Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGood things come in small packages: Should we adopt Lite-GPUs in AI infrastructure?
To match the blooming demand of generative AI workloads, GPU designers have so far been trying to pack more and more compute and memory into single complex and expensive packages. However, there is growing uncertainty about the scalability of individual GPUs and thus AI clusters, as state-of-the-art GPUs are already displaying packaging, yield, and cooling limitations. We propose to rethink the design and scaling of AI clusters through efficiently-connected large clusters of Lite-GPUs, GPUs with single, small dies and a fraction of the capabilities of larger GPUs. We think recent advances in co-packaged optics can be key in overcoming the communication challenges of distributing AI workloads onto more Lite-GPUs. In this paper, we present the key benefits of Lite-GPUs on manufacturing cost, blast radius, yield, and power efficiency; and discuss systems opportunities and challenges around resource, workload, memory, and network management.
Good Questions Help Zero-Shot Image Reasoning
Aligning the recent large language models (LLMs) with computer vision models leads to large vision-language models (LVLMs), which have paved the way for zero-shot image reasoning tasks. However, LVLMs are usually trained on short high-level captions only referring to sparse focus regions in images. Such a ``tunnel vision'' limits LVLMs to exploring other relevant contexts in complex scenes. To address this challenge, we introduce Question-Driven Visual Exploration (QVix), a novel prompting strategy that enhances the exploratory capabilities of LVLMs in zero-shot reasoning tasks. QVix leverages LLMs' strong language prior to generate input-exploratory questions with more details than the original query, guiding LVLMs to explore visual content more comprehensively and uncover subtle or peripheral details. QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment. Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods, highlighting its effectiveness in bridging the gap between complex visual data and LVLMs' exploratory abilities.
The Good, the Bad, and the Missing: Neural Code Generation for Machine Learning Tasks
Machine learning (ML) has been increasingly used in a variety of domains, while solving ML programming tasks poses unique challenges because of the fundamentally different nature and construction from general programming tasks, especially for developers who do not have ML backgrounds. Automatic code generation that produces a code snippet from a natural language description can be a promising technique to accelerate ML programming tasks. In recent years, although many deep learning-based neural code generation models have been proposed with high accuracy, the fact that most of them are mainly evaluated on general programming tasks calls into question their effectiveness and usefulness in ML programming tasks. In this paper, we set out to investigate the effectiveness of existing neural code generation models on ML programming tasks. For our analysis, we select six state-of-the-art neural code generation models, and evaluate their performance on four widely used ML libraries, with newly-created 83K pairs of natural-language described ML programming tasks. Our empirical study reveals some good, bad, and missing aspects of neural code generation models on ML tasks, with a few major ones listed below. (Good) Neural code generation models perform significantly better on ML tasks than on non-ML tasks. (Bad) Most of the generated code is semantically incorrect. (Bad) Code generation models cannot significantly improve developers' completion time. (Good) The generated code can help developers write more correct code by providing developers with clues for using correct APIs. (Missing) The observation from our user study reveals the missing aspects of code generation for ML tasks, e.g., decomposing code generation for divide-and-conquer into two tasks: API sequence identification and API usage generation.
GODS: Generalized One-class Discriminative Subspaces for Anomaly Detection
One-class learning is the classic problem of fitting a model to data for which annotations are available only for a single class. In this paper, we propose a novel objective for one-class learning. Our key idea is to use a pair of orthonormal frames -- as subspaces -- to "sandwich" the labeled data via optimizing for two objectives jointly: i) minimize the distance between the origins of the two subspaces, and ii) to maximize the margin between the hyperplanes and the data, either subspace demanding the data to be in its positive and negative orthant respectively. Our proposed objective however leads to a non-convex optimization problem, to which we resort to Riemannian optimization schemes and derive an efficient conjugate gradient scheme on the Stiefel manifold. To study the effectiveness of our scheme, we propose a new dataset~Dash-Cam-Pose, consisting of clips with skeleton poses of humans seated in a car, the task being to classify the clips as normal or abnormal; the latter is when any human pose is out-of-position with regard to say an airbag deployment. Our experiments on the proposed Dash-Cam-Pose dataset, as well as several other standard anomaly/novelty detection benchmarks demonstrate the benefits of our scheme, achieving state-of-the-art one-class accuracy.
Good Debt or Bad Debt: Detecting Semantic Orientations in Economic Texts
The use of robo-readers to analyze news texts is an emerging technology trend in computational finance. In recent research, a substantial effort has been invested to develop sophisticated financial polarity-lexicons that can be used to investigate how financial sentiments relate to future company performance. However, based on experience from other fields, where sentiment analysis is commonly applied, it is well-known that the overall semantic orientation of a sentence may differ from the prior polarity of individual words. The objective of this article is to investigate how semantic orientations can be better detected in financial and economic news by accommodating the overall phrase-structure information and domain-specific use of language. Our three main contributions are: (1) establishment of a human-annotated finance phrase-bank, which can be used as benchmark for training and evaluating alternative models; (2) presentation of a technique to enhance financial lexicons with attributes that help to identify expected direction of events that affect overall sentiment; (3) development of a linearized phrase-structure model for detecting contextual semantic orientations in financial and economic news texts. The relevance of the newly added lexicon features and the benefit of using the proposed learning-algorithm are demonstrated in a comparative study against previously used general sentiment models as well as the popular word frequency models used in recent financial studies. The proposed framework is parsimonious and avoids the explosion in feature-space caused by the use of conventional n-gram features.
good4cir: Generating Detailed Synthetic Captions for Composed Image Retrieval
Composed image retrieval (CIR) enables users to search images using a reference image combined with textual modifications. Recent advances in vision-language models have improved CIR, but dataset limitations remain a barrier. Existing datasets often rely on simplistic, ambiguous, or insufficient manual annotations, hindering fine-grained retrieval. We introduce good4cir, a structured pipeline leveraging vision-language models to generate high-quality synthetic annotations. Our method involves: (1) extracting fine-grained object descriptions from query images, (2) generating comparable descriptions for target images, and (3) synthesizing textual instructions capturing meaningful transformations between images. This reduces hallucination, enhances modification diversity, and ensures object-level consistency. Applying our method improves existing datasets and enables creating new datasets across diverse domains. Results demonstrate improved retrieval accuracy for CIR models trained on our pipeline-generated datasets. We release our dataset construction framework to support further research in CIR and multi-modal retrieval.
Good Seed Makes a Good Crop: Discovering Secret Seeds in Text-to-Image Diffusion Models
Recent advances in text-to-image (T2I) diffusion models have facilitated creative and photorealistic image synthesis. By varying the random seeds, we can generate various images for a fixed text prompt. Technically, the seed controls the initial noise and, in multi-step diffusion inference, the noise used for reparameterization at intermediate timesteps in the reverse diffusion process. However, the specific impact of the random seed on the generated images remains relatively unexplored. In this work, we conduct a large-scale scientific study into the impact of random seeds during diffusion inference. Remarkably, we reveal that the best 'golden' seed achieved an impressive FID of 21.60, compared to the worst 'inferior' seed's FID of 31.97. Additionally, a classifier can predict the seed number used to generate an image with over 99.9% accuracy in just a few epochs, establishing that seeds are highly distinguishable based on generated images. Encouraged by these findings, we examined the influence of seeds on interpretable visual dimensions. We find that certain seeds consistently produce grayscale images, prominent sky regions, or image borders. Seeds also affect image composition, including object location, size, and depth. Moreover, by leveraging these 'golden' seeds, we demonstrate improved image generation such as high-fidelity inference and diversified sampling. Our investigation extends to inpainting tasks, where we uncover some seeds that tend to insert unwanted text artifacts. Overall, our extensive analyses highlight the importance of selecting good seeds and offer practical utility for image generation.
GoodDrag: Towards Good Practices for Drag Editing with Diffusion Models
In this paper, we introduce GoodDrag, a novel approach to improve the stability and image quality of drag editing. Unlike existing methods that struggle with accumulated perturbations and often result in distortions, GoodDrag introduces an AlDD framework that alternates between drag and denoising operations within the diffusion process, effectively improving the fidelity of the result. We also propose an information-preserving motion supervision operation that maintains the original features of the starting point for precise manipulation and artifact reduction. In addition, we contribute to the benchmarking of drag editing by introducing a new dataset, Drag100, and developing dedicated quality assessment metrics, Dragging Accuracy Index and Gemini Score, utilizing Large Multimodal Models. Extensive experiments demonstrate that the proposed GoodDrag compares favorably against the state-of-the-art approaches both qualitatively and quantitatively. The project page is https://gooddrag.github.io.
