new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Jun 26

Efficient In-Context Learning in Vision-Language Models for Egocentric Videos

Recent advancements in text-only large language models (LLMs) have highlighted the benefit of in-context learning for adapting to new tasks with a few demonstrations. However, extending in-context learning to large vision-language models (VLMs) using a huge amount of naturalistic vision-language data has shown limited success, particularly for egocentric videos, due to high data collection costs. We propose a novel training method Efficient In-context Learning on Egocentric Videos (EILEV), which elicits in-context learning in VLMs for egocentric videos without requiring massive, naturalistic egocentric video datasets. EILEV involves architectural and training data adaptations to allow the model to process contexts interleaved with video clips and narrations, sampling of in-context examples with clusters of similar verbs and nouns, use of data with skewed marginal distributions with a long tail of infrequent verbs and nouns, as well as homonyms and synonyms. Our evaluations show that EILEV-trained models outperform larger VLMs trained on a huge amount of naturalistic data in in-context learning. Furthermore, they can generalize to not only out-of-distribution, but also novel, rare egocentric videos and texts via in-context learning, demonstrating potential for applications requiring cost-effective training, and rapid post-deployment adaptability. Our code and demo are available at https://github.com/yukw777/EILEV.

Can Vision-Language Models Think from a First-Person Perspective?

Vision-language models (VLMs) have recently shown promising results in traditional downstream tasks. Evaluation studies have emerged to assess their abilities, with the majority focusing on the third-person perspective, and only a few addressing specific tasks from the first-person perspective. However, the capability of VLMs to "think" from a first-person perspective, a crucial attribute for advancing autonomous agents and robotics, remains largely unexplored. To bridge this research gap, we introduce EgoThink, a novel visual question-answering benchmark that encompasses six core capabilities with twelve detailed dimensions. The benchmark is constructed using selected clips from egocentric videos, with manually annotated question-answer pairs containing first-person information. To comprehensively assess VLMs, we evaluate eighteen popular VLMs on EgoThink. Moreover, given the open-ended format of the answers, we use GPT-4 as the automatic judge to compute single-answer grading. Experimental results indicate that although GPT-4V leads in numerous dimensions, all evaluated VLMs still possess considerable potential for improvement in first-person perspective tasks. Meanwhile, enlarging the number of trainable parameters has the most significant impact on model performance on EgoThink. In conclusion, EgoThink serves as a valuable addition to existing evaluation benchmarks for VLMs, providing an indispensable resource for future research in the realm of embodied artificial intelligence and robotics.

ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models

Vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and reasoning about visual content, but significant challenges persist in tasks requiring cross-viewpoint understanding and spatial reasoning. We identify a critical limitation: current VLMs excel primarily at egocentric spatial reasoning (from the camera's perspective) but fail to generalize to allocentric viewpoints when required to adopt another entity's spatial frame of reference. We introduce ViewSpatial-Bench, the first comprehensive benchmark designed specifically for multi-viewpoint spatial localization recognition evaluation across five distinct task types, supported by an automated 3D annotation pipeline that generates precise directional labels. Comprehensive evaluation of diverse VLMs on ViewSpatial-Bench reveals a significant performance disparity: models demonstrate reasonable performance on camera-perspective tasks but exhibit reduced accuracy when reasoning from a human viewpoint. By fine-tuning VLMs on our multi-perspective spatial dataset, we achieve an overall performance improvement of 46.24% across tasks, highlighting the efficacy of our approach. Our work establishes a crucial benchmark for spatial intelligence in embodied AI systems and provides empirical evidence that modeling 3D spatial relationships enhances VLMs' corresponding spatial comprehension capabilities.

RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics

Spatial understanding is a crucial capability for robots to make grounded decisions based on their environment. This foundational skill enables robots not only to perceive their surroundings but also to reason about and interact meaningfully within the world. In modern robotics, these capabilities are taken on by visual language models, and they face significant challenges when applied to spatial reasoning context due to their training data sources. These sources utilize general-purpose image datasets, and they often lack sophisticated spatial scene understanding capabilities. For example, the datasets do not address reference frame comprehension - spatial relationships require clear contextual understanding, whether from an ego-centric, object-centric, or world-centric perspective, which allow for effective real-world interaction. To address this issue, we introduce RoboSpatial, a large-scale spatial understanding dataset consisting of real indoor and tabletop scenes captured as 3D scans and egocentric images, annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5K 3D scans, and 3M annotated spatial relationships, with paired 2D egocentric images and 3D scans to make it both 2D and 3D ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robotics manipulation.

Localizing Active Objects from Egocentric Vision with Symbolic World Knowledge

The ability to actively ground task instructions from an egocentric view is crucial for AI agents to accomplish tasks or assist humans virtually. One important step towards this goal is to localize and track key active objects that undergo major state change as a consequence of human actions/interactions to the environment without being told exactly what/where to ground (e.g., localizing and tracking the `sponge` in video from the instruction "Dip the `sponge` into the bucket."). While existing works approach this problem from a pure vision perspective, we investigate to which extent the textual modality (i.e., task instructions) and their interaction with visual modality can be beneficial. Specifically, we propose to improve phrase grounding models' ability on localizing the active objects by: (1) learning the role of `objects undergoing change` and extracting them accurately from the instructions, (2) leveraging pre- and post-conditions of the objects during actions, and (3) recognizing the objects more robustly with descriptional knowledge. We leverage large language models (LLMs) to extract the aforementioned action-object knowledge, and design a per-object aggregation masking technique to effectively perform joint inference on object phrases and symbolic knowledge. We evaluate our framework on Ego4D and Epic-Kitchens datasets. Extensive experiments demonstrate the effectiveness of our proposed framework, which leads to>54% improvements in all standard metrics on the TREK-150-OPE-Det localization + tracking task, >7% improvements in all standard metrics on the TREK-150-OPE tracking task, and >3% improvements in average precision (AP) on the Ego4D SCOD task.

LALM: Long-Term Action Anticipation with Language Models

Understanding human activity is a crucial yet intricate task in egocentric vision, a field that focuses on capturing visual perspectives from the camera wearer's viewpoint. While traditional methods heavily rely on representation learning trained on extensive video data, there exists a significant limitation: obtaining effective video representations proves challenging due to the inherent complexity and variability in human activities.Furthermore, exclusive dependence on video-based learning may constrain a model's capability to generalize across long-tail classes and out-of-distribution scenarios. In this study, we introduce a novel approach for long-term action anticipation using language models (LALM), adept at addressing the complex challenges of long-term activity understanding without the need for extensive training. Our method incorporates an action recognition model to track previous action sequences and a vision-language model to articulate relevant environmental details. By leveraging the context provided by these past events, we devise a prompting strategy for action anticipation using large language models (LLMs). Moreover, we implement Maximal Marginal Relevance for example selection to facilitate in-context learning of the LLMs. Our experimental results demonstrate that LALM surpasses the state-of-the-art methods in the task of long-term action anticipation on the Ego4D benchmark. We further validate LALM on two additional benchmarks, affirming its capacity for generalization across intricate activities with different sets of taxonomies. These are achieved without specific fine-tuning.

LifelongMemory: Leveraging LLMs for Answering Queries in Egocentric Videos

The egocentric video natural language query (NLQ) task involves localizing a temporal window in an egocentric video that provides an answer to a posed query, which has wide applications in building personalized AI assistants. Prior methods for this task have focused on improvements of network architecture and leveraging pre-training for enhanced image and video features, but have struggled with capturing long-range temporal dependencies in lengthy videos, and cumbersome end-to-end training. Motivated by recent advancements in Large Language Models (LLMs) and vision language models, we introduce LifelongMemory, a novel framework that utilizes multiple pre-trained models to answer queries from extensive egocentric video content. We address the unique challenge by employing a pre-trained captioning model to create detailed narratives of the videos. These narratives are then used to prompt a frozen LLM to generate coarse-grained temporal window predictions, which are subsequently refined using a pre-trained NLQ model. Empirical results demonstrate that our method achieves competitive performance against existing supervised end-to-end learning methods, underlining the potential of integrating multiple pre-trained multimodal large language models in complex vision-language tasks. We provide a comprehensive analysis of key design decisions and hyperparameters in our pipeline, offering insights and practical guidelines.

