new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Expectation Confirmation Preference Optimization for Multi-Turn Conversational Recommendation Agent

Recent advancements in Large Language Models (LLMs) have significantly propelled the development of Conversational Recommendation Agents (CRAs). However, these agents often generate short-sighted responses that fail to sustain user guidance and meet expectations. Although preference optimization has proven effective in aligning LLMs with user expectations, it remains costly and performs poorly in multi-turn dialogue. To address this challenge, we introduce a novel multi-turn preference optimization (MTPO) paradigm ECPO, which leverages Expectation Confirmation Theory to explicitly model the evolution of user satisfaction throughout multi-turn dialogues, uncovering the underlying causes of dissatisfaction. These causes can be utilized to support targeted optimization of unsatisfactory responses, thereby achieving turn-level preference optimization. ECPO ingeniously eliminates the significant sampling overhead of existing MTPO methods while ensuring the optimization process drives meaningful improvements. To support ECPO, we introduce an LLM-based user simulator, AILO, to simulate user feedback and perform expectation confirmation during conversational recommendations. Experimental results show that ECPO significantly enhances CRA's interaction capabilities, delivering notable improvements in both efficiency and effectiveness over existing MTPO methods.

  • 9 authors
·
Jun 17, 2025

LoopServe: An Adaptive Dual-phase LLM Inference Acceleration System for Multi-Turn Dialogues

Multi-turn dialogues are essential in many real-world applications of large language models, such as chatbots and virtual assistants. As conversation histories become longer, existing large language models face increasing computational and memory challenges, which hinder their ability to provide efficient and responsive interactions. Most current acceleration methods either compress the context or optimize key value caching, but they often rely on fixed or position-based heuristics that do not adapt well to the dynamic and unpredictable patterns found in actual multi-turn conversations. In this paper, we present LoopServe, an adaptive dual-phase inference acceleration framework for large language models in multi-turn dialogues. LoopServe introduces two main innovations. First, it performs online sparsification during the prefilling phase by dynamically selecting the most important parts of the attention matrix for each new input. Second, it uses progressive key value compression during decoding by adaptively maintaining a relevant and efficient cache based on the most recently generated output tokens. We also propose a https://huggingface.co/datasets/TreeAILab/Multi-turn_Long-context_Benchmark_for_LLMs{new benchmark} with eleven multi-turn datasets that reflect realistic query positions and conversational dependencies. Extensive experiments demonstrate that LoopServe consistently achieves superior effectiveness compared to existing baselines and significantly accelerates LLM inference across a wide range of long-context dialogue tasks.

  • 12 authors
·
Jul 18, 2025

DeepDialogue: A Multi-Turn Emotionally-Rich Spoken Dialogue Dataset

Recent advances in conversational AI have demonstrated impressive capabilities in single-turn responses, yet multi-turn dialogues remain challenging for even the most sophisticated language models. Current dialogue datasets are limited in their emotional range, domain diversity, turn depth, and are predominantly text-only, hindering progress in developing more human-like conversational systems across modalities. To address these limitations, we present DeepDialogue, a large-scale multimodal dataset containing 40,150 high-quality multi-turn dialogues spanning 41 domains and incorporating 20 distinct emotions with coherent emotional progressions. Our approach pairs 9 different language models (4B-72B parameters) to generate 65,600 initial conversations, which we then evaluate through a combination of human annotation and LLM-based quality filtering. The resulting dataset reveals fundamental insights: smaller models fail to maintain coherence beyond 6 dialogue turns; concrete domains (e.g., "cars," "travel") yield more meaningful conversations than abstract ones (e.g., "philosophy"); and cross-model interactions produce more coherent dialogues than same-model conversations. A key contribution of DeepDialogue is its speech component, where we synthesize emotion-consistent voices for all 40,150 dialogues, creating the first large-scale open-source multimodal dialogue dataset that faithfully preserves emotional context across multi-turn conversations.

  • 3 authors
·
May 26, 2025

IntellAgent: A Multi-Agent Framework for Evaluating Conversational AI Systems

Large Language Models (LLMs) are transforming artificial intelligence, evolving into task-oriented systems capable of autonomous planning and execution. One of the primary applications of LLMs is conversational AI systems, which must navigate multi-turn dialogues, integrate domain-specific APIs, and adhere to strict policy constraints. However, evaluating these agents remains a significant challenge, as traditional methods fail to capture the complexity and variability of real-world interactions. We introduce IntellAgent, a scalable, open-source multi-agent framework designed to evaluate conversational AI systems comprehensively. IntellAgent automates the creation of diverse, synthetic benchmarks by combining policy-driven graph modeling, realistic event generation, and interactive user-agent simulations. This innovative approach provides fine-grained diagnostics, addressing the limitations of static and manually curated benchmarks with coarse-grained metrics. IntellAgent represents a paradigm shift in evaluating conversational AI. By simulating realistic, multi-policy scenarios across varying levels of complexity, IntellAgent captures the nuanced interplay of agent capabilities and policy constraints. Unlike traditional methods, it employs a graph-based policy model to represent relationships, likelihoods, and complexities of policy interactions, enabling highly detailed diagnostics. IntellAgent also identifies critical performance gaps, offering actionable insights for targeted optimization. Its modular, open-source design supports seamless integration of new domains, policies, and APIs, fostering reproducibility and community collaboration. Our findings demonstrate that IntellAgent serves as an effective framework for advancing conversational AI by addressing challenges in bridging research and deployment. The framework is available at https://github.com/plurai-ai/intellagent