Good Teachers Explain: Explanation-Enhanced Knowledge Distillation
Knowledge Distillation (KD) has proven effective for compressing large teacher models into smaller student models. While it is well known that student models can achieve similar accuracies as the teachers, it has also been shown that they nonetheless often do not learn the same function. It is, however, often highly desirable that the student's and teacher's functions share similar properties such as basing the prediction on the same input features, as this ensures that students learn the 'right features' from the teachers. In this work, we explore whether this can be achieved by not only optimizing the classic KD loss but also the similarity of the explanations generated by the teacher and the student. Despite the idea being simple and intuitive, we find that our proposed 'explanation-enhanced' KD (e^2KD) (1) consistently provides large gains in terms of accuracy and student-teacher agreement, (2) ensures that the student learns from the teacher to be right for the right reasons and to give similar explanations, and (3) is robust with respect to the model architectures, the amount of training data, and even works with 'approximate', pre-computed explanations.
Good at captioning, bad at counting: Benchmarking GPT-4V on Earth observation data
Large Vision-Language Models (VLMs) have demonstrated impressive performance on complex tasks involving visual input with natural language instructions. However, it remains unclear to what extent capabilities on natural images transfer to Earth observation (EO) data, which are predominantly satellite and aerial images less common in VLM training data. In this work, we propose a comprehensive benchmark to gauge the progress of VLMs toward being useful tools for EO data by assessing their abilities on scene understanding, localization and counting, and change detection tasks. Motivated by real-world applications, our benchmark includes scenarios like urban monitoring, disaster relief, land use, and conservation. We discover that, although state-of-the-art VLMs like GPT-4V possess extensive world knowledge that leads to strong performance on open-ended tasks like location understanding and image captioning, their poor spatial reasoning limits usefulness on object localization and counting tasks. Our benchmark will be made publicly available at https://vleo.danielz.ch/ and on Hugging Face at https://huggingface.co/collections/mit-ei/vleo-benchmark-datasets-65b789b0466555489cce0d70 for easy model evaluation.
Goodhart's Law in Reinforcement Learning
Implementing a reward function that perfectly captures a complex task in the real world is impractical. As a result, it is often appropriate to think of the reward function as a proxy for the true objective rather than as its definition. We study this phenomenon through the lens of Goodhart's law, which predicts that increasing optimisation of an imperfect proxy beyond some critical point decreases performance on the true objective. First, we propose a way to quantify the magnitude of this effect and show empirically that optimising an imperfect proxy reward often leads to the behaviour predicted by Goodhart's law for a wide range of environments and reward functions. We then provide a geometric explanation for why Goodhart's law occurs in Markov decision processes. We use these theoretical insights to propose an optimal early stopping method that provably avoids the aforementioned pitfall and derive theoretical regret bounds for this method. Moreover, we derive a training method that maximises worst-case reward, for the setting where there is uncertainty about the true reward function. Finally, we evaluate our early stopping method experimentally. Our results support a foundation for a theoretically-principled study of reinforcement learning under reward misspecification.
Goodtriever: Adaptive Toxicity Mitigation with Retrieval-augmented Models
Considerable effort has been dedicated to mitigating toxicity, but existing methods often require drastic modifications to model parameters or the use of computationally intensive auxiliary models. Furthermore, previous approaches have often neglected the crucial factor of language's evolving nature over time. In this work, we present a comprehensive perspective on toxicity mitigation that takes into account its changing nature. We introduce Goodtriever, a flexible methodology that matches the current state-of-the-art toxicity mitigation while achieving 43% relative latency reduction during inference and being more computationally efficient. By incorporating a retrieval-based approach at decoding time, Goodtriever enables toxicity-controlled text generation. Our research advocates for an increased focus on adaptable mitigation techniques, which better reflect the data drift models face when deployed in the wild. Code and data are available at https://github.com/for-ai/goodtriever.
Good Neighbors Are All You Need for Chinese Grapheme-to-Phoneme Conversion
Most Chinese Grapheme-to-Phoneme (G2P) systems employ a three-stage framework that first transforms input sequences into character embeddings, obtains linguistic information using language models, and then predicts the phonemes based on global context about the entire input sequence. However, linguistic knowledge alone is often inadequate. Language models frequently encode overly general structures of a sentence and fail to cover specific cases needed to use phonetic knowledge. Also, a handcrafted post-processing system is needed to address the problems relevant to the tone of the characters. However, the system exhibits inconsistency in the segmentation of word boundaries which consequently degrades the performance of the G2P system. To address these issues, we propose the Reinforcer that provides strong inductive bias for language models by emphasizing the phonological information between neighboring characters to help disambiguate pronunciations. Experimental results show that the Reinforcer boosts the cutting-edge architectures by a large margin. We also combine the Reinforcer with a large-scale pre-trained model and demonstrate the validity of using neighboring context in knowledge transfer scenarios.
Good Colour Maps: How to Design Them
Many colour maps provided by vendors have highly uneven perceptual contrast over their range. It is not uncommon for colour maps to have perceptual flat spots that can hide a feature as large as one tenth of the total data range. Colour maps may also have perceptual discontinuities that induce the appearance of false features. Previous work in the design of perceptually uniform colour maps has mostly failed to recognise that CIELAB space is only designed to be perceptually uniform at very low spatial frequencies. The most important factor in designing a colour map is to ensure that the magnitude of the incremental change in perceptual lightness of the colours is uniform. The specific requirements for linear, diverging, rainbow and cyclic colour maps are developed in detail. To support this work two test images for evaluating colour maps are presented. The use of colour maps in combination with relief shading is considered and the conditions under which colour can enhance or disrupt relief shading are identified. Finally, a set of new basis colours for the construction of ternary images are presented. Unlike the RGB primaries these basis colours produce images whereby the salience of structures are consistent irrespective of the assignment of basis colours to data channels.
How Good Are Low-bit Quantized LLaMA3 Models? An Empirical Study
Meta's LLaMA family has become one of the most powerful open-source Large Language Model (LLM) series. Notably, LLaMA3 models have recently been released and achieve impressive performance across various with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-limited scenarios, we explore LLaMA3's capabilities when quantized to low bit-width. This exploration holds the potential to unveil new insights and challenges for low-bit quantization of LLaMA3 and other forthcoming LLMs, especially in addressing performance degradation problems that suffer in LLM compression. Specifically, we evaluate the 10 existing post-training quantization and LoRA-finetuning methods of LLaMA3 on 1-8 bits and diverse datasets to comprehensively reveal LLaMA3's low-bit quantization performance. Our experiment results indicate that LLaMA3 still suffers non-negligent degradation in these scenarios, especially in ultra-low bit-width. This highlights the significant performance gap under low bit-width that needs to be bridged in future developments. We expect that this empirical study will prove valuable in advancing future models, pushing the LLMs to lower bit-width with higher accuracy for being practical. Our project is released on https://github.com/Macaronlin/LLaMA3-Quantization and quantized LLaMA3 models are released in https://huggingface.co/LLMQ.
The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism
Current evaluations of large language models (LLMs) often overlook non-determinism, typically focusing on a single output per example. This limits our understanding of LLM performance variability in real-world applications. Our study addresses this issue by exploring key questions about the performance differences between greedy decoding and sampling, identifying benchmarks' consistency regarding non-determinism, and examining unique model behaviors. Through extensive experiments, we observe that greedy decoding generally outperforms sampling methods for most evaluated tasks. We also observe consistent performance across different LLM sizes and alignment methods, noting that alignment can reduce sampling variance. Moreover, our best-of-N sampling approach demonstrates that smaller LLMs can match or surpass larger models such as GPT-4-Turbo, highlighting the untapped potential of smaller LLMs. This research shows the importance of considering non-determinism in LLM evaluations and provides insights for future LLM development and evaluation.
When Good and Reproducible Results are a Giant with Feet of Clay: The Importance of Software Quality in NLP
Despite its crucial role in research experiments, code correctness is often presumed only on the basis of the perceived quality of results. This assumption comes with the risk of erroneous outcomes and potentially misleading findings. To address this issue, we posit that the current focus on reproducibility should go hand in hand with the emphasis on software quality. We present a case study in which we identify and fix three bugs in widely used implementations of the state-of-the-art Conformer architecture. Through experiments on speech recognition and translation in various languages, we demonstrate that the presence of bugs does not prevent the achievement of good and reproducible results, which however can lead to incorrect conclusions that potentially misguide future research. As a countermeasure, we propose a Code-quality Checklist and release pangoliNN, a library dedicated to testing neural models, with the goal of promoting coding best practices and improving research software quality within the NLP community.
How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models
In this work, we provide a systematic and comprehensive empirical comparison of pretrained multilingual language models versus their monolingual counterparts with regard to their monolingual task performance. We study a set of nine typologically diverse languages with readily available pretrained monolingual models on a set of five diverse monolingual downstream tasks. We first aim to establish, via fair and controlled comparisons, if a gap between the multilingual and the corresponding monolingual representation of that language exists, and subsequently investigate the reason for any performance difference. To disentangle conflating factors, we train new monolingual models on the same data, with monolingually and multilingually trained tokenizers. We find that while the pretraining data size is an important factor, a designated monolingual tokenizer plays an equally important role in the downstream performance. Our results show that languages that are adequately represented in the multilingual model's vocabulary exhibit negligible performance decreases over their monolingual counterparts. We further find that replacing the original multilingual tokenizer with the specialized monolingual tokenizer improves the downstream performance of the multilingual model for almost every task and language.