EOC-Bench: Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World?

The emergence of multimodal large language models (MLLMs) has driven breakthroughs in egocentric vision applications. These applications necessitate persistent, context-aware understanding of objects, as users interact with tools in dynamic and cluttered environments. However, existing embodied benchmarks primarily focus on static scene exploration, emphasizing object's appearance and spatial attributes while neglecting the assessment of dynamic changes arising from users' interactions. To address this gap, we introduce EOC-Bench, an innovative benchmark designed to systematically evaluate object-centric embodied cognition in dynamic egocentric scenarios. Specially, EOC-Bench features 3,277 meticulously annotated QA pairs categorized into three temporal categories: Past, Present, and Future, covering 11 fine-grained evaluation dimensions and 3 visual object referencing types. To ensure thorough assessment, we develop a mixed-format human-in-the-loop annotation framework with four types of questions and design a novel multi-scale temporal accuracy metric for open-ended temporal evaluation. Based on EOC-Bench, we conduct comprehensive evaluations of various proprietary, open-source, and object-level MLLMs. EOC-Bench serves as a crucial tool for advancing the embodied object cognitive capabilities of MLLMs, establishing a robust foundation for developing reliable core models for embodied systems.

EgoNormia: Benchmarking Physical Social Norm Understanding

Human activity is moderated by norms. When performing actions in the real world, humans not only follow norms, but also consider the trade-off between different norms However, machines are often trained without explicit supervision on norm understanding and reasoning, especially when the norms are grounded in a physical and social context. To improve and evaluate the normative reasoning capability of vision-language models (VLMs), we present EgoNormia |epsilon|, consisting of 1,853 ego-centric videos of human interactions, each of which has two related questions evaluating both the prediction and justification of normative actions. The normative actions encompass seven categories: safety, privacy, proxemics, politeness, cooperation, coordination/proactivity, and communication/legibility. To compile this dataset at scale, we propose a novel pipeline leveraging video sampling, automatic answer generation, filtering, and human validation. Our work demonstrates that current state-of-the-art vision-language models lack robust norm understanding, scoring a maximum of 45% on EgoNormia (versus a human bench of 92%). Our analysis of performance in each dimension highlights the significant risks of safety, privacy, and the lack of collaboration and communication capability when applied to real-world agents. We additionally show that through a retrieval-based generation method, it is possible to use EgoNomia to enhance normative reasoning in VLMs.

Do Egocentric Video-Language Models Truly Understand Hand-Object Interactions?

Egocentric video-language pretraining is a crucial step in advancing the understanding of hand-object interactions in first-person scenarios. Despite successes on existing testbeds, we find that current EgoVLMs can be easily misled by simple modifications, such as changing the verbs or nouns in interaction descriptions, with models struggling to distinguish between these changes. This raises the question: Do EgoVLMs truly understand hand-object interactions? To address this question, we introduce a benchmark called EgoHOIBench, revealing the performance limitation of current egocentric models when confronted with such challenges. We attribute this performance gap to insufficient fine-grained supervision and the greater difficulty EgoVLMs experience in recognizing verbs compared to nouns. To tackle these issues, we propose a novel asymmetric contrastive objective named EgoNCE++. For the video-to-text objective, we enhance text supervision by generating negative captions using large language models or leveraging pretrained vocabulary for HOI-related word substitutions. For the text-to-video objective, we focus on preserving an object-centric feature space that clusters video representations based on shared nouns. Extensive experiments demonstrate that EgoNCE++ significantly enhances EgoHOI understanding, leading to improved performance across various EgoVLMs in tasks such as multi-instance retrieval, action recognition, and temporal understanding. Our code is available at https://github.com/xuboshen/EgoNCEpp.

Cracking the Code of Hallucination in LVLMs with Vision-aware Head Divergence

Large vision-language models (LVLMs) have made substantial progress in integrating large language models (LLMs) with visual inputs, enabling advanced multimodal reasoning. Despite their success, a persistent challenge is hallucination-where generated text fails to accurately reflect visual content-undermining both accuracy and reliability. Existing methods focus on alignment training or decoding refinements but primarily address symptoms at the generation stage without probing the underlying causes. In this work, we investigate the internal mechanisms driving hallucination in LVLMs, with an emphasis on the multi-head attention module. Specifically, we introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context. Based on this, our findings reveal the presence of vision-aware attention heads that are more attuned to visual information; however, the model's overreliance on its prior language patterns is closely related to hallucinations. Building on these insights, we propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads. Extensive experiments demonstrate that our method achieves superior performance compared to state-of-the-art approaches in mitigating hallucinations, while maintaining high efficiency with negligible additional time overhead.

Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions

The advent of Large Language Models (LLMs) has significantly reshaped the trajectory of the AI revolution. Nevertheless, these LLMs exhibit a notable limitation, as they are primarily adept at processing textual information. To address this constraint, researchers have endeavored to integrate visual capabilities with LLMs, resulting in the emergence of Vision-Language Models (VLMs). These advanced models are instrumental in tackling more intricate tasks such as image captioning and visual question answering. In our comprehensive survey paper, we delve into the key advancements within the realm of VLMs. Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.This classification is based on their respective capabilities and functionalities in processing and generating various modalities of data.We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible, providing readers with a comprehensive understanding of its essential components. We also analyzed the performance of VLMs in various benchmark datasets. By doing so, we aim to offer a nuanced understanding of the diverse landscape of VLMs. Additionally, we underscore potential avenues for future research in this dynamic domain, anticipating further breakthroughs and advancements.

GPT4Scene: Understand 3D Scenes from Videos with Vision-Language Models

In recent years, 2D Vision-Language Models (VLMs) have made significant strides in image-text understanding tasks. However, their performance in 3D spatial comprehension, which is critical for embodied intelligence, remains limited. Recent advances have leveraged 3D point clouds and multi-view images as inputs, yielding promising results. However, we propose exploring a purely vision-based solution inspired by human perception, which merely relies on visual cues for 3D spatial understanding. This paper empirically investigates the limitations of VLMs in 3D spatial knowledge, revealing that their primary shortcoming lies in the lack of global-local correspondence between the scene and individual frames. To address this, we introduce GPT4Scene, a novel visual prompting paradigm in VLM training and inference that helps build the global-local relationship, significantly improving the 3D spatial understanding of indoor scenes. Specifically, GPT4Scene constructs a 3D Bird's Eye View (BEV) image from the video and marks consistent object IDs across both frames and the BEV image. The model then inputs the concatenated BEV image and video frames with markers. In zero-shot evaluations, GPT4Scene improves performance over closed-source VLMs like GPT-4o. Additionally, we prepare a processed video dataset consisting of 165K text annotation to fine-tune open-source VLMs, achieving state-of-the-art performance on all 3D understanding tasks. Surprisingly, after training with the GPT4Scene paradigm, VLMs consistently improve during inference, even without visual prompting and BEV image as explicit correspondence. It demonstrates that the proposed paradigm helps VLMs develop an intrinsic ability to understand 3D scenes, which paves the way for a noninvasive approach to extending pre-trained VLMs for 3D scene understanding.

Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks

While Vision-Language Models (VLMs) have shown remarkable abilities in visual and language reasoning tasks, they invariably generate flawed responses. Self-correction that instructs models to refine their outputs presents a promising solution to this issue. Previous studies have mainly concentrated on Large Language Models (LLMs), while the self-correction abilities of VLMs, particularly concerning both visual and linguistic information, remain largely unexamined. This study investigates the self-correction capabilities of VLMs during both inference and fine-tuning stages. We introduce a Self-Correction Learning (SCL) approach that enables VLMs to learn from their self-generated self-correction data through Direct Preference Optimization (DPO) without relying on external feedback, facilitating self-improvement. Specifically, we collect preferred and disfavored samples based on the correctness of initial and refined responses, which are obtained by two-turn self-correction with VLMs during the inference stage. Experimental results demonstrate that although VLMs struggle to self-correct effectively during iterative inference without additional fine-tuning and external feedback, they can enhance their performance and avoid previous mistakes through preference fine-tuning when their self-generated self-correction data are categorized into preferred and disfavored samples. This study emphasizes that self-correction is not merely a refinement process; rather, it should enhance the reasoning abilities of models through additional training, enabling them to generate high-quality responses directly without further refinement.

VidEgoThink: Assessing Egocentric Video Understanding Capabilities for Embodied AI

Recent advancements in Multi-modal Large Language Models (MLLMs) have opened new avenues for applications in Embodied AI. Building on previous work, EgoThink, we introduce VidEgoThink, a comprehensive benchmark for evaluating egocentric video understanding capabilities. To bridge the gap between MLLMs and low-level control in Embodied AI, we design four key interrelated tasks: video question-answering, hierarchy planning, visual grounding and reward modeling. To minimize manual annotation costs, we develop an automatic data generation pipeline based on the Ego4D dataset, leveraging the prior knowledge and multimodal capabilities of GPT-4o. Three human annotators then filter the generated data to ensure diversity and quality, resulting in the VidEgoThink benchmark. We conduct extensive experiments with three types of models: API-based MLLMs, open-source image-based MLLMs, and open-source video-based MLLMs. Experimental results indicate that all MLLMs, including GPT-4o, perform poorly across all tasks related to egocentric video understanding. These findings suggest that foundation models still require significant advancements to be effectively applied to first-person scenarios in Embodied AI. In conclusion, VidEgoThink reflects a research trend towards employing MLLMs for egocentric vision, akin to human capabilities, enabling active observation and interaction in the complex real-world environments.

Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images

Recent studies have shown that Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors, resulting in errors in visually grounded tasks and hallucinations. We hypothesize that this issue arises because existing VLMs are not explicitly trained to generate texts that are accurately grounded in fine-grained image details. To enhance visual feedback during VLM training, we propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details and aligning them with corresponding text tokens. To further facilitate this detailed alignment, we introduce MVC, a paired image-text dataset built by automatically filtering and augmenting visual counterfactual data to challenge the model with hard contrastive cases involving Minimal Visual Contrasts. Experiments show that our method consistently improves VLM performance across diverse benchmarks covering various abilities and domains, achieving up to a 22% reduction in hallucinations, and significant gains in vision-centric and general tasks. Notably, these improvements become increasingly pronounced in benchmarks with higher visual dependency. In short, S-VCO offers a significant enhancement of VLM's visually-dependent task performance while retaining or even improving the model's general abilities. We opensource our code at https://s-vco.github.io/

BEAF: Observing BEfore-AFter Changes to Evaluate Hallucination in Vision-language Models

Vision language models (VLMs) perceive the world through a combination of a visual encoder and a large language model (LLM). The visual encoder, pre-trained on large-scale vision-text datasets, provides zero-shot generalization to visual data, and the LLM endows its high reasoning ability to VLMs. It leads VLMs to achieve high performance on wide benchmarks without fine-tuning, exhibiting zero or few-shot capability. However, recent studies show that VLMs are vulnerable to hallucination. This undesirable behavior degrades reliability and credibility, thereby making users unable to fully trust the output from VLMs. To enhance trustworthiness and better tackle the hallucination of VLMs, we curate a new evaluation dataset, called the BEfore-AFter hallucination dataset (BEAF), and introduce new metrics: True Understanding (TU), IGnorance (IG), StuBbornness (SB), and InDecision (ID). Unlike prior works that focus only on constructing questions and answers, the key idea of our benchmark is to manipulate visual scene information by image editing models and to design the metrics based on scene changes. This allows us to clearly assess whether VLMs correctly understand a given scene by observing the ability to perceive changes. We also visualize image-wise object relationship by virtue of our two-axis view: vision and text. Upon evaluating VLMs with our dataset, we observed that our metrics reveal different aspects of VLM hallucination that have not been reported before. Project page: https://beafbench.github.io/

Fixing Imbalanced Attention to Mitigate In-Context Hallucination of Large Vision-Language Model

Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models frequently exhibit hallucination behavior, where they generate descriptions containing objects or details absent in the input image. Our work investigates this phenomenon by analyzing attention patterns across transformer layers and heads, revealing that hallucinations often stem from progressive degradation of visual grounding in deeper layers. We propose a novel attention modification approach that combines selective token emphasis and head-specific modulation to maintain visual grounding throughout the generation process. Our method introduces two key components: (1) a dual-stream token selection mechanism that identifies and prioritizes both locally informative and spatially significant visual tokens, and (2) an attention head-specific modulation strategy that differentially amplifies visual information processing based on measured visual sensitivity of individual attention heads. Through extensive experimentation on the MSCOCO dataset, we demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining comparable task performance. Our analysis reveals that selectively modulating tokens across attention heads with varying levels of visual sensitivity can significantly improve visual grounding without requiring model retraining.

Evaluating Vision-Language Models as Evaluators in Path Planning

Despite their promise to perform complex reasoning, large language models (LLMs) have been shown to have limited effectiveness in end-to-end planning. This has inspired an intriguing question: if these models cannot plan well, can they still contribute to the planning framework as a helpful plan evaluator? In this work, we generalize this question to consider LLMs augmented with visual understanding, i.e., Vision-Language Models (VLMs). We introduce PathEval, a novel benchmark evaluating VLMs as plan evaluators in complex path-planning scenarios. Succeeding in the benchmark requires a VLM to be able to abstract traits of optimal paths from the scenario description, demonstrate precise low-level perception on each path, and integrate this information to decide the better path. Our analysis of state-of-the-art VLMs reveals that these models face significant challenges on the benchmark. We observe that the VLMs can precisely abstract given scenarios to identify the desired traits and exhibit mixed performance in integrating the provided information. Yet, their vision component presents a critical bottleneck, with models struggling to perceive low-level details about a path. Our experimental results show that this issue cannot be trivially addressed via end-to-end fine-tuning; rather, task-specific discriminative adaptation of these vision encoders is needed for these VLMs to become effective path evaluators.

X-LeBench: A Benchmark for Extremely Long Egocentric Video Understanding

Long-form egocentric video understanding provides rich contextual information and unique insights into long-term human behaviors, holding significant potential for applications in embodied intelligence, long-term activity analysis, and personalized assistive technologies. However, existing benchmark datasets primarily focus on single, short-duration videos or moderately long videos up to dozens of minutes, leaving a substantial gap in evaluating extensive, ultra-long egocentric video recordings. To address this, we introduce X-LeBench, a novel benchmark dataset specifically crafted for evaluating tasks on extremely long egocentric video recordings. Leveraging the advanced text processing capabilities of large language models (LLMs), X-LeBench develops a life-logging simulation pipeline that produces realistic, coherent daily plans aligned with real-world video data. This approach enables the flexible integration of synthetic daily plans with real-world footage from Ego4D-a massive-scale egocentric video dataset covers a wide range of daily life scenarios-resulting in 432 simulated video life logs that mirror realistic daily activities in contextually rich scenarios. The video life-log durations span from 23 minutes to 16.4 hours. The evaluation of several baseline systems and multimodal large language models (MLLMs) reveals their poor performance across the board, highlighting the inherent challenges of long-form egocentric video understanding and underscoring the need for more advanced models.