  • 2 authors
·
Jan 19, 2025 2

Beyond Single-Turn: A Survey on Multi-Turn Interactions with Large Language Models

Recent advancements in large language models (LLMs) have revolutionized their ability to handle single-turn tasks, yet real-world applications demand sophisticated multi-turn interactions. This survey provides a comprehensive review of recent advancements in evaluating and enhancing multi-turn interactions in LLMs. Focusing on task-specific scenarios, from instruction following in diverse domains such as math and coding to complex conversational engagements in roleplay, healthcare, education, and even adversarial jailbreak settings, we systematically examine the challenges of maintaining context, coherence, fairness, and responsiveness over prolonged dialogues. The paper organizes current benchmarks and datasets into coherent categories that reflect the evolving landscape of multi-turn dialogue evaluation. In addition, we review a range of enhancement methodologies under multi-turn settings, including model-centric strategies (contextual learning, supervised fine-tuning, reinforcement learning, and new architectures), external integration approaches (memory-augmented, retrieval-based methods, and knowledge graph), and agent-based techniques for collaborative interactions. Finally, we discuss open challenges and propose future directions for research to further advance the robustness and effectiveness of multi-turn interactions in LLMs. Related resources and papers are available at https://github.com/yubol-cmu/Awesome-Multi-Turn-LLMs.

  • 7 authors
·
Apr 7, 2025

Test-Time Scaling Strategies for Generative Retrieval in Multimodal Conversational Recommendations

The rapid evolution of e-commerce has exposed the limitations of traditional product retrieval systems in managing complex, multi-turn user interactions. Recent advances in multimodal generative retrieval -- particularly those leveraging multimodal large language models (MLLMs) as retrievers -- have shown promise. However, most existing methods are tailored to single-turn scenarios and struggle to model the evolving intent and iterative nature of multi-turn dialogues when applied naively. Concurrently, test-time scaling has emerged as a powerful paradigm for improving large language model (LLM) performance through iterative inference-time refinement. Yet, its effectiveness typically relies on two conditions: (1) a well-defined problem space (e.g., mathematical reasoning), and (2) the model's ability to self-correct -- conditions that are rarely met in conversational product search. In this setting, user queries are often ambiguous and evolving, and MLLMs alone have difficulty grounding responses in a fixed product corpus. Motivated by these challenges, we propose a novel framework that introduces test-time scaling into conversational multimodal product retrieval. Our approach builds on a generative retriever, further augmented with a test-time reranking (TTR) mechanism that improves retrieval accuracy and better aligns results with evolving user intent throughout the dialogue. Experiments across multiple benchmarks show consistent improvements, with average gains of 14.5 points in MRR and 10.6 points in nDCG@1.

  • 9 authors
·
Aug 25, 2025

Audio MultiChallenge: A Multi-Turn Evaluation of Spoken Dialogue Systems on Natural Human Interaction

End-to-end (E2E) spoken dialogue systems are increasingly replacing cascaded pipelines for voice-based human-AI interaction, processing raw audio directly without intermediate transcription. Existing benchmarks primarily evaluate these models on synthetic speech and single-turn tasks, leaving realistic multi-turn conversational ability underexplored. We introduce Audio MultiChallenge, an open-source benchmark to evaluate E2E spoken dialogue systems under natural multi-turn interaction patterns. Building on the text-based MultiChallenge framework, which evaluates Inference Memory, Instruction Retention, and Self Coherence, we introduce a new axis Voice Editing that tests robustness to mid-utterance speech repairs and backtracking. We further augment each axis to the audio modality, such as introducing Audio-Cue challenges for Inference Memory that require recalling ambient sounds and paralinguistic signals beyond semantic content. We curate 452 conversations from 47 speakers with 1,712 instance-specific rubrics through a hybrid audio-native agentic and human-in-the-loop pipeline that exposes model failures at scale while preserving natural disfluencies found in unscripted human speech. Our evaluation of proprietary and open-source models reveals that even frontier models struggle on our benchmark, with Gemini 3 Pro Preview (Thinking), our highest-performing model achieving a 54.65% pass rate. Error analysis shows that models fail most often on our new axes and that Self Coherence degrades with longer audio context. These failures reflect difficulty of tracking edits, audio cues, and long-range context in natural spoken dialogue. Audio MultiChallenge provides a reproducible testbed to quantify them and drive improvements in audio-native multi-turn interaction capability.

  • 11 authors
·
Dec 16, 2025

High-Resolution Visual Reasoning via Multi-Turn Grounding-Based Reinforcement Learning

State-of-the-art large multi-modal models (LMMs) face challenges when processing high-resolution images, as these inputs are converted into enormous visual tokens, many of which are irrelevant to the downstream task. In this paper, we propose Multi-turn Grounding-based Policy Optimization (MGPO), an end-to-end reinforcement learning (RL) framework that enables LMMs to iteratively focus on key visual regions by automatically cropping sub-images, based on model-predicted grounding coordinates within a multi-turn conversation framework. Compared to supervised fine-tuning (SFT), which requires costly additional grounding annotations, our approach highlights that LMMs can emerge robust grounding abilities during the RL training process, leveraging only a binary reward function derived from the correctness of the final answer. Additionally, we observe that LMMs struggle to autonomously trigger visual grounding during the rollout process. To address this cold start problem, we design a multi-turn conversational template and restrict policy loss computation to model outputs generated across multiple dialogue rounds, thereby promoting stable optimization. Extensive experiments demonstrate that, when trained on standard visual-question-short answering data without grounding annotations, MGPO effectively elicits stronger grounding capabilities compared to GRPO, leading to 5.4\% improvement on in-distribution MME-Realworld and 5.2\% improvement on the challenging out-of-distribution (OOD) V* Bench. Notably, MGPO post-training on Qwen2.5-VL-7B with 21K samples surpasses OpenAI's o1 and GPT-4o models on the OOD V* Bench. Codes are available at https://github.com/EvolvingLMMs-Lab/MGPO.