How Good is Zero-Shot MT Evaluation for Low Resource Indian Languages?
While machine translation evaluation has been studied primarily for high-resource languages, there has been a recent interest in evaluation for low-resource languages due to the increasing availability of data and models. In this paper, we focus on a zero-shot evaluation setting focusing on low-resource Indian languages, namely Assamese, Kannada, Maithili, and Punjabi. We collect sufficient Multi-Dimensional Quality Metrics (MQM) and Direct Assessment (DA) annotations to create test sets and meta-evaluate a plethora of automatic evaluation metrics. We observe that even for learned metrics, which are known to exhibit zero-shot performance, the Kendall Tau and Pearson correlations with human annotations are only as high as 0.32 and 0.45. Synthetic data approaches show mixed results and overall do not help close the gap by much for these languages. This indicates that there is still a long way to go for low-resource evaluation.
As Good As A Coin Toss: Human detection of AI-generated images, videos, audio, and audiovisual stimuli
As synthetic media becomes progressively more realistic and barriers to using it continue to lower, the technology has been increasingly utilized for malicious purposes, from financial fraud to nonconsensual pornography. Today, the principal defense against being misled by synthetic media relies on the ability of the human observer to visually and auditorily discern between real and fake. However, it remains unclear just how vulnerable people actually are to deceptive synthetic media in the course of their day to day lives. We conducted a perceptual study with 1276 participants to assess how accurate people were at distinguishing synthetic images, audio only, video only, and audiovisual stimuli from authentic. To reflect the circumstances under which people would likely encounter synthetic media in the wild, testing conditions and stimuli emulated a typical online platform, while all synthetic media used in the survey was sourced from publicly accessible generative AI technology. We find that overall, participants struggled to meaningfully discern between synthetic and authentic content. We also find that detection performance worsens when the stimuli contains synthetic content as compared to authentic content, images featuring human faces as compared to non face objects, a single modality as compared to multimodal stimuli, mixed authenticity as compared to being fully synthetic for audiovisual stimuli, and features foreign languages as compared to languages the observer is fluent in. Finally, we also find that prior knowledge of synthetic media does not meaningfully impact their detection performance. Collectively, these results indicate that people are highly susceptible to being tricked by synthetic media in their daily lives and that human perceptual detection capabilities can no longer be relied upon as an effective counterdefense.
From Good to Great: Improving Math Reasoning with Tool-Augmented Interleaf Prompting
This paper investigates the performance of Large Language Models (LLMs) and Tool-augmented LLMs in tackling complex mathematical reasoning tasks. We introduce IMP-TIP: Improving Math Reasoning with Tool-augmented Interleaf Prompting, a framework that combines the strengths of both LLMs and Tool-augmented LLMs. IMP-TIP follows the ``From Good to Great" concept, collecting multiple potential solutions from both LLMs and their Tool-Augmented counterparts for the same math problem, and then selecting or re-generating the most accurate answer after cross-checking these solutions via tool-augmented interleaf prompting. The framework incorporates two key aspects: self-prompt and tool-augmented interleaf prompting (TIP). The former allows LLMs to autonomously refine and improve an initial prompt related to tool usage, while the latter enables LLMs to derive the final answer by dynamically analyzing the problem, cross-checking potential solutions, and revising previous reasoning hints in an interleaved manner. Experimental analysis shows that IMP-TIP achieves enhanced mathematical capabilities and outperforms traditional LLMs and tool-augmented LLMs in accuracy and reasoning diversity on math reasoning tasks. For instance, IMP-TIP can improve Tool-augmented ChatGPT on GSM8K-Hard from 56.0% to 65.2%.
The GOOSE Dataset for Perception in Unstructured Environments
The potential for deploying autonomous systems can be significantly increased by improving the perception and interpretation of the environment. However, the development of deep learning-based techniques for autonomous systems in unstructured outdoor environments poses challenges due to limited data availability for training and testing. To address this gap, we present the German Outdoor and Offroad Dataset (GOOSE), a comprehensive dataset specifically designed for unstructured outdoor environments. The GOOSE dataset incorporates 10 000 labeled pairs of images and point clouds, which are utilized to train a range of state-of-the-art segmentation models on both image and point cloud data. We open source the dataset, along with an ontology for unstructured terrain, as well as dataset standards and guidelines. This initiative aims to establish a common framework, enabling the seamless inclusion of existing datasets and a fast way to enhance the perception capabilities of various robots operating in unstructured environments. The dataset, pre-trained models for offroad perception, and additional documentation can be found at https://goose-dataset.de/.
How Good is Google Bard's Visual Understanding? An Empirical Study on Open Challenges
Google's Bard has emerged as a formidable competitor to OpenAI's ChatGPT in the field of conversational AI. Notably, Bard has recently been updated to handle visual inputs alongside text prompts during conversations. Given Bard's impressive track record in handling textual inputs, we explore its capabilities in understanding and interpreting visual data (images) conditioned by text questions. This exploration holds the potential to unveil new insights and challenges for Bard and other forthcoming multi-modal Generative models, especially in addressing complex computer vision problems that demand accurate visual and language understanding. Specifically, in this study, we focus on 15 diverse task scenarios encompassing regular, camouflaged, medical, under-water and remote sensing data to comprehensively evaluate Bard's performance. Our primary finding indicates that Bard still struggles in these vision scenarios, highlighting the significant gap in vision-based understanding that needs to be bridged in future developments. We expect that this empirical study will prove valuable in advancing future models, leading to enhanced capabilities in comprehending and interpreting fine-grained visual data. Our project is released on https://github.com/htqin/GoogleBard-VisUnderstand
Say Goodbye to RNN-T Loss: A Novel CIF-based Transducer Architecture for Automatic Speech Recognition
RNN-T models are widely used in ASR, which rely on the RNN-T loss to achieve length alignment between input audio and target sequence. However, the implementation complexity and the alignment-based optimization target of RNN-T loss lead to computational redundancy and a reduced role for predictor network, respectively. In this paper, we propose a novel model named CIF-Transducer (CIF-T) which incorporates the Continuous Integrate-and-Fire (CIF) mechanism with the RNN-T model to achieve efficient alignment. In this way, the RNN-T loss is abandoned, thus bringing a computational reduction and allowing the predictor network a more significant role. We also introduce Funnel-CIF, Context Blocks, Unified Gating and Bilinear Pooling joint network, and auxiliary training strategy to further improve performance. Experiments on the 178-hour AISHELL-1 and 10000-hour WenetSpeech datasets show that CIF-T achieves state-of-the-art results with lower computational overhead compared to RNN-T models.
A Good Student is Cooperative and Reliable: CNN-Transformer Collaborative Learning for Semantic Segmentation
In this paper, we strive to answer the question "how to collaboratively learn convolutional neural network (CNN)-based and vision transformer (ViT)-based models by selecting and exchanging the reliable knowledge between them for semantic segmentation?" Accordingly, we propose an online knowledge distillation (KD) framework that can simultaneously learn compact yet effective CNN-based and ViT-based models with two key technical breakthroughs to take full advantage of CNNs and ViT while compensating their limitations. Firstly, we propose heterogeneous feature distillation (HFD) to improve students' consistency in low-layer feature space by mimicking heterogeneous features between CNNs and ViT. Secondly, to facilitate the two students to learn reliable knowledge from each other, we propose bidirectional selective distillation (BSD) that can dynamically transfer selective knowledge. This is achieved by 1) region-wise BSD determining the directions of knowledge transferred between the corresponding regions in the feature space and 2) pixel-wise BSD discerning which of the prediction knowledge to be transferred in the logit space. Extensive experiments on three benchmark datasets demonstrate that our proposed framework outperforms the state-of-the-art online distillation methods by a large margin, and shows its efficacy in learning collaboratively between ViT-based and CNN-based models.
Beyond Good Intentions: Reporting the Research Landscape of NLP for Social Good
With the recent advances in natural language processing (NLP), a vast number of applications have emerged across various use cases. Among the plethora of NLP applications, many academic researchers are motivated to do work that has a positive social impact, in line with the recent initiatives of NLP for Social Good (NLP4SG). However, it is not always obvious to researchers how their research efforts are tackling today's big social problems. Thus, in this paper, we introduce NLP4SGPAPERS, a scientific dataset with three associated tasks that can help identify NLP4SG papers and characterize the NLP4SG landscape by: (1) identifying the papers that address a social problem, (2) mapping them to the corresponding UN Sustainable Development Goals (SDGs), and (3) identifying the task they are solving and the methods they are using. Using state-of-the-art NLP models, we address each of these tasks and use them on the entire ACL Anthology, resulting in a visualization workspace that gives researchers a comprehensive overview of the field of NLP4SG. Our website is available at https://nlp4sg.vercel.app . We released our data at https://huggingface.co/datasets/feradauto/NLP4SGPapers and code at https://github.com/feradauto/nlp4sg .