MMPerspective: Do MLLMs Understand Perspective? A Comprehensive Benchmark for Perspective Perception, Reasoning, and Robustness

Understanding perspective is fundamental to human visual perception, yet the extent to which multimodal large language models (MLLMs) internalize perspective geometry remains unclear. We introduce MMPerspective, the first benchmark specifically designed to systematically evaluate MLLMs' understanding of perspective through 10 carefully crafted tasks across three complementary dimensions: Perspective Perception, Reasoning, and Robustness. Our benchmark comprises 2,711 real-world and synthetic image instances with 5,083 question-answer pairs that probe key capabilities, such as vanishing point perception and counting, perspective type reasoning, line relationship understanding in 3D space, invariance to perspective-preserving transformations, etc. Through a comprehensive evaluation of 43 state-of-the-art MLLMs, we uncover significant limitations: while models demonstrate competence on surface-level perceptual tasks, they struggle with compositional reasoning and maintaining spatial consistency under perturbations. Our analysis further reveals intriguing patterns between model architecture, scale, and perspective capabilities, highlighting both robustness bottlenecks and the benefits of chain-of-thought prompting. MMPerspective establishes a valuable testbed for diagnosing and advancing spatial understanding in vision-language systems. Resources available at: https://yunlong10.github.io/MMPerspective/

Reasoning Paths with Reference Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models

Despite recent advances demonstrating vision-language models' (VLMs) abilities to describe complex relationships in images using natural language, their capability to quantitatively reason about object sizes and distances remains underexplored. In this work, we introduce a manually annotated benchmark, Q-Spatial Bench, with 271 questions across five categories designed for quantitative spatial reasoning and systematically investigate the performance of state-of-the-art VLMs on this task. Our analysis reveals that reasoning about distances between objects is particularly challenging for SoTA VLMs; however, some VLMs significantly outperform others, with an over 40-point gap between the two best performing models. We also make the surprising observation that the success rate of the top-performing VLM increases by 19 points when a reasoning path using a reference object emerges naturally in the response. Inspired by this observation, we develop a zero-shot prompting technique, SpatialPrompt, that encourages VLMs to answer quantitative spatial questions using reference objects as visual cues. By instructing VLMs to use reference objects in their reasoning paths via SpatialPrompt, Gemini 1.5 Pro, Gemini 1.5 Flash, and GPT-4V improve their success rates by over 40, 20, and 30 points, respectively. We emphasize that these significant improvements are obtained without needing more data, model architectural modifications, or fine-tuning.

Words or Vision: Do Vision-Language Models Have Blind Faith in Text?

Vision-Language Models (VLMs) excel in integrating visual and textual information for vision-centric tasks, but their handling of inconsistencies between modalities is underexplored. We investigate VLMs' modality preferences when faced with visual data and varied textual inputs in vision-centered settings. By introducing textual variations to four vision-centric tasks and evaluating ten Vision-Language Models (VLMs), we discover a ``blind faith in text'' phenomenon: VLMs disproportionately trust textual data over visual data when inconsistencies arise, leading to significant performance drops under corrupted text and raising safety concerns. We analyze factors influencing this text bias, including instruction prompts, language model size, text relevance, token order, and the interplay between visual and textual certainty. While certain factors, such as scaling up the language model size, slightly mitigate text bias, others like token order can exacerbate it due to positional biases inherited from language models. To address this issue, we explore supervised fine-tuning with text augmentation and demonstrate its effectiveness in reducing text bias. Additionally, we provide a theoretical analysis suggesting that the blind faith in text phenomenon may stem from an imbalance of pure text and multi-modal data during training. Our findings highlight the need for balanced training and careful consideration of modality interactions in VLMs to enhance their robustness and reliability in handling multi-modal data inconsistencies.

Teaching Structured Vision&Language Concepts to Vision&Language Models

Vision and Language (VL) models have demonstrated remarkable zero-shot performance in a variety of tasks. However, some aspects of complex language understanding still remain a challenge. We introduce the collective notion of Structured Vision&Language Concepts (SVLC) which includes object attributes, relations, and states which are present in the text and visible in the image. Recent studies have shown that even the best VL models struggle with SVLC. A possible way of fixing this issue is by collecting dedicated datasets for teaching each SVLC type, yet this might be expensive and time-consuming. Instead, we propose a more elegant data-driven approach for enhancing VL models' understanding of SVLCs that makes more effective use of existing VL pre-training datasets and does not require any additional data. While automatic understanding of image structure still remains largely unsolved, language structure is much better modeled and understood, allowing for its effective utilization in teaching VL models. In this paper, we propose various techniques based on language structure understanding that can be used to manipulate the textual part of off-the-shelf paired VL datasets. VL models trained with the updated data exhibit a significant improvement of up to 15% in their SVLC understanding with only a mild degradation in their zero-shot capabilities both when training from scratch or fine-tuning a pre-trained model.

Vision-Language-Action Models: Concepts, Progress, Applications and Challenges

Vision-Language-Action (VLA) models mark a transformative advancement in artificial intelligence, aiming to unify perception, natural language understanding, and embodied action within a single computational framework. This foundational review presents a comprehensive synthesis of recent advancements in Vision-Language-Action models, systematically organized across five thematic pillars that structure the landscape of this rapidly evolving field. We begin by establishing the conceptual foundations of VLA systems, tracing their evolution from cross-modal learning architectures to generalist agents that tightly integrate vision-language models (VLMs), action planners, and hierarchical controllers. Our methodology adopts a rigorous literature review framework, covering over 80 VLA models published in the past three years. Key progress areas include architectural innovations, parameter-efficient training strategies, and real-time inference accelerations. We explore diverse application domains such as humanoid robotics, autonomous vehicles, medical and industrial robotics, precision agriculture, and augmented reality navigation. The review further addresses major challenges across real-time control, multimodal action representation, system scalability, generalization to unseen tasks, and ethical deployment risks. Drawing from the state-of-the-art, we propose targeted solutions including agentic AI adaptation, cross-embodiment generalization, and unified neuro-symbolic planning. In our forward-looking discussion, we outline a future roadmap where VLA models, VLMs, and agentic AI converge to power socially aligned, adaptive, and general-purpose embodied agents. This work serves as a foundational reference for advancing intelligent, real-world robotics and artificial general intelligence. >Vision-language-action, Agentic AI, AI Agents, Vision-language Models

ViCrit: A Verifiable Reinforcement Learning Proxy Task for Visual Perception in VLMs

Reinforcement learning (RL) has shown great effectiveness for fine-tuning large language models (LLMs) using tasks that are challenging yet easily verifiable, such as math reasoning or code generation. However, extending this success to visual perception in vision-language models (VLMs) has been impeded by the scarcity of vision-centric tasks that are simultaneously challenging and unambiguously verifiable. To this end, we introduce ViCrit (Visual Caption Hallucination Critic), an RL proxy task that trains VLMs to localize a subtle, synthetic visual hallucination injected into paragraphs of human-written image captions. Starting from a 200-word captions, we inject a single, subtle visual description error-altering a few words on objects, attributes, counts, or spatial relations-and task the model to pinpoint the corrupted span given the image and the modified caption. This formulation preserves the full perceptual difficulty while providing a binary, exact-match reward that is easy to compute and unambiguous. Models trained with the ViCrit Task exhibit substantial gains across a variety of VL benchmarks. Crucially, the improvements transfer beyond natural-image training data to abstract image reasoning and visual math, showing promises of learning to perceive rather than barely memorizing seen objects. To facilitate evaluation, we further introduce ViCrit-Bench, a category-balanced diagnostic benchmark that systematically probes perception errors across diverse image domains and error types. Together, our results demonstrate that fine-grained hallucination criticism is an effective and generalizable objective for enhancing visual perception in VLMs.