  • 6 authors
·
Jul 8, 2025 1

WebLINX: Real-World Website Navigation with Multi-Turn Dialogue

We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx

  • 3 authors
·
Feb 8, 2024 4

InteractiveOmni: A Unified Omni-modal Model for Audio-Visual Multi-turn Dialogue

We introduce InteractiveOmni, a unified and open-source omni-modal large language model for audio-visual multi-turn interaction, ranging from 4B to 8B parameters, designed to lead the field of lightweight models by offering comprehensive omni-modal understanding and speech generation capabilities. To achieve this, we integrate the vision encoder, audio encoder, large language model, and speech decoder into a unified model for understanding and generation tasks. We design a multi-stage training strategy to ensure robust cross-modal capabilities, including pre-training for omni-modal understanding, followed by post-training with speech conversation and audio-visual interaction. To enable human-like long-term conversational ability, we meticulously curate a multi-turn training dataset that enhances the model's ability to handle complex and multi-turn interactions. To effectively evaluate the multi-turn memory and speech interaction capabilities, we construct the multi-modal multi-turn memory benchmark and the multi-turn speech interaction benchmark. Experiments demonstrate that InteractiveOmni significantly outperforms leading open-source models and provides a more intelligent multi-turn audio-visual experience, particularly in its long-term memory capabilities. Notably, InteractiveOmni-4B is comparable to the much larger model like Qwen2.5-Omni-7B on general benchmarks, and it can retain 97% of the performance of the InteractiveOmni-8B while utilizing only 50% of the model size. Achieving state-of-the-art results against similarly sized models across image, audio, video understanding, and speech generation tasks, InteractiveOmni is an accessible, open-source foundation for next-generation intelligent interactive systems.

  • 26 authors
·
Oct 15, 2025 2

Music Discovery Dialogue Generation Using Human Intent Analysis and Large Language Models

A conversational music retrieval system can help users discover music that matches their preferences through dialogue. To achieve this, a conversational music retrieval system should seamlessly engage in multi-turn conversation by 1) understanding user queries and 2) responding with natural language and retrieved music. A straightforward solution would be a data-driven approach utilizing such conversation logs. However, few datasets are available for the research and are limited in terms of volume and quality. In this paper, we present a data generation framework for rich music discovery dialogue using a large language model (LLM) and user intents, system actions, and musical attributes. This is done by i) dialogue intent analysis using grounded theory, ii) generating attribute sequences via cascading database filtering, and iii) generating utterances using large language models. By applying this framework to the Million Song dataset, we create LP-MusicDialog, a Large Language Model based Pseudo Music Dialogue dataset, containing over 288k music conversations using more than 319k music items. Our evaluation shows that the synthetic dataset is competitive with an existing, small human dialogue dataset in terms of dialogue consistency, item relevance, and naturalness. Furthermore, using the dataset, we train a conversational music retrieval model and show promising results.

  • 5 authors
·
Nov 11, 2024

Generative Expressive Conversational Speech Synthesis

Conversational Speech Synthesis (CSS) aims to express a target utterance with the proper speaking style in a user-agent conversation setting. Existing CSS methods employ effective multi-modal context modeling techniques to achieve empathy understanding and expression. However, they often need to design complex network architectures and meticulously optimize the modules within them. In addition, due to the limitations of small-scale datasets containing scripted recording styles, they often fail to simulate real natural conversational styles. To address the above issues, we propose a novel generative expressive CSS system, termed GPT-Talker.We transform the multimodal information of the multi-turn dialogue history into discrete token sequences and seamlessly integrate them to form a comprehensive user-agent dialogue context. Leveraging the power of GPT, we predict the token sequence, that includes both semantic and style knowledge, of response for the agent. After that, the expressive conversational speech is synthesized by the conversation-enriched VITS to deliver feedback to the user.Furthermore, we propose a large-scale Natural CSS Dataset called NCSSD, that includes both naturally recorded conversational speech in improvised styles and dialogues extracted from TV shows. It encompasses both Chinese and English languages, with a total duration of 236 hours.We conducted comprehensive experiments on the reliability of the NCSSD and the effectiveness of our GPT-Talker. Both subjective and objective evaluations demonstrate that our model outperforms other state-of-the-art CSS systems significantly in terms of naturalness and expressiveness. The Code, Dataset, and Pre-trained Model are available at: https://github.com/AI-S2-Lab/GPT-Talker.

