new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Apr 4

How Are LLMs Mitigating Stereotyping Harms? Learning from Search Engine Studies

With the widespread availability of LLMs since the release of ChatGPT and increased public scrutiny, commercial model development appears to have focused their efforts on 'safety' training concerning legal liabilities at the expense of social impact evaluation. This mimics a similar trend which we could observe for search engine autocompletion some years prior. We draw on scholarship from NLP and search engine auditing and present a novel evaluation task in the style of autocompletion prompts to assess stereotyping in LLMs. We assess LLMs by using four metrics, namely refusal rates, toxicity, sentiment and regard, with and without safety system prompts. Our findings indicate an improvement to stereotyping outputs with the system prompt, but overall a lack of attention by LLMs under study to certain harms classified as toxic, particularly for prompts about peoples/ethnicities and sexual orientation. Mentions of intersectional identities trigger a disproportionate amount of stereotyping. Finally, we discuss the implications of these findings about stereotyping harms in light of the coming intermingling of LLMs and search and the choice of stereotyping mitigation policy to adopt. We address model builders, academics, NLP practitioners and policy makers, calling for accountability and awareness concerning stereotyping harms, be it for training data curation, leader board design and usage, or social impact measurement.

IndiBias: A Benchmark Dataset to Measure Social Biases in Language Models for Indian Context

The pervasive influence of social biases in language data has sparked the need for benchmark datasets that capture and evaluate these biases in Large Language Models (LLMs). Existing efforts predominantly focus on English language and the Western context, leaving a void for a reliable dataset that encapsulates India's unique socio-cultural nuances. To bridge this gap, we introduce IndiBias, a comprehensive benchmarking dataset designed specifically for evaluating social biases in the Indian context. We filter and translate the existing CrowS-Pairs dataset to create a benchmark dataset suited to the Indian context in Hindi language. Additionally, we leverage LLMs including ChatGPT and InstructGPT to augment our dataset with diverse societal biases and stereotypes prevalent in India. The included bias dimensions encompass gender, religion, caste, age, region, physical appearance, and occupation. We also build a resource to address intersectional biases along three intersectional dimensions. Our dataset contains 800 sentence pairs and 300 tuples for bias measurement across different demographics. The dataset is available in English and Hindi, providing a size comparable to existing benchmark datasets. Furthermore, using IndiBias we compare ten different language models on multiple bias measurement metrics. We observed that the language models exhibit more bias across a majority of the intersectional groups.

Bias Out-of-the-Box: An Empirical Analysis of Intersectional Occupational Biases in Popular Generative Language Models

The capabilities of natural language models trained on large-scale data have increased immensely over the past few years. Open source libraries such as HuggingFace have made these models easily available and accessible. While prior research has identified biases in large language models, this paper considers biases contained in the most popular versions of these models when applied `out-of-the-box' for downstream tasks. We focus on generative language models as they are well-suited for extracting biases inherited from training data. Specifically, we conduct an in-depth analysis of GPT-2, which is the most downloaded text generation model on HuggingFace, with over half a million downloads per month. We assess biases related to occupational associations for different protected categories by intersecting gender with religion, sexuality, ethnicity, political affiliation, and continental name origin. Using a template-based data collection pipeline, we collect 396K sentence completions made by GPT-2 and find: (i) The machine-predicted jobs are less diverse and more stereotypical for women than for men, especially for intersections; (ii) Intersectional interactions are highly relevant for occupational associations, which we quantify by fitting 262 logistic models; (iii) For most occupations, GPT-2 reflects the skewed gender and ethnicity distribution found in US Labor Bureau data, and even pulls the societally-skewed distribution towards gender parity in cases where its predictions deviate from real labor market observations. This raises the normative question of what language models should learn - whether they should reflect or correct for existing inequalities.

How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for Tabular Data

Deep Generative Models (DGMs) have been shown to be powerful tools for generating tabular data, as they have been increasingly able to capture the complex distributions that characterize them. However, to generate realistic synthetic data, it is often not enough to have a good approximation of their distribution, as it also requires compliance with constraints that encode essential background knowledge on the problem at hand. In this paper, we address this limitation and show how DGMs for tabular data can be transformed into Constrained Deep Generative Models (C-DGMs), whose generated samples are guaranteed to be compliant with the given constraints. This is achieved by automatically parsing the constraints and transforming them into a Constraint Layer (CL) seamlessly integrated with the DGM. Our extensive experimental analysis with various DGMs and tasks reveals that standard DGMs often violate constraints, some exceeding 95% non-compliance, while their corresponding C-DGMs are never non-compliant. Then, we quantitatively demonstrate that, at training time, C-DGMs are able to exploit the background knowledge expressed by the constraints to outperform their standard counterparts with up to 6.5% improvement in utility and detection. Further, we show how our CL does not necessarily need to be integrated at training time, as it can be also used as a guardrail at inference time, still producing some improvements in the overall performance of the models. Finally, we show that our CL does not hinder the sample generation time of the models.