Boosting the Generalization and Reasoning of Vision Language Models with Curriculum Reinforcement Learning

While state-of-the-art vision-language models (VLMs) have demonstrated remarkable capabilities in complex visual-text tasks, their success heavily relies on massive model scaling, limiting their practical deployment. Small-scale VLMs offer a more practical alternative but face significant challenges when trained with traditional supervised fine-tuning (SFT), particularly in two aspects: out-of-domain (OOD) generalization and reasoning abilities, which significantly lags behind the contemporary Large language models (LLMs). To address these challenges, we propose Curriculum Reinforcement Finetuning (Curr-ReFT), a novel post-training paradigm specifically designed for small-scale VLMs. Inspired by the success of reinforcement learning in LLMs, Curr-ReFT comprises two sequential stages: (1) Curriculum Reinforcement Learning, which ensures steady progression of model capabilities through difficulty-aware reward design, transitioning from basic visual perception to complex reasoning tasks; and (2) Rejected Sampling-based Self-improvement, which maintains the fundamental capabilities of VLMs through selective learning from high-quality multimodal and language examples. Extensive experiments demonstrate that models trained with Curr-ReFT paradigm achieve state-of-the-art performance across various visual tasks in both in-domain and out-of-domain settings. Moreover, our Curr-ReFT enhanced 3B model matches the performance of 32B-parameter models, demonstrating that efficient training paradigms can effectively bridge the gap between small and large models.

Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs

Multi-view understanding, the ability to reconcile visual information across diverse viewpoints for effective navigation, manipulation, and 3D scene comprehension, is a fundamental challenge in Multi-Modal Large Language Models (MLLMs) to be used as embodied agents. While recent MLLMs have shown impressive advances in high-level reasoning and planning, they frequently fall short when confronted with multi-view geometric consistency and cross-view correspondence. To comprehensively evaluate the challenges of MLLMs in multi-view scene reasoning, we propose All-Angles Bench, a benchmark of over 2,100 human carefully annotated multi-view question-answer pairs across 90 diverse real-world scenes. Our six tasks (counting, attribute identification, relative distance, relative direction, object manipulation, and camera pose estimation) specifically test model's geometric correspondence and the capacity to align information consistently across views. Our extensive experiments, benchmark on 27 representative MLLMs including Gemini-2.0-Flash, Claude-3.7-Sonnet, and GPT-4o against human evaluators reveals a substantial performance gap, indicating that current MLLMs remain far from human-level proficiency. Through in-depth analysis, we show that MLLMs are particularly underperforming under two aspects: (1) cross-view correspondence for partially occluded views and (2) establishing the coarse camera poses. These findings highlight the necessity of domain-specific refinements or modules that embed stronger multi-view awareness. We believe that our All-Angles Bench offers valuable insights and contribute to bridging the gap between MLLMs and human-level multi-view understanding. The project and benchmark are publicly available at https://danielchyeh.github.io/All-Angles-Bench/.

Vision-Language Models for Vision Tasks: A Survey

Most visual recognition studies rely heavily on crowd-labelled data in deep neural networks (DNNs) training, and they usually train a DNN for each single visual recognition task, leading to a laborious and time-consuming visual recognition paradigm. To address the two challenges, Vision-Language Models (VLMs) have been intensively investigated recently, which learns rich vision-language correlation from web-scale image-text pairs that are almost infinitely available on the Internet and enables zero-shot predictions on various visual recognition tasks with a single VLM. This paper provides a systematic review of visual language models for various visual recognition tasks, including: (1) the background that introduces the development of visual recognition paradigms; (2) the foundations of VLM that summarize the widely-adopted network architectures, pre-training objectives, and downstream tasks; (3) the widely-adopted datasets in VLM pre-training and evaluations; (4) the review and categorization of existing VLM pre-training methods, VLM transfer learning methods, and VLM knowledge distillation methods; (5) the benchmarking, analysis and discussion of the reviewed methods; (6) several research challenges and potential research directions that could be pursued in the future VLM studies for visual recognition. A project associated with this survey has been created at https://github.com/jingyi0000/VLM_survey.

Embodied Multi-Modal Agent trained by an LLM from a Parallel TextWorld

While large language models (LLMs) excel in a simulated world of texts, they struggle to interact with the more realistic world without perceptions of other modalities such as visual or audio signals. Although vision-language models (VLMs) integrate LLM modules (1) aligned with static image features, and (2) may possess prior knowledge of world dynamics (as demonstrated in the text world), they have not been trained in an embodied visual world and thus cannot align with its dynamics. On the other hand, training an embodied agent in a noisy visual world without expert guidance is often challenging and inefficient. In this paper, we train a VLM agent living in a visual world using an LLM agent excelling in a parallel text world (but inapplicable to the visual world). Specifically, we distill LLM's reflection outcomes (improved actions by analyzing mistakes) in a text world's tasks to finetune the VLM on the same tasks of the visual world, resulting in an Embodied Multi-Modal Agent (EMMA) quickly adapting to the visual world dynamics. Such cross-modality imitation learning between the two parallel worlds enables EMMA to generalize to a broad scope of new tasks without any further guidance from the LLM expert. Extensive evaluations on the ALFWorld benchmark highlight EMMA's superior performance to SOTA VLM-based agents across diverse tasks, e.g., 20%-70% improvement in the success rate.

VLind-Bench: Measuring Language Priors in Large Vision-Language Models

Large Vision-Language Models (LVLMs) have demonstrated outstanding performance across various multimodal tasks. However, they suffer from a problem known as language prior, where responses are generated based solely on textual patterns while disregarding image information. Addressing the issue of language prior is crucial, as it can lead to undesirable biases or hallucinations when dealing with images that are out of training distribution. Despite its importance, current methods for accurately measuring language priors in LVLMs are poorly studied. Although existing benchmarks based on counterfactual or out-of-distribution images can partially be used to measure language priors, they fail to disentangle language priors from other confounding factors. To this end, we propose a new benchmark called VLind-Bench, which is the first benchmark specifically designed to measure the language priors, or blindness, of LVLMs. It not only includes tests on counterfactual images to assess language priors but also involves a series of tests to evaluate more basic capabilities such as commonsense knowledge, visual perception, and commonsense biases. For each instance in our benchmark, we ensure that all these basic tests are passed before evaluating the language priors, thereby minimizing the influence of other factors on the assessment. The evaluation and analysis of recent LVLMs in our benchmark reveal that almost all models exhibit a significant reliance on language priors, presenting a strong challenge in the field.

DeepSeek-VL: Towards Real-World Vision-Language Understanding

We present DeepSeek-VL, an open-source Vision-Language (VL) Model designed for real-world vision and language understanding applications. Our approach is structured around three key dimensions: We strive to ensure our data is diverse, scalable, and extensively covers real-world scenarios including web screenshots, PDFs, OCR, charts, and knowledge-based content, aiming for a comprehensive representation of practical contexts. Further, we create a use case taxonomy from real user scenarios and construct an instruction tuning dataset accordingly. The fine-tuning with this dataset substantially improves the model's user experience in practical applications. Considering efficiency and the demands of most real-world scenarios, DeepSeek-VL incorporates a hybrid vision encoder that efficiently processes high-resolution images (1024 x 1024), while maintaining a relatively low computational overhead. This design choice ensures the model's ability to capture critical semantic and detailed information across various visual tasks. We posit that a proficient Vision-Language Model should, foremost, possess strong language abilities. To ensure the preservation of LLM capabilities during pretraining, we investigate an effective VL pretraining strategy by integrating LLM training from the beginning and carefully managing the competitive dynamics observed between vision and language modalities. The DeepSeek-VL family (both 1.3B and 7B models) showcases superior user experiences as a vision-language chatbot in real-world applications, achieving state-of-the-art or competitive performance across a wide range of visual-language benchmarks at the same model size while maintaining robust performance on language-centric benchmarks. We have made both 1.3B and 7B models publicly accessible to foster innovations based on this foundation model.