  • 5 authors
·
Jul 31, 2024

Leveraging Large Language Models in Conversational Recommender Systems

A Conversational Recommender System (CRS) offers increased transparency and control to users by enabling them to engage with the system through a real-time multi-turn dialogue. Recently, Large Language Models (LLMs) have exhibited an unprecedented ability to converse naturally and incorporate world knowledge and common-sense reasoning into language understanding, unlocking the potential of this paradigm. However, effectively leveraging LLMs within a CRS introduces new technical challenges, including properly understanding and controlling a complex conversation and retrieving from external sources of information. These issues are exacerbated by a large, evolving item corpus and a lack of conversational data for training. In this paper, we provide a roadmap for building an end-to-end large-scale CRS using LLMs. In particular, we propose new implementations for user preference understanding, flexible dialogue management and explainable recommendations as part of an integrated architecture powered by LLMs. For improved personalization, we describe how an LLM can consume interpretable natural language user profiles and use them to modulate session-level context. To overcome conversational data limitations in the absence of an existing production CRS, we propose techniques for building a controllable LLM-based user simulator to generate synthetic conversations. As a proof of concept we introduce RecLLM, a large-scale CRS for YouTube videos built on LaMDA, and demonstrate its fluency and diverse functionality through some illustrative example conversations.

  • 13 authors
·
May 13, 2023

PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis

While existing Aspect-based Sentiment Analysis (ABSA) has received extensive effort and advancement, there are still gaps in defining a more holistic research target seamlessly integrating multimodality, conversation context, fine-granularity, and also covering the changing sentiment dynamics as well as cognitive causal rationales. This paper bridges the gaps by introducing a multimodal conversational ABSA, where two novel subtasks are proposed: 1) Panoptic Sentiment Sextuple Extraction, panoramically recognizing holder, target, aspect, opinion, sentiment, rationale from multi-turn multi-party multimodal dialogue. 2) Sentiment Flipping Analysis, detecting the dynamic sentiment transformation throughout the conversation with the causal reasons. To benchmark the tasks, we construct PanoSent, a dataset annotated both manually and automatically, featuring high quality, large scale, multimodality, multilingualism, multi-scenarios, and covering both implicit and explicit sentiment elements. To effectively address the tasks, we devise a novel Chain-of-Sentiment reasoning framework, together with a novel multimodal large language model (namely Sentica) and a paraphrase-based verification mechanism. Extensive evaluations demonstrate the superiority of our methods over strong baselines, validating the efficacy of all our proposed methods. The work is expected to open up a new era for the ABSA community, and thus all our codes and data are open at https://PanoSent.github.io/

  • 9 authors
·
Aug 18, 2024

DRESS: Instructing Large Vision-Language Models to Align and Interact with Humans via Natural Language Feedback

We present DRESS, a large vision language model (LVLM) that innovatively exploits Natural Language feedback (NLF) from Large Language Models to enhance its alignment and interactions by addressing two key limitations in the state-of-the-art LVLMs. First, prior LVLMs generally rely only on the instruction finetuning stage to enhance alignment with human preferences. Without incorporating extra feedback, they are still prone to generate unhelpful, hallucinated, or harmful responses. Second, while the visual instruction tuning data is generally structured in a multi-turn dialogue format, the connections and dependencies among consecutive conversational turns are weak. This reduces the capacity for effective multi-turn interactions. To tackle these, we propose a novel categorization of the NLF into two key types: critique and refinement. The critique NLF identifies the strengths and weaknesses of the responses and is used to align the LVLMs with human preferences. The refinement NLF offers concrete suggestions for improvement and is adopted to improve the interaction ability of the LVLMs-- which focuses on LVLMs' ability to refine responses by incorporating feedback in multi-turn interactions. To address the non-differentiable nature of NLF, we generalize conditional reinforcement learning for training. Our experimental results demonstrate that DRESS can generate more helpful (9.76%), honest (11.52%), and harmless (21.03%) responses, and more effectively learn from feedback during multi-turn interactions compared to SOTA LVMLs.

  • 5 authors
·
Nov 16, 2023

MultiVerse: A Multi-Turn Conversation Benchmark for Evaluating Large Vision and Language Models

Vision-and-Language Models (VLMs) have shown impressive capabilities on single-turn benchmarks, yet real-world applications often demand more intricate multi-turn dialogues. Existing multi-turn datasets (e.g, MMDU, ConvBench) only partially capture the breadth and depth of conversational scenarios encountered by users. In this work, we introduce MultiVerse, a novel multi-turn conversation benchmark featuring 647 dialogues - each averaging four turns - derived from a diverse set of 12 popular VLM evaluation benchmarks. With 484 tasks and 484 interaction goals, MultiVerse covers a wide range of topics, from factual knowledge and perception to advanced reasoning tasks such as mathematics and coding. To facilitate robust assessment, we propose a checklist-based evaluation method that leverages GPT-4o as the automated evaluator, measuring performance across 37 key aspects, including perceptual accuracy, linguistic clarity, and factual correctness. We evaluate 18 VLMs on MultiVerse, revealing that even the strongest models (e.g., GPT-4o) achieve only a 50% success rate in complex multi-turn conversations, highlighting the dataset's challenging nature. Notably, we find that providing full dialogue context significantly enhances performance for smaller or weaker models, emphasizing the importance of in-context learning. We believe MultiVerse is a landscape of evaluating multi-turn interaction abilities for VLMs.

