts the unique advantages of the TransFusion method which is robust to translation errors and source language prediction errors, and complimentary to adapted multilingual language models. 3 authors · May 22, 2023
1 AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages We present the IndicNLP corpus, a large-scale, general-domain corpus containing 2.7 billion words for 10 Indian languages from two language families. We share pre-trained word embeddings trained on these corpora. We create news article category classification datasets for 9 languages to evaluate the embeddings. We show that the IndicNLP embeddings significantly outperform publicly available pre-trained embedding on multiple evaluation tasks. We hope that the availability of the corpus will accelerate Indic NLP research. The resources are available at https://github.com/ai4bharat-indicnlp/indicnlp_corpus. 7 authors · Apr 30, 2020