HumanVLM: Foundation for Human-Scene Vision-Language Model

Human-scene vision-language tasks are increasingly prevalent in diverse social applications, yet recent advancements predominantly rely on models specifically tailored to individual tasks. Emerging research indicates that large vision-language models (VLMs) can enhance performance across various downstream vision-language understanding tasks. However, general-domain models often underperform in specialized fields. This study introduces a domain-specific Large Vision-Language Model, Human-Scene Vision-Language Model (HumanVLM), designed to provide a foundation for human-scene Vision-Language tasks. Specifically, (1) we create a large-scale human-scene multimodal image-text dataset (HumanCaption-10M) sourced from the Internet to facilitate domain-specific alignment; (2) develop a captioning approach for human-centered images, capturing human faces, bodies, and backgrounds, and construct a high-quality Human-Scene image-text dataset (HumanCaptionHQ, about 311k pairs) that contain as much detailed information as possible about human; (3) Using HumanCaption-10M and HumanCaptionHQ, we train a HumanVLM. In the experiments, we then evaluate our HumanVLM across varous downstream tasks, where it demonstrates superior overall performance among multimodal models of comparable scale, particularly excelling in human-related tasks and significantly outperforming similar models, including Qwen2VL and ChatGPT-4o. HumanVLM, alongside the data introduced, will stimulate the research in human-around fields.

RefEgo: Referring Expression Comprehension Dataset from First-Person Perception of Ego4D

Grounding textual expressions on scene objects from first-person views is a truly demanding capability in developing agents that are aware of their surroundings and behave following intuitive text instructions. Such capability is of necessity for glass-devices or autonomous robots to localize referred objects in the real-world. In the conventional referring expression comprehension tasks of images, however, datasets are mostly constructed based on the web-crawled data and don't reflect diverse real-world structures on the task of grounding textual expressions in diverse objects in the real world. Recently, a massive-scale egocentric video dataset of Ego4D was proposed. Ego4D covers around the world diverse real-world scenes including numerous indoor and outdoor situations such as shopping, cooking, walking, talking, manufacturing, etc. Based on egocentric videos of Ego4D, we constructed a broad coverage of the video-based referring expression comprehension dataset: RefEgo. Our dataset includes more than 12k video clips and 41 hours for video-based referring expression comprehension annotation. In experiments, we combine the state-of-the-art 2D referring expression comprehension models with the object tracking algorithm, achieving the video-wise referred object tracking even in difficult conditions: the referred object becomes out-of-frame in the middle of the video or multiple similar objects are presented in the video.

NanoVLMs: How small can we go and still make coherent Vision Language Models?

Vision-Language Models (VLMs), such as GPT-4V and Llama 3.2 vision, have garnered significant research attention for their ability to leverage Large Language Models (LLMs) in multimodal tasks. However, their potential is constrained by inherent challenges, including proprietary restrictions, substantial computational demands, and limited accessibility. Smaller models, such as GIT and BLIP, exhibit marked limitations, often failing to generate coherent and consistent text beyond a few tokens, even with extensive training. This underscores a pivotal inquiry: how small can a VLM be and still produce fluent and consistent text? Drawing inspiration from the exceptional learning process of 3-4 year old children, who rely heavily on visual cues for understanding and communication, we introduce two novel datasets: ShortDesc (featuring concise image descriptions) and LongDesc (containing more detailed image descriptions). These datasets consist of image-text pairs where the text is restricted to the simple vocabulary and syntax typically used by young children, generated with a scaled- down model, GPT-4o. Using these datasets, we demonstrate that it is possible to train VLMs that are significantly smaller, up to 10 times smaller than state of the art(SOTA) small VLMs while maintaining architectural simplicity. To evaluate the outputs, we leverage GPT-4o to grade the text, as if stories written by students, on creativity, meaningfulness, and consistency, assigning scores out of 10. This method addresses limitations of standard benchmarks by accommodating unstructured outputs and providing a multidimensional evaluation of the model capabilities. Our findings contribute to the development of lightweight, accessible multimodal models for resource constrained environments.

Tackling Vision Language Tasks Through Learning Inner Monologues

Visual language tasks require AI models to comprehend and reason with both visual and textual content. Driven by the power of Large Language Models (LLMs), two prominent methods have emerged: (1) the hybrid integration between LLMs and Vision-Language Models (VLMs), where visual inputs are firstly converted into language descriptions by VLMs, serving as inputs for LLMs to generate final answer(s); (2) visual feature alignment in language space, where visual inputs are encoded as embeddings and projected to LLMs' language space via further supervised fine-tuning. The first approach provides light training costs and interpretability but is hard to be optimized in an end-to-end fashion. The second approach presents decent performance, but feature alignment usually requires large amounts of training data and lacks interpretability. To tackle this dilemma, we propose a novel approach, Inner Monologue Multi-Modal Optimization (IMMO), to solve complex vision language problems by simulating inner monologue processes, a cognitive process in which an individual engages in silent verbal communication with themselves. We enable LLMs and VLMs to interact through natural language conversation and propose to use a two-stage training process to learn how to do the inner monologue (self-asking questions and answering questions). IMMO is evaluated on two popular tasks and the results suggest by emulating the cognitive phenomenon of internal dialogue, our approach can enhance reasoning and explanation abilities, contributing to the more effective fusion of vision and language models. More importantly, instead of using predefined human-crafted monologues, IMMO learns this process within the deep learning models, promising wider applicability to many different AI problems beyond vision language tasks.

Unveiling Encoder-Free Vision-Language Models

Existing vision-language models (VLMs) mostly rely on vision encoders to extract visual features followed by large language models (LLMs) for visual-language tasks. However, the vision encoders set a strong inductive bias in abstracting visual representation, e.g., resolution, aspect ratio, and semantic priors, which could impede the flexibility and efficiency of the VLMs. Training pure VLMs that accept the seamless vision and language inputs, i.e., without vision encoders, remains challenging and rarely explored. Empirical observations reveal that direct training without encoders results in slow convergence and large performance gaps. In this work, we bridge the gap between encoder-based and encoder-free models, and present a simple yet effective training recipe towards pure VLMs. Specifically, we unveil the key aspects of training encoder-free VLMs efficiently via thorough experiments: (1) Bridging vision-language representation inside one unified decoder; (2) Enhancing visual recognition capability via extra supervision. With these strategies, we launch EVE, an encoder-free vision-language model that can be trained and forwarded efficiently. Notably, solely utilizing 35M publicly accessible data, EVE can impressively rival the encoder-based VLMs of similar capacities across multiple vision-language benchmarks. It significantly outperforms the counterpart Fuyu-8B with mysterious training procedures and undisclosed training data. We believe that EVE provides a transparent and efficient route for developing a pure decoder-only architecture across modalities. Our code and models are publicly available at: https://github.com/baaivision/EVE.