KAIST
·
Oct 18, 2025 2

Parrot: Enhancing Multi-Turn Chat Models by Learning to Ask Questions

Impressive progress has been made on chat models based on Large Language Models (LLMs) recently; however, there is a noticeable lag in multi-turn conversations between open-source chat models (e.g., Alpaca and Vicuna) and the leading chat models (e.g., ChatGPT and GPT-4). Through a series of analyses, we attribute the lag to the lack of enough high-quality multi-turn instruction-tuning data. The available instruction-tuning data for the community are either single-turn conversations or multi-turn ones with certain issues, such as non-human-like instructions, less detailed responses, or rare topic shifts. In this paper, we address these challenges by introducing Parrot, a highly scalable solution designed to automatically generate high-quality instruction-tuning data, which are then used to enhance the effectiveness of chat models in multi-turn conversations. Specifically, we start by training the Parrot-Ask model, which is designed to emulate real users in generating instructions. We then utilize Parrot-Ask to engage in multi-turn conversations with ChatGPT across a diverse range of topics, resulting in a collection of 40K high-quality multi-turn dialogues (Parrot-40K). These data are subsequently employed to train a chat model that we have named Parrot-Chat. We demonstrate that the dialogues gathered from Parrot-Ask markedly outperform existing multi-turn instruction-following datasets in critical metrics, including topic diversity, number of turns, and resemblance to human conversation. With only 40K training examples, Parrot-Chat achieves strong performance against other 13B open-source models across a range of instruction-following benchmarks, and particularly excels in evaluations of multi-turn capabilities. We make all codes, datasets, and two versions of the Parrot-Ask model based on LLaMA2-13B and KuaiYii-13B available at https://github.com/kwai/KwaiYii/Parrot.

  • 8 authors
·
Oct 11, 2023

ESC-Eval: Evaluating Emotion Support Conversations in Large Language Models

Emotion Support Conversation (ESC) is a crucial application, which aims to reduce human stress, offer emotional guidance, and ultimately enhance human mental and physical well-being. With the advancement of Large Language Models (LLMs), many researchers have employed LLMs as the ESC models. However, the evaluation of these LLM-based ESCs remains uncertain. Inspired by the awesome development of role-playing agents, we propose an ESC Evaluation framework (ESC-Eval), which uses a role-playing agent to interact with ESC models, followed by a manual evaluation of the interactive dialogues. In detail, we first re-organize 2,801 role-playing cards from seven existing datasets to define the roles of the role-playing agent. Second, we train a specific role-playing model called ESC-Role which behaves more like a confused person than GPT-4. Third, through ESC-Role and organized role cards, we systematically conduct experiments using 14 LLMs as the ESC models, including general AI-assistant LLMs (ChatGPT) and ESC-oriented LLMs (ExTES-Llama). We conduct comprehensive human annotations on interactive multi-turn dialogues of different ESC models. The results show that ESC-oriented LLMs exhibit superior ESC abilities compared to general AI-assistant LLMs, but there is still a gap behind human performance. Moreover, to automate the scoring process for future ESC models, we developed ESC-RANK, which trained on the annotated data, achieving a scoring performance surpassing 35 points of GPT-4. Our data and code are available at https://github.com/haidequanbu/ESC-Eval.

  • 13 authors
·
Jun 21, 2024

Enhancing Chat Language Models by Scaling High-quality Instructional Conversations

Fine-tuning on instruction data has been widely validated as an effective practice for implementing chat language models like ChatGPT. Scaling the diversity and quality of such data, although straightforward, stands a great chance of leading to improved performance. This paper aims to improve the upper bound of open-source models further. We first provide a systematically designed, diverse, informative, large-scale dataset of instructional conversations, UltraChat, which does not involve human queries. Our objective is to capture the breadth of interactions that a human might have with an AI assistant and employs a comprehensive framework to generate multi-turn conversation iteratively. UltraChat contains 1.5 million high-quality multi-turn dialogues and covers a wide range of topics and instructions. Our statistical analysis of UltraChat reveals its superiority in various key metrics, including scale, average length, diversity, coherence, etc., solidifying its position as a leading open-source dataset. Building upon UltraChat, we fine-tune a LLaMA model to create a powerful conversational model, UltraLLaMA. Our evaluations indicate that UltraLLaMA consistently outperforms other open-source models, including Vicuna, the previously recognized state-of-the-art open-source model. The dataset and the model will be publicly released\url{https://github.com/thunlp/UltraChat}.

  • 9 authors
·
May 23, 2023 4

DeepPsy-Agent: A Stage-Aware and Deep-Thinking Emotional Support Agent System

This paper introduces DeepPsy-Agent, an innovative psychological support system that combines the three-stage helping theory in psychology with deep learning techniques. The system consists of two core components: (1) a multi-stage response-capable dialogue model (deeppsy-chat), which enhances reasoning capabilities through stage-awareness and deep-thinking analysis to generate high-quality responses; and (2) a real-time stage transition detection model that identifies contextual shifts to guide the dialogue towards more effective intervention stages. Based on 30,000 real psychological hotline conversations, we employ AI-simulated dialogues and expert re-annotation strategies to construct a high-quality multi-turn dialogue dataset. Experimental results demonstrate that DeepPsy-Agent outperforms general-purpose large language models (LLMs) in key metrics such as problem exposure completeness, cognitive restructuring success rate, and action adoption rate. Ablation studies further validate the effectiveness of stage-awareness and deep-thinking modules, showing that stage information contributes 42.3\% to performance, while the deep-thinking module increases root-cause identification by 58.3\% and reduces ineffective suggestions by 72.1\%. This system addresses critical challenges in AI-based psychological support through dynamic dialogue management and deep reasoning, advancing intelligent mental health services.