Evaluating and Mitigating Discrimination in Language Model Decisions

As language models (LMs) advance, interest is growing in applying them to high-stakes societal decisions, such as determining financing or housing eligibility. However, their potential for discrimination in such contexts raises ethical concerns, motivating the need for better methods to evaluate these risks. We present a method for proactively evaluating the potential discriminatory impact of LMs in a wide range of use cases, including hypothetical use cases where they have not yet been deployed. Specifically, we use an LM to generate a wide array of potential prompts that decision-makers may input into an LM, spanning 70 diverse decision scenarios across society, and systematically vary the demographic information in each prompt. Applying this methodology reveals patterns of both positive and negative discrimination in the Claude 2.0 model in select settings when no interventions are applied. While we do not endorse or permit the use of language models to make automated decisions for the high-risk use cases we study, we demonstrate techniques to significantly decrease both positive and negative discrimination through careful prompt engineering, providing pathways toward safer deployment in use cases where they may be appropriate. Our work enables developers and policymakers to anticipate, measure, and address discrimination as language model capabilities and applications continue to expand. We release our dataset and prompts at https://huggingface.co/datasets/Anthropic/discrim-eval

"Es geht um Respekt, nicht um Technologie": Erkenntnisse aus einem Interessensgruppen-übergreifenden Workshop zu genderfairer Sprache und Sprachtechnologie

With the increasing attention non-binary people receive in Western societies, strategies of gender-fair language have started to move away from binary (only female/male) concepts of gender. Nevertheless, hardly any approaches to take these identities into account into machine translation models exist so far. A lack of understanding of the socio-technical implications of such technologies risks further reproducing linguistic mechanisms of oppression and mislabelling. In this paper, we describe the methods and results of a workshop on gender-fair language and language technologies, which was led and organised by ten researchers from TU Wien, St. P\"olten UAS, FH Campus Wien and the University of Vienna and took place in Vienna in autumn 2021. A wide range of interest groups and their representatives were invited to ensure that the topic could be dealt with holistically. Accordingly, we aimed to include translators, machine translation experts and non-binary individuals (as "community experts") on an equal footing. Our analysis shows that gender in machine translation requires a high degree of context sensitivity, that developers of such technologies need to position themselves cautiously in a process still under social negotiation, and that flexible approaches seem most adequate at present. We then illustrate steps that follow from our results for the field of gender-fair language technologies so that technological developments can adequately line up with social advancements. ---- Mit zunehmender gesamtgesellschaftlicher Wahrnehmung nicht-bin\"arer Personen haben sich in den letzten Jahren auch Konzepte von genderfairer Sprache von der bisher verwendeten Binarit\"at (weiblich/m\"annlich) entfernt. Trotzdem gibt es bislang nur wenige Ans\"atze dazu, diese Identit\"aten in maschineller \"Ubersetzung abzubilden. Ein fehlendes Verst\"andnis unterschiedlicher sozio-technischer Implikationen derartiger Technologien birgt in sich die Gefahr, fehlerhafte Ansprachen und Bezeichnungen sowie sprachliche Unterdr\"uckungsmechanismen zu reproduzieren. In diesem Beitrag beschreiben wir die Methoden und Ergebnisse eines Workshops zu genderfairer Sprache in technologischen Zusammenh\"angen, der im Herbst 2021 in Wien stattgefunden hat. Zehn Forscher*innen der TU Wien, FH St. P\"olten, FH Campus Wien und Universit\"at Wien organisierten und leiteten den Workshop. Dabei wurden unterschiedlichste Interessensgruppen und deren Vertreter*innen breit gestreut eingeladen, um sicherzustellen, dass das Thema holistisch behandelt werden kann. Dementsprechend setzten wir uns zum Ziel, Machine-Translation-Entwickler*innen, \"Ubersetzer*innen, und nicht-bin\"are Privatpersonen (als "Lebenswelt-Expert*innen") gleichberechtigt einzubinden. Unsere Analyse zeigt, dass Geschlecht in maschineller \"Ubersetzung eine mageblich kontextsensible Herangehensweise erfordert, die Entwicklung von Sprachtechnologien sich vorsichtig in einem sich noch in Aushandlung befindlichen gesellschaftlichen Prozess positionieren muss, und flexible Ans\"atze derzeit am ad\"aquatesten erscheinen. Wir zeigen auf, welche n\"achsten Schritte im Bereich genderfairer Technologien notwendig sind, damit technische mit sozialen Entwicklungen mithalten k\"onnen.

Awareness in Practice: Tensions in Access to Sensitive Attribute Data for Antidiscrimination

Organizations cannot address demographic disparities that they cannot see. Recent research on machine learning and fairness has emphasized that awareness of sensitive attributes, such as race and sex, is critical to the development of interventions. However, on the ground, the existence of these data cannot be taken for granted. This paper uses the domains of employment, credit, and healthcare in the United States to surface conditions that have shaped the availability of sensitive attribute data. For each domain, we describe how and when private companies collect or infer sensitive attribute data for antidiscrimination purposes. An inconsistent story emerges: Some companies are required by law to collect sensitive attribute data, while others are prohibited from doing so. Still others, in the absence of legal mandates, have determined that collection and imputation of these data are appropriate to address disparities. This story has important implications for fairness research and its future applications. If companies that mediate access to life opportunities are unable or hesitant to collect or infer sensitive attribute data, then proposed techniques to detect and mitigate bias in machine learning models might never be implemented outside the lab. We conclude that today's legal requirements and corporate practices, while highly inconsistent across domains, offer lessons for how to approach the collection and inference of sensitive data in appropriate circumstances. We urge stakeholders, including machine learning practitioners, to actively help chart a path forward that takes both policy goals and technical needs into account.