Teaching VLMs to Localize Specific Objects from In-context Examples

Vision-Language Models (VLMs) have shown remarkable capabilities across diverse visual tasks, including image recognition, video understanding, and Visual Question Answering (VQA) when explicitly trained for these tasks. Despite these advances, we find that current VLMs lack a fundamental cognitive ability: learning to localize objects in a scene by taking into account the context. In this work, we focus on the task of few-shot personalized localization, where a model is given a small set of annotated images (in-context examples) -- each with a category label and bounding box -- and is tasked with localizing the same object type in a query image. To provoke personalized localization abilities in models, we present a data-centric solution that fine-tunes them using carefully curated data from video object tracking datasets. By leveraging sequences of frames tracking the same object across multiple shots, we simulate instruction-tuning dialogues that promote context awareness. To reinforce this, we introduce a novel regularization technique that replaces object labels with pseudo-names, ensuring the model relies on visual context rather than prior knowledge. Our method significantly enhances few-shot localization performance without sacrificing generalization, as demonstrated on several benchmarks tailored to personalized localization. This work is the first to explore and benchmark personalized few-shot localization for VLMs, laying a foundation for future research in context-driven vision-language applications. The code for our project is available at https://github.com/SivanDoveh/IPLoc

ImagineNav: Prompting Vision-Language Models as Embodied Navigator through Scene Imagination

Visual navigation is an essential skill for home-assistance robots, providing the object-searching ability to accomplish long-horizon daily tasks. Many recent approaches use Large Language Models (LLMs) for commonsense inference to improve exploration efficiency. However, the planning process of LLMs is limited within texts and it is difficult to represent the spatial occupancy and geometry layout only by texts. Both are important for making rational navigation decisions. In this work, we seek to unleash the spatial perception and planning ability of Vision-Language Models (VLMs), and explore whether the VLM, with only on-board camera captured RGB/RGB-D stream inputs, can efficiently finish the visual navigation tasks in a mapless manner. We achieve this by developing the imagination-powered navigation framework ImagineNav, which imagines the future observation images at valuable robot views and translates the complex navigation planning process into a rather simple best-view image selection problem for VLM. To generate appropriate candidate robot views for imagination, we introduce the Where2Imagine module, which is distilled to align with human navigation habits. Finally, to reach the VLM preferred views, an off-the-shelf point-goal navigation policy is utilized. Empirical experiments on the challenging open-vocabulary object navigation benchmarks demonstrates the superiority of our proposed system.

The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering

Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits rankings throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss -- visually grounded tokens gradually become less favored throughout generation, and (2) early excitation -- semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information -- visually grounded tokens though not being eventually decided still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by abount 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies.

Learning Navigational Visual Representations with Semantic Map Supervision

Being able to perceive the semantics and the spatial structure of the environment is essential for visual navigation of a household robot. However, most existing works only employ visual backbones pre-trained either with independent images for classification or with self-supervised learning methods to adapt to the indoor navigation domain, neglecting the spatial relationships that are essential to the learning of navigation. Inspired by the behavior that humans naturally build semantically and spatially meaningful cognitive maps in their brains during navigation, in this paper, we propose a novel navigational-specific visual representation learning method by contrasting the agent's egocentric views and semantic maps (Ego^2-Map). We apply the visual transformer as the backbone encoder and train the model with data collected from the large-scale Habitat-Matterport3D environments. Ego^2-Map learning transfers the compact and rich information from a map, such as objects, structure and transition, to the agent's egocentric representations for navigation. Experiments show that agents using our learned representations on object-goal navigation outperform recent visual pre-training methods. Moreover, our representations significantly improve vision-and-language navigation in continuous environments for both high-level and low-level action spaces, achieving new state-of-the-art results of 47% SR and 41% SPL on the test server.

RITUAL: Random Image Transformations as a Universal Anti-hallucination Lever in LVLMs

Recent advancements in Large Vision Language Models (LVLMs) have revolutionized how machines understand and generate textual responses based on visual inputs. Despite their impressive capabilities, they often produce "hallucinatory" outputs that do not accurately reflect the visual information, posing challenges in reliability and trustworthiness. Current methods such as contrastive decoding have made strides in addressing these issues by contrasting the original probability distribution of generated tokens with distorted counterparts; yet, generating visually-faithful outputs remains a challenge. In this work, we shift our focus to the opposite: What could serve as a complementary enhancement to the original probability distribution? We propose a simple, training-free method termed RITUAL to enhance robustness against hallucinations in LVLMs. Our approach employs random image transformations as complements to the original probability distribution, aiming to mitigate the likelihood of hallucinatory visual explanations by enriching the model's exposure to varied visual scenarios. Our empirical results show that while the isolated use of transformed images initially degrades performance, strategic implementation of these transformations can indeed serve as effective complements. Notably, our method is compatible with current contrastive decoding methods and does not require external models or costly self-feedback mechanisms, making it a practical addition. In experiments, RITUAL significantly outperforms existing contrastive decoding methods across several object hallucination benchmarks, including POPE, CHAIR, and MME.

Look, Compare, Decide: Alleviating Hallucination in Large Vision-Language Models via Multi-View Multi-Path Reasoning

Recently, Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities in multi-modal context comprehension. However, they still suffer from hallucination problems referring to generating inconsistent outputs with the image content. To mitigate hallucinations, previous studies mainly focus on retraining LVLMs with custom datasets. Although effective, they inherently come with additional computational costs. In this paper, we propose a training-free framework, MVP, that aims to reduce hallucinations by making the most of the innate capabilities of the LVLMs via Multi-View Multi-Path Reasoning. Specifically, we first devise a multi-view information-seeking strategy to thoroughly perceive the comprehensive information in the image, which enriches the general global information captured by the original vision encoder in LVLMs. Furthermore, during the answer decoding, we observe that the occurrence of hallucinations has a strong correlation with the certainty of the answer tokens. Thus, we propose multi-path reasoning for each information view to quantify and aggregate the certainty scores for each potential answer among multiple decoding paths and finally decide the output answer. By fully grasping the information in the image and carefully considering the certainty of the potential answers when decoding, our MVP can effectively reduce hallucinations in LVLMs.The extensive experiments verify that our proposed MVP significantly mitigates the hallucination problem across four well-known LVLMs. The source code is available at: https://github.com/GasolSun36/MVP.

3D-LLM: Injecting the 3D World into Large Language Models

Large language models (LLMs) and Vision-Language Models (VLMs) have been proven to excel at multiple tasks, such as commonsense reasoning. Powerful as these models can be, they are not grounded in the 3D physical world, which involves richer concepts such as spatial relationships, affordances, physics, layout, and so on. In this work, we propose to inject the 3D world into large language models and introduce a whole new family of 3D-LLMs. Specifically, 3D-LLMs can take 3D point clouds and their features as input and perform a diverse set of 3D-related tasks, including captioning, dense captioning, 3D question answering, task decomposition, 3D grounding, 3D-assisted dialog, navigation, and so on. Using three types of prompting mechanisms that we design, we are able to collect over 300k 3D-language data covering these tasks. To efficiently train 3D-LLMs, we first utilize a 3D feature extractor that obtains 3D features from rendered multi- view images. Then, we use 2D VLMs as our backbones to train our 3D-LLMs. By introducing a 3D localization mechanism, 3D-LLMs can better capture 3D spatial information. Experiments on ScanQA show that our model outperforms state-of-the-art baselines by a large margin (e.g., the BLEU-1 score surpasses state-of-the-art score by 9%). Furthermore, experiments on our held-in datasets for 3D captioning, task composition, and 3D-assisted dialogue show that our model outperforms 2D VLMs. Qualitative examples also show that our model could perform more tasks beyond the scope of existing LLMs and VLMs. Project Page: : https://vis-www.cs.umass.edu/3dllm/.

SINC: Self-Supervised In-Context Learning for Vision-Language Tasks

Large Pre-trained Transformers exhibit an intriguing capacity for in-context learning. Without gradient updates, these models can rapidly construct new predictors from demonstrations presented in the inputs. Recent works promote this ability in the vision-language domain by incorporating visual information into large language models that can already make in-context predictions. However, these methods could inherit issues in the language domain, such as template sensitivity and hallucination. Also, the scale of these language models raises a significant demand for computations, making learning and operating these models resource-intensive. To this end, we raise a question: ``How can we enable in-context learning without relying on the intrinsic in-context ability of large language models?". To answer it, we propose a succinct and general framework, Self-supervised IN-Context learning (SINC), that introduces a meta-model to learn on self-supervised prompts consisting of tailored demonstrations. The learned models can be transferred to downstream tasks for making in-context predictions on-the-fly. Extensive experiments show that SINC outperforms gradient-based methods in various vision-language tasks under few-shot settings. Furthermore, the designs of SINC help us investigate the benefits of in-context learning across different tasks, and the analysis further reveals the essential components for the emergence of in-context learning in the vision-language domain.