  • 2 authors
·
Mar 20, 2025

EICAP: Deep Dive in Assessment and Enhancement of Large Language Models in Emotional Intelligence through Multi-Turn Conversations

Emotional Intelligence (EI) is a critical yet underexplored dimension in the development of human-aligned LLMs. To address this gap, we introduce a unified, psychologically grounded four-layer taxonomy of EI tailored for large language models (LLMs), encompassing emotional tracking, cause inference, appraisal, and emotionally appropriate response generation. Building on this framework, we present EICAP-Bench, a novel MCQ style multi-turn benchmark designed to evaluate EI capabilities in open-source LLMs across diverse linguistic and cultural contexts. We evaluate six LLMs: LLaMA3 (8B), LLaMA3-Instruct, Gemma (9B), Gemma-Instruct, Qwen2.5 (7B), and Qwen2.5-Instruct on EmoCap-Bench, identifying Qwen2.5-Instruct as the strongest baseline. To assess the potential for enhancing EI capabilities, we fine-tune both Qwen2.5-Base and Qwen2.5-Instruct using LoRA adapters on UltraChat (UC), a large-scale, instruction-tuned dialogue dataset, in both English and Arabic. Our statistical analysis reveals that among the five EI layers, only the Appraisal layer shows significant improvement through UC-based fine-tuning. These findings highlight the limitations of existing pretraining and instruction-tuning paradigms in equipping LLMs with deeper emotional reasoning and underscore the need for targeted data and modeling strategies for comprehensive EI alignment.

  • 2 authors
·
Aug 8, 2025

RedCoder: Automated Multi-Turn Red Teaming for Code LLMs

Large Language Models (LLMs) for code generation (i.e., Code LLMs) have demonstrated impressive capabilities in AI-assisted software development and testing. However, recent studies have shown that these models are prone to generating vulnerable or even malicious code under adversarial settings. Existing red-teaming approaches rely on extensive human effort, limiting their scalability and practicality, and generally overlook the interactive nature of real-world AI-assisted programming, which often unfolds over multiple turns. To bridge these gaps, we present RedCoder, a red-teaming agent that engages victim models in multi-turn conversation to elicit vulnerable code. The pipeline to construct RedCoder begins with a multi-agent gaming process that simulates adversarial interactions, yielding a set of prototype conversations and an arsenal of reusable attack strategies. We then fine-tune an LLM on these prototype conversations to serve as the backbone of RedCoder. Once deployed, RedCoder autonomously engages Code LLMs in multi-turn conversations, dynamically retrieving relevant strategies from the arsenal to steer the dialogue toward vulnerability-inducing outputs. Experiments across multiple Code LLMs show that our approach outperforms prior single-turn and multi-turn red-team methods in inducing vulnerabilities in code generation, offering a scalable and effective tool for evaluating the security boundaries of modern code-generation systems.

  • 8 authors
·
Jun 25, 2025

Flipping the Dialogue: Training and Evaluating User Language Models

Conversations with LMs involve two participants: a human user leading the conversation, and an LM assistant responding to the user's request. To satisfy this specific role, LMs are post-trained to be helpful assistants -- optimized to produce exhaustive and well-structured responses, free of ambiguity and grammar errors. User utterances, on the other hand, are rarely perfected, with each user phrasing requests in unique ways, sometimes putting in partial effort at each turn and refining on the fly. To evaluate LM performance in realistic settings, prior work simulated users in multi-turn conversations, often prompting an LLM originally trained to be a helpful assistant to act as a user. However, we show that assistant LMs make for poor user simulators, with the surprising finding that better assistants yield worse simulators. Instead, we introduce purpose-built User Language Models (User LMs) - models post-trained to simulate human users in multi-turn conversations. Through various evaluations, we show how User LMs align better with human behavior and achieve better simulation robustness than existing simulation methods. When leveraging User LMs to simulate coding and math conversations, the performance of a strong assistant (GPT-4o) drops from 74.6% to 57.4%, confirming that more realistic simulation environments lead to assistant struggles as they fail to cope with the nuances of users in multi-turn setups.

  • 4 authors
·
Oct 7, 2025

Reasoning Is Not All You Need: Examining LLMs for Multi-Turn Mental Health Conversations

Limited access to mental healthcare, extended wait times, and increasing capabilities of Large Language Models (LLMs) has led individuals to turn to LLMs for fulfilling their mental health needs. However, examining the multi-turn mental health conversation capabilities of LLMs remains under-explored. Existing evaluation frameworks typically focus on diagnostic accuracy and win-rates and often overlook alignment with patient-specific goals, values, and personalities required for meaningful conversations. To address this, we introduce MedAgent, a novel framework for synthetically generating realistic, multi-turn mental health sensemaking conversations and use it to create the Mental Health Sensemaking Dialogue (MHSD) dataset, comprising over 2,200 patient-LLM conversations. Additionally, we present MultiSenseEval, a holistic framework to evaluate the multi-turn conversation abilities of LLMs in healthcare settings using human-centric criteria. Our findings reveal that frontier reasoning models yield below-par performance for patient-centric communication and struggle at advanced diagnostic capabilities with average score of 31%. Additionally, we observed variation in model performance based on patient's persona and performance drop with increasing turns in the conversation. Our work provides a comprehensive synthetic data generation framework, a dataset and evaluation framework for assessing LLMs in multi-turn mental health conversations.