Towards Good Practices for Missing Modality Robust Action Recognition
Standard multi-modal models assume the use of the same modalities in training and inference stages. However, in practice, the environment in which multi-modal models operate may not satisfy such assumption. As such, their performances degrade drastically if any modality is missing in the inference stage. We ask: how can we train a model that is robust to missing modalities? This paper seeks a set of good practices for multi-modal action recognition, with a particular interest in circumstances where some modalities are not available at an inference time. First, we study how to effectively regularize the model during training (e.g., data augmentation). Second, we investigate on fusion methods for robustness to missing modalities: we find that transformer-based fusion shows better robustness for missing modality than summation or concatenation. Third, we propose a simple modular network, ActionMAE, which learns missing modality predictive coding by randomly dropping modality features and tries to reconstruct them with the remaining modality features. Coupling these good practices, we build a model that is not only effective in multi-modal action recognition but also robust to modality missing. Our model achieves the state-of-the-arts on multiple benchmarks and maintains competitive performances even in missing modality scenarios. Codes are available at https://github.com/sangminwoo/ActionMAE.
Not Good Times for Lies: Misinformation Detection on the Russia-Ukraine War, COVID-19, and Refugees
Misinformation spread in online social networks is an urgent-to-solve problem having harmful consequences that threaten human health, public safety, economics, and so on. In this study, we construct a novel dataset, called MiDe-22, having 5,284 English and 5,064 Turkish tweets with their misinformation labels under several recent events, including the Russia-Ukraine war, COVID-19 pandemic, and Refugees. Moreover, we provide the user engagements to the tweets in terms of likes, replies, retweets, and quotes. We present a detailed data analysis with descriptive statistics and temporal analysis, and provide the experimental results of a benchmark evaluation for misinformation detection on our novel dataset.
A good body is all you need: avoiding catastrophic interference via agent architecture search
In robotics, catastrophic interference continues to restrain policy training across environments. Efforts to combat catastrophic interference to date focus on novel neural architectures or training methods, with a recent emphasis on policies with good initial settings that facilitate training in new environments. However, none of these methods to date have taken into account how the physical architecture of the robot can obstruct or facilitate catastrophic interference, just as the choice of neural architecture can. In previous work we have shown how aspects of a robot's physical structure (specifically, sensor placement) can facilitate policy learning by increasing the fraction of optimal policies for a given physical structure. Here we show for the first time that this proxy measure of catastrophic interference correlates with sample efficiency across several search methods, proving that favorable loss landscapes can be induced by the correct choice of physical structure. We show that such structures can be found via co-optimization -- optimization of a robot's structure and control policy simultaneously -- yielding catastrophic interference resistant robot structures and policies, and that this is more efficient than control policy optimization alone. Finally, we show that such structures exhibit sensor homeostasis across environments and introduce this as the mechanism by which certain robots overcome catastrophic interference.
Is good old GRAPPA dead?
We perform a qualitative analysis of performance of XPDNet, a state-of-the-art deep learning approach for MRI reconstruction, compared to GRAPPA, a classical approach. We do this in multiple settings, in particular testing the robustness of the XPDNet to unseen settings, and show that the XPDNet can to some degree generalize well.
How Good is a Video Summary? A New Benchmarking Dataset and Evaluation Framework Towards Realistic Video Summarization
Automatic video summarization is still an unsolved problem due to several challenges. The currently available datasets either have very short videos or have few long videos of only a particular type. We introduce a new benchmarking video dataset called VISIOCITY (VIdeo SummarIzatiOn based on Continuity, Intent and DiversiTY) which comprises of longer videos across six different categories with dense concept annotations capable of supporting different flavors of video summarization and other vision problems. For long videos, human reference summaries necessary for supervised video summarization techniques are difficult to obtain. We explore strategies to automatically generate multiple reference summaries from indirect ground truth present in VISIOCITY. We show that these summaries are at par with human summaries. We also present a study of different desired characteristics of a good summary and demonstrate how it is normal to have two good summaries with different characteristics. Thus we argue that evaluating a summary against one or more human summaries and using a single measure has its shortcomings. We propose an evaluation framework for better quantitative assessment of summary quality which is closer to human judgment. Lastly, we present insights into how a model can be enhanced to yield better summaries. Sepcifically, when multiple diverse ground truth summaries can exist, learning from them individually and using a combination of loss functions measuring different characteristics is better than learning from a single combined (oracle) ground truth summary using a single loss function. We demonstrate the effectiveness of doing so as compared to some of the representative state of the art techniques tested on VISIOCITY. We release VISIOCITY as a benchmarking dataset and invite researchers to test the effectiveness of their video summarization algorithms on VISIOCITY.
As Good as New. How to Successfully Recycle English GPT-2 to Make Models for Other Languages
Large generative language models have been very successful for English, but other languages lag behind, in part due to data and computational limitations. We propose a method that may overcome these problems by adapting existing pre-trained models to new languages. Specifically, we describe the adaptation of English GPT-2 to Italian and Dutch by retraining lexical embeddings without tuning the Transformer layers. As a result, we obtain lexical embeddings for Italian and Dutch that are aligned with the original English lexical embeddings. Additionally, we scale up complexity by transforming relearned lexical embeddings of GPT-2 small to the GPT-2 medium embedding space. This method minimises the amount of training and prevents losing information during adaptation that was learned by GPT-2. English GPT-2 models with relearned lexical embeddings can generate realistic sentences in Italian and Dutch. Though on average these sentences are still identifiable as artificial by humans, they are assessed on par with sentences generated by a GPT-2 model fully trained from scratch.
How Good is your Explanation? Algorithmic Stability Measures to Assess the Quality of Explanations for Deep Neural Networks
A plethora of methods have been proposed to explain how deep neural networks reach their decisions but comparatively, little effort has been made to ensure that the explanations produced by these methods are objectively relevant. While several desirable properties for trustworthy explanations have been formulated, objective measures have been harder to derive. Here, we propose two new measures to evaluate explanations borrowed from the field of algorithmic stability: mean generalizability MeGe and relative consistency ReCo. We conduct extensive experiments on different network architectures, common explainability methods, and several image datasets to demonstrate the benefits of the proposed measures.In comparison to ours, popular fidelity measures are not sufficient to guarantee trustworthy explanations.Finally, we found that 1-Lipschitz networks produce explanations with higher MeGe and ReCo than common neural networks while reaching similar accuracy. This suggests that 1-Lipschitz networks are a relevant direction towards predictors that are more explainable and trustworthy.
What makes a good conversation? How controllable attributes affect human judgments
A good conversation requires balance -- between simplicity and detail; staying on topic and changing it; asking questions and answering them. Although dialogue agents are commonly evaluated via human judgments of overall quality, the relationship between quality and these individual factors is less well-studied. In this work, we examine two controllable neural text generation methods, conditional training and weighted decoding, in order to control four important attributes for chitchat dialogue: repetition, specificity, response-relatedness and question-asking. We conduct a large-scale human evaluation to measure the effect of these control parameters on multi-turn interactive conversations on the PersonaChat task. We provide a detailed analysis of their relationship to high-level aspects of conversation, and show that by controlling combinations of these variables our models obtain clear improvements in human quality judgments.
What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning
Instruction tuning is a standard technique employed to align large language models to end tasks and user preferences after the initial pretraining phase. Recent research indicates the critical role of data engineering in instruction tuning -- when appropriately selected, only limited data is necessary to achieve superior performance. However, we still lack a principled understanding of what makes good instruction tuning data for alignment, and how we should select data automatically and effectively. In this work, we delve deeply into automatic data selection strategies for alignment. We start with controlled studies to measure data across three dimensions: complexity, quality, and diversity, along which we examine existing methods and introduce novel techniques for enhanced data measurement. Subsequently, we propose a simple strategy to select data samples based on the measurement. We present deita (short for Data-Efficient Instruction Tuning for Alignment), a series of models fine-tuned from LLaMA and Mistral models using data samples automatically selected with our proposed approach. Empirically, deita performs better or on par with the state-of-the-art open-source alignment models with only 6K SFT training data samples -- over 10x less than the data used in the baselines. When further trained with direct preference optimization (DPO), deita-Mistral-7B + DPO trained with 6K SFT and 10K DPO samples achieve 7.55 MT-Bench and 90.06% AlpacaEval scores. We anticipate this work to provide tools on automatic data selection, facilitating data-efficient alignment. We release our models as well as the selected datasets for future researches to effectively align models more efficiently.
Is GPT-4 a Good Data Analyst?
As large language models (LLMs) have demonstrated their powerful capabilities in plenty of domains and tasks, including context understanding, code generation, language generation, data storytelling, etc., many data analysts may raise concerns if their jobs will be replaced by AI. This controversial topic has drawn a lot of attention in public. However, we are still at a stage of divergent opinions without any definitive conclusion. Motivated by this, we raise the research question of "is GPT-4 a good data analyst?" in this work and aim to answer it by conducting head-to-head comparative studies. In detail, we regard GPT-4 as a data analyst to perform end-to-end data analysis with databases from a wide range of domains. We propose a framework to tackle the problems by carefully designing the prompts for GPT-4 to conduct experiments. We also design several task-specific evaluation metrics to systematically compare the performance between several professional human data analysts and GPT-4. Experimental results show that GPT-4 can achieve comparable performance to humans. We also provide in-depth discussions about our results to shed light on further studies before we reach the conclusion that GPT-4 can replace data analysts.
Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agent
Large Language Models (LLMs) have demonstrated a remarkable ability to generalize zero-shot to various language-related tasks. This paper focuses on the study of exploring generative LLMs such as ChatGPT and GPT-4 for relevance ranking in Information Retrieval (IR). Surprisingly, our experiments reveal that properly instructed ChatGPT and GPT-4 can deliver competitive, even superior results than supervised methods on popular IR benchmarks. Notably, GPT-4 outperforms the fully fine-tuned monoT5-3B on MS MARCO by an average of 2.7 nDCG on TREC datasets, an average of 2.3 nDCG on eight BEIR datasets, and an average of 2.7 nDCG on ten low-resource languages Mr.TyDi. Subsequently, we delve into the potential for distilling the ranking capabilities of ChatGPT into a specialized model. Our small specialized model that trained on 10K ChatGPT generated data outperforms monoT5 trained on 400K annotated MS MARCO data on BEIR. The code to reproduce our results is available at www.github.com/sunnweiwei/RankGPT
MLP Can Be A Good Transformer Learner
Self-attention mechanism is the key of the Transformer but often criticized for its computation demands. Previous token pruning works motivate their methods from the view of computation redundancy but still need to load the full network and require same memory costs. This paper introduces a novel strategy that simplifies vision transformers and reduces computational load through the selective removal of non-essential attention layers, guided by entropy considerations. We identify that regarding the attention layer in bottom blocks, their subsequent MLP layers, i.e. two feed-forward layers, can elicit the same entropy quantity. Meanwhile, the accompanied MLPs are under-exploited since they exhibit smaller feature entropy compared to those MLPs in the top blocks. Therefore, we propose to integrate the uninformative attention layers into their subsequent counterparts by degenerating them into identical mapping, yielding only MLP in certain transformer blocks. Experimental results on ImageNet-1k show that the proposed method can remove 40% attention layer of DeiT-B, improving throughput and memory bound without performance compromise. Code is available at https://github.com/sihaoevery/lambda_vit.
Diffusion Model is a Good Pose Estimator from 3D RF-Vision
Human pose estimation (HPE) from Radio Frequency vision (RF-vision) performs human sensing using RF signals that penetrate obstacles without revealing privacy (e.g., facial information). Recently, mmWave radar has emerged as a promising RF-vision sensor, providing radar point clouds by processing RF signals. However, the mmWave radar has a limited resolution with severe noise, leading to inaccurate and inconsistent human pose estimation. This work proposes mmDiff, a novel diffusion-based pose estimator tailored for noisy radar data. Our approach aims to provide reliable guidance as conditions to diffusion models. Two key challenges are addressed by mmDiff: (1) miss-detection of parts of human bodies, which is addressed by a module that isolates feature extraction from different body parts, and (2) signal inconsistency due to environmental interference, which is tackled by incorporating prior knowledge of body structure and motion. Several modules are designed to achieve these goals, whose features work as the conditions for the subsequent diffusion model, eliminating the miss-detection and instability of HPE based on RF-vision. Extensive experiments demonstrate that mmDiff outperforms existing methods significantly, achieving state-of-the-art performances on public datasets.
Can GNN be Good Adapter for LLMs?
Recently, large language models (LLMs) have demonstrated superior capabilities in understanding and zero-shot learning on textual data, promising significant advances for many text-related domains. In the graph domain, various real-world scenarios also involve textual data, where tasks and node features can be described by text. These text-attributed graphs (TAGs) have broad applications in social media, recommendation systems, etc. Thus, this paper explores how to utilize LLMs to model TAGs. Previous methods for TAG modeling are based on million-scale LMs. When scaled up to billion-scale LLMs, they face huge challenges in computational costs. Additionally, they also ignore the zero-shot inference capabilities of LLMs. Therefore, we propose GraphAdapter, which uses a graph neural network (GNN) as an efficient adapter in collaboration with LLMs to tackle TAGs. In terms of efficiency, the GNN adapter introduces only a few trainable parameters and can be trained with low computation costs. The entire framework is trained using auto-regression on node text (next token prediction). Once trained, GraphAdapter can be seamlessly fine-tuned with task-specific prompts for various downstream tasks. Through extensive experiments across multiple real-world TAGs, GraphAdapter based on Llama 2 gains an average improvement of approximately 5\% in terms of node classification. Furthermore, GraphAdapter can also adapt to other language models, including RoBERTa, GPT-2. The promising results demonstrate that GNNs can serve as effective adapters for LLMs in TAG modeling.
Future Prediction Can be a Strong Evidence of Good History Representation in Partially Observable Environments
Learning a good history representation is one of the core challenges of reinforcement learning (RL) in partially observable environments. Recent works have shown the advantages of various auxiliary tasks for facilitating representation learning. However, the effectiveness of such auxiliary tasks has not been fully convincing, especially in partially observable environments that require long-term memorization and inference. In this empirical study, we investigate the effectiveness of future prediction for learning the representations of histories, possibly of extensive length, in partially observable environments. We first introduce an approach that decouples the task of learning history representations from policy optimization via future prediction. Then, our main contributions are two-fold: (a) we demonstrate that the performance of reinforcement learning is strongly correlated with the prediction accuracy of future observations in partially observable environments, and (b) our approach can significantly improve the overall end-to-end approach by preventing high-variance noisy signals from reinforcement learning objectives to influence the representation learning. We illustrate our claims on three types of benchmarks that necessitate the ability to process long histories for high returns.
Arbitrary Few Parameters are Good Enough for Adapting Large-scale Pre-trained Language Models
Parameter-efficient tuning (PET) methods can effectively drive extremely large pre-trained language models (PLMs) by only training minimal parameters. Different PET methods utilize different manually designed modules. In a small PLM, there are usually noticeable performance differences among PET methods. Nevertheless, when a PLM's scale grows up to tens of billions of parameters, all PET methods achieve almost the same performance and even perform on par with the full-parameter fine-tuning method. Hence, we hypothesize that model scaling can mitigate the design differences (the module structures and the number of trainable parameters) among PET methods. To study this hypothesis, we introduce a more flexible PET method - arbitrary PET (APET) method - to be compatible with arbitrary module structures and any number of trainable parameters. Then, we experiment on 11 NLP tasks of 5 types and 2 representative PLMs. From our investigations, we find that the model scaling (1) mitigates the effects of the arbitrary module structure on the performance of tuning methods, and (2) enables the tuning methods to optimize fewer parameters to achieve the full-parameter fine-tuning performance. Intriguingly, we also observe that all tuning methods require almost the same number of trainable parameters to drive PLMs. We discuss this phenomenon and the above two findings collectively from optimization perspectives to fathom the mechanisms behind them. These conclusions not only demonstrate the positive impact of model scaling on tuning methods but disclose its mechanisms, which help us design more effective and efficient tuning methods on larger-scale PLMs.
What Makes Good In-context Demonstrations for Code Intelligence Tasks with LLMs?
Pre-trained models of source code have gained widespread popularity in many code intelligence tasks. Recently, with the scaling of the model and corpus size, large language models have shown the ability of in-context learning (ICL). ICL employs task instructions and a few examples as demonstrations, and then inputs the demonstrations to the language models for making predictions. This new learning paradigm is training-free and has shown impressive performance in various natural language processing and code intelligence tasks. However, the performance of ICL heavily relies on the quality of demonstrations, e.g., the selected examples. It is important to systematically investigate how to construct a good demonstration for code-related tasks. In this paper, we empirically explore the impact of three key factors on the performance of ICL in code intelligence tasks: the selection, order, and number of demonstration examples. We conduct extensive experiments on three code intelligence tasks including code summarization, bug fixing, and program synthesis. Our experimental results demonstrate that all the above three factors dramatically impact the performance of ICL in code intelligence tasks. Additionally, we summarize our findings and provide takeaway suggestions on how to construct effective demonstrations, taking into account these three perspectives. We also show that a carefully-designed demonstration based on our findings can lead to substantial improvements over widely-used demonstration construction methods, e.g., improving BLEU-4, EM, and EM by at least 9.90%, 175.96%, and 50.81% on code summarization, bug fixing, and program synthesis, respectively
Is ChatGPT a Good Sentiment Analyzer? A Preliminary Study
Recently, ChatGPT has drawn great attention from both the research community and the public. We are particularly curious about whether it can serve as a universal sentiment analyzer. To this end, in this work, we provide a preliminary evaluation of ChatGPT on the understanding of opinions, sentiments, and emotions contained in the text. Specifically, we evaluate it in four settings, including standard evaluation, polarity shift evaluation, open-domain evaluation, and sentiment inference evaluation. The above evaluation involves 18 benchmark datasets and 5 representative sentiment analysis tasks, and we compare ChatGPT with fine-tuned BERT and corresponding state-of-the-art (SOTA) models on end-task. Moreover, we also conduct human evaluation and present some qualitative case studies to gain a deep comprehension of its sentiment analysis capabilities.