  • 5 authors
·
May 26, 2025

DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation

Text-to-image (T2I) generation models have significantly advanced in recent years. However, effective interaction with these models is challenging for average users due to the need for specialized prompt engineering knowledge and the inability to perform multi-turn image generation, hindering a dynamic and iterative creation process. Recent attempts have tried to equip Multi-modal Large Language Models (MLLMs) with T2I models to bring the user's natural language instructions into reality. Hence, the output modality of MLLMs is extended, and the multi-turn generation quality of T2I models is enhanced thanks to the strong multi-modal comprehension ability of MLLMs. However, many of these works face challenges in identifying correct output modalities and generating coherent images accordingly as the number of output modalities increases and the conversations go deeper. Therefore, we propose DialogGen, an effective pipeline to align off-the-shelf MLLMs and T2I models to build a Multi-modal Interactive Dialogue System (MIDS) for multi-turn Text-to-Image generation. It is composed of drawing prompt alignment, careful training data curation, and error correction. Moreover, as the field of MIDS flourishes, comprehensive benchmarks are urgently needed to evaluate MIDS fairly in terms of output modality correctness and multi-modal output coherence. To address this issue, we introduce the Multi-modal Dialogue Benchmark (DialogBen), a comprehensive bilingual benchmark designed to assess the ability of MLLMs to generate accurate and coherent multi-modal content that supports image editing. It contains two evaluation metrics to measure the model's ability to switch modalities and the coherence of the output images. Our extensive experiments on DialogBen and user study demonstrate the effectiveness of DialogGen compared with other State-of-the-Art models.

  • 9 authors
·
Mar 13, 2024

MathChat: Benchmarking Mathematical Reasoning and Instruction Following in Multi-Turn Interactions

Large language models (LLMs) have demonstrated impressive capabilities in mathematical problem solving, particularly in single turn question answering formats. However, real world scenarios often involve mathematical question answering that requires multi turn or interactive information exchanges, and the performance of LLMs on these tasks is still underexplored. This paper introduces MathChat, a comprehensive benchmark specifically designed to evaluate LLMs across a broader spectrum of mathematical tasks. These tasks are structured to assess the models' abilities in multiturn interactions and open ended generation. We evaluate the performance of various SOTA LLMs on the MathChat benchmark, and we observe that while these models excel in single turn question answering, they significantly underperform in more complex scenarios that require sustained reasoning and dialogue understanding. To address the above limitations of existing LLMs when faced with multiturn and open ended tasks, we develop MathChat sync, a synthetic dialogue based math dataset for LLM finetuning, focusing on improving models' interaction and instruction following capabilities in conversations. Experimental results emphasize the need for training LLMs with diverse, conversational instruction tuning datasets like MathChatsync. We believe this work outlines one promising direction for improving the multiturn mathematical reasoning abilities of LLMs, thus pushing forward the development of LLMs that are more adept at interactive mathematical problem solving and real world applications.

  • 7 authors
·
May 29, 2024

End-to-end Conversation Modeling Track in DSTC6

End-to-end training of neural networks is a promising approach to automatic construction of dialog systems using a human-to-human dialog corpus. Recently, Vinyals et al. tested neural conversation models using OpenSubtitles. Lowe et al. released the Ubuntu Dialogue Corpus for researching unstructured multi-turn dialogue systems. Furthermore, the approach has been extended to accomplish task oriented dialogs to provide information properly with natural conversation. For example, Ghazvininejad et al. proposed a knowledge grounded neural conversation model [3], where the research is aiming at combining conversational dialogs with task-oriented knowledge using unstructured data such as Twitter data for conversation and Foursquare data for external knowledge.However, the task is still limited to a restaurant information service, and has not yet been tested with a wide variety of dialog tasks. In addition, it is still unclear how to create intelligent dialog systems that can respond like a human agent. In consideration of these problems, we proposed a challenge track to the 6th dialog system technology challenges (DSTC6) using human-to-human dialog data to mimic human dialog behaviors. The focus of the challenge track is to train end-to-end conversation models from human-to-human conversation and accomplish end-to-end dialog tasks in various situations assuming a customer service, in which a system plays a role of human agent and generates natural and informative sentences in response to user's questions or comments given dialog context.

  • 2 authors
·
Jun 22, 2017

MIntRec2.0: A Large-scale Benchmark Dataset for Multimodal Intent Recognition and Out-of-scope Detection in Conversations

Multimodal intent recognition poses significant challenges, requiring the incorporation of non-verbal modalities from real-world contexts to enhance the comprehension of human intentions. Existing benchmark datasets are limited in scale and suffer from difficulties in handling out-of-scope samples that arise in multi-turn conversational interactions. We introduce MIntRec2.0, a large-scale benchmark dataset for multimodal intent recognition in multi-party conversations. It contains 1,245 dialogues with 15,040 samples, each annotated within a new intent taxonomy of 30 fine-grained classes. Besides 9,304 in-scope samples, it also includes 5,736 out-of-scope samples appearing in multi-turn contexts, which naturally occur in real-world scenarios. Furthermore, we provide comprehensive information on the speakers in each utterance, enriching its utility for multi-party conversational research. We establish a general framework supporting the organization of single-turn and multi-turn dialogue data, modality feature extraction, multimodal fusion, as well as in-scope classification and out-of-scope detection. Evaluation benchmarks are built using classic multimodal fusion methods, ChatGPT, and human evaluators. While existing methods incorporating nonverbal information yield improvements, effectively leveraging context information and detecting out-of-scope samples remains a substantial challenge. Notably, large language models exhibit a significant performance gap compared to humans, highlighting the limitations of machine learning methods in the cognitive intent understanding task. We believe that MIntRec2.0 will serve as a valuable resource, providing a pioneering foundation for research in human-machine conversational interactions, and significantly facilitating related applications. The full dataset and codes are available at https://github.com/thuiar/MIntRec2.0.

  • 9 authors
·
Mar 16, 2024

Tree-based Dialogue Reinforced Policy Optimization for Red-Teaming Attacks

Despite recent rapid progress in AI safety, current large language models remain vulnerable to adversarial attacks in multi-turn interaction settings, where attackers strategically adapt their prompts across conversation turns and pose a more critical yet realistic challenge. Existing approaches that discover safety vulnerabilities either rely on manual red-teaming with human experts or employ automated methods using pre-defined templates and human-curated attack data, with most focusing on single-turn attacks. However, these methods did not explore the vast space of possible multi-turn attacks, failing to consider novel attack trajectories that emerge from complex dialogue dynamics and strategic conversation planning. This gap is particularly critical given recent findings that LLMs exhibit significantly higher vulnerability to multi-turn attacks compared to single-turn attacks. We propose DialTree-RPO, an on-policy reinforcement learning framework integrated with tree search that autonomously discovers diverse multi-turn attack strategies by treating the dialogue as a sequential decision-making problem, enabling systematic exploration without manually curated data. Through extensive experiments, our approach not only achieves more than 25.9% higher ASR across 10 target models compared to previous state-of-the-art approaches, but also effectively uncovers new attack strategies by learning optimal dialogue policies that maximize attack success across multiple turns.

  • 6 authors
·
Oct 2, 2025 3

LISA++: An Improved Baseline for Reasoning Segmentation with Large Language Model

While LISA effectively bridges the gap between segmentation and large language models to enable reasoning segmentation, it poses certain limitations: unable to distinguish different instances of the target region, and constrained by the pre-defined textual response formats. In this work, we introduce LISA++, an update to the existing LISA model, focusing on improving core functionalities while keeping the base architecture intact. The main enhancements in LISA++ include: 1) Enhanced Segmentation: The instance segmentation ability has been added, providing a more detailed scene analysis along with the existing multi-region semantic segmentation. 2) More Natural Conversation: Improved capability for multi-turn dialogue, with the ability to incorporate segmentation results directly into text responses, i.e., Segmentation in Dialogue (SiD). These improvements are achieved by curating the existing samples of generic segmentation datasets, aimed specifically at enhancing the segmentation and conversational skills without structural change and additional data sources. Comparative analysis with the original LISA model shows significant advancements in these areas, positioning LISA++ as a notable upgrade in visual understanding and interaction. LISA++'s adaptability and improved features highlight the versatility of the mask-as-embedding paradigm proposed by LISA, and the potential as a foundational model for diverse applications.

  • 7 authors
·
Dec 28, 2023 1

Unleashing Infinite-Length Input Capacity for Large-scale Language Models with Self-Controlled Memory System

Large-scale Language Models (LLMs) are constrained by their inability to process lengthy inputs. To address this limitation, we propose the Self-Controlled Memory (SCM) system to unleash infinite-length input capacity for large-scale language models. Our SCM system is composed of three key modules: the language model agent, the memory stream, and the memory controller. The language model agent iteratively processes ultra-long inputs and stores all historical information in the memory stream. The memory controller provides the agent with both long-term memory (archived memory) and short-term memory (flash memory) to generate precise and coherent responses. The controller determines which memories from archived memory should be activated and how to incorporate them into the model input. Our SCM system can be integrated with any LLMs to enable them to process ultra-long texts without any modification or fine-tuning. Experimental results show that our SCM system enables LLMs, which are not optimized for multi-turn dialogue, to achieve multi-turn dialogue capabilities that are comparable to ChatGPT, and to outperform ChatGPT in scenarios involving ultra-long document summarization or long-term conversations. Additionally, we will supply a test set, which covers common long-text input scenarios, for evaluating the abilities of LLMs in processing long documents.~Working in progress.\url{https://github.com/wbbeyourself/SCM4LLMs}

  • 8 authors
·
Apr 26, 2023

MoCha: Towards Movie-Grade Talking Character Synthesis

Recent advancements in video generation have achieved impressive motion realism, yet they often overlook character-driven storytelling, a crucial task for automated film, animation generation. We introduce Talking Characters, a more realistic task to generate talking character animations directly from speech and text. Unlike talking head, Talking Characters aims at generating the full portrait of one or more characters beyond the facial region. In this paper, we propose MoCha, the first of its kind to generate talking characters. To ensure precise synchronization between video and speech, we propose a speech-video window attention mechanism that effectively aligns speech and video tokens. To address the scarcity of large-scale speech-labeled video datasets, we introduce a joint training strategy that leverages both speech-labeled and text-labeled video data, significantly improving generalization across diverse character actions. We also design structured prompt templates with character tags, enabling, for the first time, multi-character conversation with turn-based dialogue-allowing AI-generated characters to engage in context-aware conversations with cinematic coherence. Extensive qualitative and quantitative evaluations, including human preference studies and benchmark comparisons, demonstrate that MoCha sets a new standard for AI-generated cinematic storytelling, achieving superior realism, expressiveness, controllability and generalization.

  • 13 authors
·
Mar 30, 2025 19