What Makes a "Good" Data Augmentation in Knowledge Distillation -- A Statistical Perspective
Knowledge distillation (KD) is a general neural network training approach that uses a teacher model to guide the student model. Existing works mainly study KD from the network output side (e.g., trying to design a better KD loss function), while few have attempted to understand it from the input side. Especially, its interplay with data augmentation (DA) has not been well understood. In this paper, we ask: Why do some DA schemes (e.g., CutMix) inherently perform much better than others in KD? What makes a "good" DA in KD? Our investigation from a statistical perspective suggests that a good DA scheme should reduce the covariance of the teacher-student cross-entropy. A practical metric, the stddev of teacher's mean probability (T. stddev), is further presented and well justified empirically. Besides the theoretical understanding, we also introduce a new entropy-based data-mixing DA scheme, CutMixPick, to further enhance CutMix. Extensive empirical studies support our claims and demonstrate how we can harvest considerable performance gains simply by using a better DA scheme in knowledge distillation.
What Looks Good with my Sofa: Multimodal Search Engine for Interior Design
In this paper, we propose a multi-modal search engine for interior design that combines visual and textual queries. The goal of our engine is to retrieve interior objects, e.g. furniture or wall clocks, that share visual and aesthetic similarities with the query. Our search engine allows the user to take a photo of a room and retrieve with a high recall a list of items identical or visually similar to those present in the photo. Additionally, it allows to return other items that aesthetically and stylistically fit well together. To achieve this goal, our system blends the results obtained using textual and visual modalities. Thanks to this blending strategy, we increase the average style similarity score of the retrieved items by 11%. Our work is implemented as a Web-based application and it is planned to be opened to the public.
What Makes a Good Story and How Can We Measure It? A Comprehensive Survey of Story Evaluation
With the development of artificial intelligence, particularly the success of Large Language Models (LLMs), the quantity and quality of automatically generated stories have significantly increased. This has led to the need for automatic story evaluation to assess the generative capabilities of computing systems and analyze the quality of both automatic-generated and human-written stories. Evaluating a story can be more challenging than other generation evaluation tasks. While tasks like machine translation primarily focus on assessing the aspects of fluency and accuracy, story evaluation demands complex additional measures such as overall coherence, character development, interestingness, etc. This requires a thorough review of relevant research. In this survey, we first summarize existing storytelling tasks, including text-to-text, visual-to-text, and text-to-visual. We highlight their evaluation challenges, identify various human criteria to measure stories, and present existing benchmark datasets. Then, we propose a taxonomy to organize evaluation metrics that have been developed or can be adopted for story evaluation. We also provide descriptions of these metrics, along with the discussion of their merits and limitations. Later, we discuss the human-AI collaboration for story evaluation and generation. Finally, we suggest potential future research directions, extending from story evaluation to general evaluations.
Is It Good Data for Multilingual Instruction Tuning or Just Bad Multilingual Evaluation for Large Language Models?
Large language models, particularly multilingual ones, are designed, claimed, and expected to cater to native speakers of varied languages. We hypothesise that the current practices of fine-tuning and evaluating these models may mismatch this intention owing to a heavy reliance on translation, which can introduce translation artefacts and defects. It remains unknown whether the nature of the instruction data has an impact on the model output; on the other hand, it remains questionable whether translated test sets can capture such nuances. Due to the often coupled practices of using translated data in both stages, such imperfections could have been overlooked. This work investigates these issues by using controlled native or translated data during instruction tuning and evaluation stages and observing model results. Experiments on eight base models and eight different benchmarks reveal that native or generation benchmarks display a notable difference between native and translated instruction data especially when model performance is high, whereas other types of test sets cannot. Finally, we demonstrate that regularization is beneficial to bridging this gap on structured but not generative tasks.
Are Large Language Models Good Statisticians?
Large Language Models (LLMs) have demonstrated impressive capabilities across a range of scientific tasks including mathematics, physics, and chemistry. Despite their successes, the effectiveness of LLMs in handling complex statistical tasks remains systematically under-explored. To bridge this gap, we introduce StatQA, a new benchmark designed for statistical analysis tasks. StatQA comprises 11,623 examples tailored to evaluate LLMs' proficiency in specialized statistical tasks and their applicability assessment capabilities, particularly for hypothesis testing methods. We systematically experiment with representative LLMs using various prompting strategies and show that even state-of-the-art models such as GPT-4o achieve a best performance of only 64.83%, indicating significant room for improvement. Notably, while open-source LLMs (e.g. LLaMA-3) show limited capability, those fine-tuned ones exhibit marked improvements, outperforming all in-context learning-based methods (e.g. GPT-4o). Moreover, our comparative human experiments highlight a striking contrast in error types between LLMs and humans: LLMs primarily make applicability errors, whereas humans mostly make statistical task confusion errors. This divergence highlights distinct areas of proficiency and deficiency, suggesting that combining LLM and human expertise could lead to complementary strengths, inviting further investigation into their collaborative potential.
Large Language Models are Good Spontaneous Multilingual Learners: Is the Multilingual Annotated Data Necessary?
Recently, Large Language Models (LLMs) have shown impressive language capabilities. However, most of the existing LLMs are all English-centric, which have very unstable and unbalanced performance across different languages. Multilingual alignment is an effective method to enhance the LLMs' multilingual capabilities. In this work, we explore the multilingual alignment paradigm which utilizes translation data and comprehensively investigate the spontaneous multilingual improvement of LLMs. We find that LLMs only instruction-tuned on question translation data without annotated answers are able to get significant multilingual performance enhancement even across a wide range of languages unseen during instruction-tuning. Additionally, we utilize different settings and mechanistic interpretability methods to comprehensively analyze the LLM's performance in the multilingual scenario.
Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization
A common technique for aligning large language models (LLMs) relies on acquiring human preferences by comparing multiple generations conditioned on a fixed context. This only leverages the pairwise comparisons when the generations are placed in an identical context. However, such conditional rankings often fail to capture the complex and multidimensional aspects of human preferences. In this work, we revisit the traditional paradigm of preference acquisition and propose a new axis that is based on eliciting preferences jointly over the instruction-response pairs. While prior preference optimizations are designed for conditional ranking protocols (e.g., DPO), our proposed preference acquisition protocol introduces DOVE, a new preference optimization objective that upweights the joint probability of the chosen instruction-response pair over the rejected instruction-response pair. Interestingly, we find that the LLM trained with joint instruction-response preference data using DOVE outperforms the LLM trained with DPO by 5.2% and 3.3% win-rate for the summarization and open-ended dialogue datasets, respectively. Our findings reveal that joint preferences over instruction and response pairs can significantly enhance the alignment of LLMs by tapping into a broader spectrum of human preference elicitation. The data and code is available at https://github.com/Hritikbansal/dove.
Are Large Language Models Good at Utility Judgments?
Retrieval-augmented generation (RAG) is considered to be a promising approach to alleviate the hallucination issue of large language models (LLMs), and it has received widespread attention from researchers recently. Due to the limitation in the semantic understanding of retrieval models, the success of RAG heavily lies on the ability of LLMs to identify passages with utility. Recent efforts have explored the ability of LLMs to assess the relevance of passages in retrieval, but there has been limited work on evaluating the utility of passages in supporting question answering. In this work, we conduct a comprehensive study about the capabilities of LLMs in utility evaluation for open-domain QA. Specifically, we introduce a benchmarking procedure and collection of candidate passages with different characteristics, facilitating a series of experiments with five representative LLMs. Our experiments reveal that: (i) well-instructed LLMs can distinguish between relevance and utility, and that LLMs are highly receptive to newly generated counterfactual passages. Moreover, (ii) we scrutinize key factors that affect utility judgments in the instruction design. And finally, (iii) to verify the efficacy of utility judgments in practical retrieval augmentation applications, we delve into LLMs' QA capabilities using the evidence judged with utility and direct dense retrieval results. (iv) We propose a k-sampling, listwise approach to reduce the dependency of LLMs on the sequence of input passages, thereby facilitating subsequent answer generation. We believe that the way we formalize and study the problem along with our findings contributes to a critical assessment of retrieval-augmented LLMs. Our code and benchmark can be found at https://github.com/ict-bigdatalab/utility_judgments.
Droplets of Good Representations: Grokking as a First Order Phase Transition in Two Layer Networks
A key property of deep neural networks (DNNs) is their ability to learn new features during training. This intriguing aspect of deep learning stands out most clearly in recently reported Grokking phenomena. While mainly reflected as a sudden increase in test accuracy, Grokking is also believed to be a beyond lazy-learning/Gaussian Process (GP) phenomenon involving feature learning. Here we apply a recent development in the theory of feature learning, the adaptive kernel approach, to two teacher-student models with cubic-polynomial and modular addition teachers. We provide analytical predictions on feature learning and Grokking properties of these models and demonstrate a mapping between Grokking and the theory of phase transitions. We show that after Grokking, the state of the DNN is analogous to the mixed phase following a first-order phase transition. In this mixed phase, the DNN generates useful internal representations of the teacher that are sharply distinct from those before the transition.
Pretty darn good control: when are approximate solutions better than approximate models
Existing methods for optimal control struggle to deal with the complexity commonly encountered in real-world systems, including dimensionality, process error, model bias and data heterogeneity. Instead of tackling these system complexities directly, researchers have typically sought to simplify models to fit optimal control methods. But when is the optimal solution to an approximate, stylized model better than an approximate solution to a more accurate model? While this question has largely gone unanswered owing to the difficulty of finding even approximate solutions for complex models, recent algorithmic and computational advances in deep reinforcement learning (DRL) might finally allow us to address these questions. DRL methods have to date been applied primarily in the context of games or robotic mechanics, which operate under precisely known rules. Here, we demonstrate the ability for DRL algorithms using deep neural networks to successfully approximate solutions (the "policy function" or control rule) in a non-linear three-variable model for a fishery without knowing or ever attempting to infer a model for the process itself. We find that the reinforcement learning agent discovers an effective simplification of the problem to obtain an interpretable control rule. We show that the policy obtained with DRL is both more profitable and more sustainable than any constant mortality policy -- the standard family of policies considered in fishery management.
Image Background Serves as Good Proxy for Out-of-distribution Data
Out-of-distribution (OOD) detection empowers the model trained on the closed image set to identify unknown data in the open world. Though many prior techniques have yielded considerable improvements in this research direction, two crucial obstacles still remain. Firstly, a unified perspective has yet to be presented to view the developed arts with individual designs, which is vital for providing insights into future work. Secondly, we expect sufficient natural OOD supervision to promote the generation of compact boundaries between the in-distribution (ID) and OOD data without collecting explicit OOD samples. To tackle these issues, we propose a general probabilistic framework to interpret many existing methods and an OOD-data-free model, namely Self-supervised Sampling for OOD Detection (SSOD). SSOD efficiently exploits natural OOD signals from the ID data based on the local property of convolution. With these supervisions, it jointly optimizes the OOD detection and conventional ID classification in an end-to-end manner. Extensive experiments reveal that SSOD establishes competitive state-of-the-art performance on many large-scale benchmarks, outperforming the best previous method by a large margin, \eg, reporting -6.28\% FPR95 and +0.77\% AUROC on ImageNet, -19.01\% FPR95 and +3.04\% AUROC on CIFAR-10, and top-ranked performance on hard OOD datasets, \ie, ImageNet-O and OpenImage-O.
Is ChatGPT a Good Teacher Coach? Measuring Zero-Shot Performance For Scoring and Providing Actionable Insights on Classroom Instruction
Coaching, which involves classroom observation and expert feedback, is a widespread and fundamental part of teacher training. However, the majority of teachers do not have access to consistent, high quality coaching due to limited resources and access to expertise. We explore whether generative AI could become a cost-effective complement to expert feedback by serving as an automated teacher coach. In doing so, we propose three teacher coaching tasks for generative AI: (A) scoring transcript segments based on classroom observation instruments, (B) identifying highlights and missed opportunities for good instructional strategies, and (C) providing actionable suggestions for eliciting more student reasoning. We recruit expert math teachers to evaluate the zero-shot performance of ChatGPT on each of these tasks for elementary math classroom transcripts. Our results reveal that ChatGPT generates responses that are relevant to improving instruction, but they are often not novel or insightful. For example, 82% of the model's suggestions point to places in the transcript where the teacher is already implementing that suggestion. Our work highlights the challenges of producing insightful, novel and truthful feedback for teachers while paving the way for future research to address these obstacles and improve the capacity of generative AI to coach teachers.
Inverse Dynamics Pretraining Learns Good Representations for Multitask Imitation
In recent years, domains such as natural language processing and image recognition have popularized the paradigm of using large datasets to pretrain representations that can be effectively transferred to downstream tasks. In this work we evaluate how such a paradigm should be done in imitation learning, where both pretraining and finetuning data are trajectories collected by experts interacting with an unknown environment. Namely, we consider a setting where the pretraining corpus consists of multitask demonstrations and the task for each demonstration is set by an unobserved latent context variable. The goal is to use the pretraining corpus to learn a low dimensional representation of the high dimensional (e.g., visual) observation space which can be transferred to a novel context for finetuning on a limited dataset of demonstrations. Among a variety of possible pretraining objectives, we argue that inverse dynamics modeling -- i.e., predicting an action given the observations appearing before and after it in the demonstration -- is well-suited to this setting. We provide empirical evidence of this claim through evaluations on a variety of simulated visuomotor manipulation problems. While previous work has attempted various theoretical explanations regarding the benefit of inverse dynamics modeling, we find that these arguments are insufficient to explain the empirical advantages often observed in our settings, and so we derive a novel analysis using a simple but general environment model.
Using Perturbation to Improve Goodness-of-Fit Tests based on Kernelized Stein Discrepancy
Kernelized Stein discrepancy (KSD) is a score-based discrepancy widely used in goodness-of-fit tests. It can be applied even when the target distribution has an unknown normalising factor, such as in Bayesian analysis. We show theoretically and empirically that the KSD test can suffer from low power when the target and the alternative distributions have the same well-separated modes but differ in mixing proportions. We propose to perturb the observed sample via Markov transition kernels, with respect to which the target distribution is invariant. This allows us to then employ the KSD test on the perturbed sample. We provide numerical evidence that with suitably chosen transition kernels the proposed approach can lead to substantially higher power than the KSD test.
Is ChatGPT a Good NLG Evaluator? A Preliminary Study
Recently, the emergence of ChatGPT has attracted wide attention from the computational linguistics community. Many prior studies have shown that ChatGPT achieves remarkable performance on various NLP tasks in terms of automatic evaluation metrics. However, the ability of ChatGPT to serve as an evaluation metric is still underexplored. Considering assessing the quality of natural language generation (NLG) models is an arduous task and NLG metrics notoriously show their poor correlation with human judgments, we wonder whether ChatGPT is a good NLG evaluation metric. In this report, we provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric. In detail, we regard ChatGPT as a human evaluator and give task-specific (e.g., summarization) and aspect-specific (e.g., relevance) instruction to prompt ChatGPT to evaluate the generated results of NLG models. We conduct experiments on five NLG meta-evaluation datasets (including summarization, story generation and data-to-text tasks). Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments in most cases. In addition, we find that the effectiveness of the ChatGPT evaluator might be influenced by the creation method of the meta-evaluation datasets. For the meta-evaluation datasets which are created greatly depending on the reference and thus are biased, the ChatGPT evaluator might lose its effectiveness. We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.
Random Teachers are Good Teachers
In this work, we investigate the implicit regularization induced by teacher-student learning dynamics in self-distillation. To isolate its effect, we describe a simple experiment where we consider teachers at random initialization instead of trained teachers. Surprisingly, when distilling a student into such a random teacher, we observe that the resulting model and its representations already possess very interesting characteristics; (1) we observe a strong improvement of the distilled student over its teacher in terms of probing accuracy. (2) The learned representations are data-dependent and transferable between different tasks but deteriorate strongly if trained on random inputs. (3) The student checkpoint contains sparse subnetworks, so-called lottery tickets, and lies on the border of linear basins in the supervised loss landscape. These observations have interesting consequences for several important areas in machine learning: (1) Self-distillation can work solely based on the implicit regularization present in the gradient dynamics without relying on any dark knowledge, (2) self-supervised learning can learn features even in the absence of data augmentation and (3) training dynamics during the early phase of supervised training do not necessarily require label information. Finally, we shed light on an intriguing local property of the loss landscape: the process of feature learning is strongly amplified if the student is initialized closely to the teacher. These results raise interesting questions about the nature of the landscape that have remained unexplored so far. Code is available at https://github.com/safelix/dinopl.
Adversarial Example Does Good: Preventing Painting Imitation from Diffusion Models via Adversarial Examples
Recently, Diffusion Models (DMs) boost a wave in AI for Art yet raise new copyright concerns, where infringers benefit from using unauthorized paintings to train DMs to generate novel paintings in a similar style. To address these emerging copyright violations, in this paper, we are the first to explore and propose to utilize adversarial examples for DMs to protect human-created artworks. Specifically, we first build a theoretical framework to define and evaluate the adversarial examples for DMs. Then, based on this framework, we design a novel algorithm, named AdvDM, which exploits a Monte-Carlo estimation of adversarial examples for DMs by optimizing upon different latent variables sampled from the reverse process of DMs. Extensive experiments show that the generated adversarial examples can effectively hinder DMs from extracting their features. Therefore, our method can be a powerful tool for human artists to protect their copyright against infringers equipped with DM-based AI-for-Art applications. The code of our method is available on GitHub: https://github.com/mist-project/mist.git.
Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine
This report provides a preliminary evaluation of ChatGPT for machine translation, including translation prompt, multilingual translation, and translation robustness. We adopt the prompts advised by ChatGPT to trigger its translation ability and find that the candidate prompts generally work well and show minor performance differences. By evaluating on a number of benchmark test sets, we find that ChatGPT performs competitively with commercial translation products (e.g., Google Translate) on high-resource European languages but lags behind significantly on low-resource or distant languages. For distant languages, we explore an interesting strategy named pivot~prompting that asks ChatGPT to translate the source sentence into a high-resource pivot language before into the target language, which improves the translation performance significantly. As for the translation robustness, ChatGPT does not perform as well as the commercial systems on biomedical abstracts or Reddit comments but exhibits good results on spoken language. With the launch of the GPT-4 engine, the translation performance of ChatGPT is significantly boosted, becoming comparable to commercial translation products, even for distant languages. In other words, ChatGPT~has~already~become~a~good~translator! Scripts and data: https://github.com/wxjiao/Is-ChatGPT-A-Good-Translator
A kernel Stein test of goodness of fit for sequential models
We propose a goodness-of-fit measure for probability densities modeling observations with varying dimensionality, such as text documents of differing lengths or variable-length sequences. The proposed measure is an instance of the kernel Stein discrepancy (KSD), which has been used to construct goodness-of-fit tests for unnormalized densities. The KSD is defined by its Stein operator: current operators used in testing apply to fixed-dimensional spaces. As our main contribution, we extend the KSD to the variable-dimension setting by identifying appropriate Stein operators, and propose a novel KSD goodness-of-fit test. As with the previous variants, the proposed KSD does not require the density to be normalized, allowing the evaluation of a large class of models. Our test is shown to perform well in practice on discrete sequential data benchmarks.
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
The ability to identify whether or not a test sample belongs to one of the semantic classes in a classifier's training set is critical to practical deployment of the model. This task is termed open-set recognition (OSR) and has received significant attention in recent years. In this paper, we first demonstrate that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes. We find that this relationship holds across loss objectives and architectures, and further demonstrate the trend both on the standard OSR benchmarks as well as on a large-scale ImageNet evaluation. Second, we use this correlation to boost the performance of a maximum logit score OSR 'baseline' by improving its closed-set accuracy, and with this strong baseline achieve state-of-the-art on a number of OSR benchmarks. Similarly, we boost the performance of the existing state-of-the-art method by improving its closed-set accuracy, but the resulting discrepancy with the strong baseline is marginal. Our third contribution is to present the 'Semantic Shift Benchmark' (SSB), which better respects the task of detecting semantic novelty, in contrast to other forms of distribution shift also considered in related sub-fields, such as out-of-distribution detection. On this new evaluation, we again demonstrate that there is negligible difference between the strong baseline and the existing state-of-the-art. Project Page: https://www.robots.ox.ac.uk/~vgg/research/osr/
Knowledge distillation: A good teacher is patient and consistent
There is a growing discrepancy in computer vision between large-scale models that achieve state-of-the-art performance and models that are affordable in practical applications. In this paper we address this issue and significantly bridge the gap between these two types of models. Throughout our empirical investigation we do not aim to necessarily propose a new method, but strive to identify a robust and effective recipe for making state-of-the-art large scale models affordable in practice. We demonstrate that, when performed correctly, knowledge distillation can be a powerful tool for reducing the size of large models without compromising their performance. In particular, we uncover that there are certain implicit design choices, which may drastically affect the effectiveness of distillation. Our key contribution is the explicit identification of these design choices, which were not previously articulated in the literature. We back up our findings by a comprehensive empirical study, demonstrate compelling results on a wide range of vision datasets and, in particular, obtain a state-of-the-art ResNet-50 model for ImageNet, which achieves 82.8% top-1 accuracy.
Who's a Good Boy? Reinforcing Canine Behavior in Real-Time using Machine Learning
In this paper we outline the development methodology for an automatic dog treat dispenser which combines machine learning and embedded hardware to identify and reward dog behaviors in real-time. Using machine learning techniques for training an image classification model we identify three behaviors of our canine companions: "sit", "stand", and "lie down" with up to 92% test accuracy and 39 frames per second. We evaluate a variety of neural network architectures, interpretability methods, model quantization and optimization techniques to develop a model specifically for an NVIDIA Jetson Nano. We detect the aforementioned behaviors in real-time and reinforce positive actions by making inference on the Jetson Nano and transmitting a signal to a servo motor to release rewards from a treat delivery apparatus.
Pretext-Contrastive Learning: Toward Good Practices in Self-supervised Video Representation Leaning
Recently, pretext-task based methods are proposed one after another in self-supervised video feature learning. Meanwhile, contrastive learning methods also yield good performance. Usually, new methods can beat previous ones as claimed that they could capture "better" temporal information. However, there exist setting differences among them and it is hard to conclude which is better. It would be much more convincing in comparison if these methods have reached as closer to their performance limits as possible. In this paper, we start from one pretext-task baseline, exploring how far it can go by combining it with contrastive learning, data pre-processing, and data augmentation. A proper setting has been found from extensive experiments, with which huge improvements over the baselines can be achieved, indicating a joint optimization framework can boost both pretext task and contrastive learning. We denote the joint optimization framework as Pretext-Contrastive Learning (PCL). The other two pretext task baselines are used to validate the effectiveness of PCL. And we can easily outperform current state-of-the-art methods in the same training manner, showing the effectiveness and the generality of our proposal. It is convenient to treat PCL as a standard training strategy and apply it to many other works in self-supervised video feature learning.
Persuasion for Good: Towards a Personalized Persuasive Dialogue System for Social Good
Developing intelligent persuasive conversational agents to change people's opinions and actions for social good is the frontier in advancing the ethical development of automated dialogue systems. To do so, the first step is to understand the intricate organization of strategic disclosures and appeals employed in human persuasion conversations. We designed an online persuasion task where one participant was asked to persuade the other to donate to a specific charity. We collected a large dataset with 1,017 dialogues and annotated emerging persuasion strategies from a subset. Based on the annotation, we built a baseline classifier with context information and sentence-level features to predict the 10 persuasion strategies used in the corpus. Furthermore, to develop an understanding of personalized persuasion processes, we analyzed the relationships between individuals' demographic and psychological backgrounds including personality, morality, value systems, and their willingness for donation. Then, we analyzed which types of persuasion strategies led to a greater amount of donation depending on the individuals' personal backgrounds. This work lays the ground for developing a personalized persuasive dialogue system.
LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks Yet
Recent large language model (LLM) defenses have greatly improved models' ability to refuse harmful queries, even when adversarially attacked. However, LLM defenses are primarily evaluated against automated adversarial attacks in a single turn of conversation, an insufficient threat model for real-world malicious use. We demonstrate that multi-turn human jailbreaks uncover significant vulnerabilities, exceeding 70% attack success rate (ASR) on HarmBench against defenses that report single-digit ASRs with automated single-turn attacks. Human jailbreaks also reveal vulnerabilities in machine unlearning defenses, successfully recovering dual-use biosecurity knowledge from unlearned models. We compile these results into Multi-Turn Human Jailbreaks (MHJ), a dataset of 2,912 prompts across 537 multi-turn jailbreaks. We publicly release MHJ alongside a compendium of jailbreak tactics developed across dozens of commercial red teaming engagements, supporting research towards stronger LLM defenses.
Overview of the JWST Advanced Deep Extragalactic Survey (JADES)
We present an overview of the James Webb Space Telescope (JWST) Advanced Deep Extragalactic Survey (JADES), an ambitious program of infrared imaging and spectroscopy in the GOODS-S and GOODS-N deep fields, designed to study galaxy evolution from high redshift to cosmic noon. JADES uses about 770 hours of Cycle 1 guaranteed time largely from the Near-Infrared Camera (NIRCam) and Near-Infrared Spectrograph (NIRSpec) instrument teams. In GOODS-S, in and around the Hubble Ultra Deep Field and Chandra Deep Field South, JADES produces a deep imaging region of ~45 arcmin^2 with an average of 130 hrs of exposure time spread over 9 NIRCam filters. This is extended at medium depth in GOODS-S and GOODS-N with NIRCam imaging of ~175 arcmin^2 with an average exposure time of 20 hrs spread over 8-10 filters. In both fields, we conduct extensive NIRSpec multi-object spectroscopy, including 2 deep pointings of 55 hrs exposure time, 14 medium pointings of ~12 hrs, and 15 shallower pointings of ~4 hrs, targeting over 5000 HST and JWST-detected faint sources with 5 low, medium, and high-resolution dispersers covering 0.6-5.3 microns. Finally, JADES extends redward via coordinated parallels with the JWST Mid-Infrared Instrument (MIRI), featuring ~9 arcmin^2 with 43 hours of exposure at 7.7 microns and twice that area with 2-6.5 hours of exposure at 12.8 microns For nearly 30 years, the GOODS-S and GOODS-N fields have been developed as the premier deep fields on the sky; JADES is now providing a compelling start on the JWST legacy in these fields.