Discriminative Fine-tuning of LVLMs

Contrastively-trained Vision-Language Models (VLMs) like CLIP have become the de facto approach for discriminative vision-language representation learning. However, these models have limited language understanding, often exhibiting a "bag of words" behavior. At the same time, Large Vision-Language Models (LVLMs), which combine vision encoders with LLMs, have been shown capable of detailed vision-language reasoning, yet their autoregressive nature renders them less suitable for discriminative tasks. In this work, we propose to combine "the best of both worlds": a new training approach for discriminative fine-tuning of LVLMs that results in strong discriminative and compositional capabilities. Essentially, our approach converts a generative LVLM into a discriminative one, unlocking its capability for powerful image-text discrimination combined with enhanced language understanding. Our contributions include: (1) A carefully designed training/optimization framework that utilizes image-text pairs of variable length and granularity for training the model with both contrastive and next-token prediction losses. This is accompanied by ablation studies that justify the necessity of our framework's components. (2) A parameter-efficient adaptation method using a combination of soft prompting and LoRA adapters. (3) Significant improvements over state-of-the-art CLIP-like models of similar size, including standard image-text retrieval benchmarks and notable gains in compositionality.

LSceneLLM: Enhancing Large 3D Scene Understanding Using Adaptive Visual Preferences

Research on 3D Vision-Language Models (3D-VLMs) is gaining increasing attention, which is crucial for developing embodied AI within 3D scenes, such as visual navigation and embodied question answering. Due to the high density of visual features, especially in large 3D scenes, accurately locating task-relevant visual information is challenging. Existing works attempt to segment all objects and consider their features as scene representations. However, these task-agnostic object features include much redundant information and missing details for the task-relevant area. To tackle these problems, we propose LSceneLLM, an adaptive framework that automatically identifies task-relevant areas by leveraging LLM's visual preference for different tasks, followed by a plug-and-play scene magnifier module to capture fine-grained details in focused areas. Specifically, a dense token selector examines the attention map of LLM to identify visual preferences for the instruction input. It then magnifies fine-grained details of the focusing area. An adaptive self-attention module is leveraged to fuse the coarse-grained and selected fine-grained visual information. To comprehensively evaluate the large scene understanding ability of 3D-VLMs, we further introduce a cross-room understanding benchmark, XR-Scene, which contains a series of large scene understanding tasks including XR-QA, XR-EmbodiedPlanning, and XR-SceneCaption. Experiments show that our method surpasses existing methods on both large scene understanding and existing scene understanding benchmarks. Plunging our scene magnifier module into the existing 3D-VLMs also brings significant improvement.

Visual Program Distillation: Distilling Tools and Programmatic Reasoning into Vision-Language Models

Solving complex visual tasks such as "Who invented the musical instrument on the right?" involves a composition of skills: understanding space, recognizing instruments, and also retrieving prior knowledge. Recent work shows promise by decomposing such tasks using a large language model (LLM) into an executable program that invokes specialized vision models. However, generated programs are error-prone: they omit necessary steps, include spurious ones, and are unable to recover when the specialized models give incorrect outputs. Moreover, they require loading multiple models, incurring high latency and computation costs. We propose Visual Program Distillation (VPD), an instruction tuning framework that produces a vision-language model (VLM) capable of solving complex visual tasks with a single forward pass. VPD distills the reasoning ability of LLMs by using them to sample multiple candidate programs, which are then executed and verified to identify a correct one. It translates each correct program into a language description of the reasoning steps, which are then distilled into a VLM. Extensive experiments show that VPD improves the VLM's ability to count, understand spatial relations, and reason compositionally. Our VPD-trained PaLI-X outperforms all prior VLMs, achieving state-of-the-art performance across complex vision tasks, including MMBench, OK-VQA, A-OKVQA, TallyQA, POPE, and Hateful Memes. An evaluation with human annotators also confirms that VPD improves model response factuality and consistency. Finally, experiments on content moderation demonstrate that VPD is also helpful for adaptation to real-world applications with limited data.

Cross from Left to Right Brain: Adaptive Text Dreamer for Vision-and-Language Navigation

Vision-and-Language Navigation (VLN) requires the agent to navigate by following natural instructions under partial observability, making it difficult to align perception with language. Recent methods mitigate this by imagining future scenes, yet they rely on vision-based synthesis, leading to high computational cost and redundant details. To this end, we propose to adaptively imagine key environmental semantics via language form, enabling a more reliable and efficient strategy. Specifically, we introduce a novel Adaptive Text Dreamer (ATD), a dual-branch self-guided imagination policy built upon a large language model (LLM). ATD is designed with a human-like left-right brain architecture, where the left brain focuses on logical integration, and the right brain is responsible for imaginative prediction of future scenes. To achieve this, we fine-tune only the Q-former within both brains to efficiently activate domain-specific knowledge in the LLM, enabling dynamic updates of logical reasoning and imagination during navigation. Furthermore, we introduce a cross-interaction mechanism to regularize the imagined outputs and inject them into a navigation expert module, allowing ATD to jointly exploit both the reasoning capacity of the LLM and the expertise of the navigation model. We conduct extensive experiments on the R2R benchmark, where ATD achieves state-of-the-art performance with fewer parameters. The code is https://github.com/zhangpingrui/Adaptive-Text-Dreamer{here}.

Debiasing Large Visual Language Models

In the realms of computer vision and natural language processing, Large Vision-Language Models (LVLMs) have become indispensable tools, proficient in generating textual descriptions based on visual inputs. Despite their advancements, our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior rather than the input image. Our empirical experiments underscore the persistence of this bias, as LVLMs often provide confident answers even in the absence of relevant images or given incongruent visual input. To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies. Firstly, for tasks such as classification or multi-choice question-answering (QA), we propose a ``calibration'' step through affine transformation to adjust the output distribution. This ``Post-Hoc debias'' approach ensures uniform scores for each answer when the image is absent, serving as an effective regularization technique to alleviate the influence of LLM priors. For more intricate open-ended generation tasks, we extend this method to ``Debias sampling'', drawing inspirations from contrastive decoding methods. Furthermore, our investigation sheds light on the instability of LVLMs across various decoding configurations. Through systematic exploration of different settings, we significantly enhance performance, surpassing reported results and raising concerns about the fairness of existing evaluations. Comprehensive experiments substantiate the effectiveness of our proposed strategies in mitigating biases. These strategies not only prove beneficial in minimizing hallucinations but also contribute to the generation of more helpful and precise illustrations.

Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Composite Spatial Reasoning

Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks. However, their proficiency in spatial reasoning remains limited, despite its crucial role in tasks involving navigation and interaction with physical environments. Specifically, most of these tasks rely on the core spatial reasoning capabilities in two-dimensional (2D) environments, and our evaluation reveals that state-of-the-art VLMs frequently generate implausible and incorrect responses to composite spatial reasoning problems, including simple pathfinding tasks that humans can solve effortlessly at a glance. To address this, we explore an effective approach to enhance 2D spatial reasoning within VLMs by training the model solely on basic spatial capabilities. We begin by disentangling the key components of 2D spatial reasoning: direction comprehension, distance estimation, and localization. Our central hypothesis is that mastering these basic spatial capabilities can significantly enhance a model's performance on composite spatial tasks requiring advanced spatial understanding and combinatorial problem-solving, with generalized improvements in visual-spatial tasks. To investigate this hypothesis, we introduce Sparkle, a framework that fine-tunes VLMs on these three basic spatial capabilities by synthetic data generation and targeted supervision to form an instruction dataset for each capability. Our experiments demonstrate that VLMs fine-tuned with Sparkle achieve significant performance gains, not only in the basic tasks themselves but also in generalizing to composite and out-of-distribution spatial reasoning tasks. These findings underscore the effectiveness of mastering basic spatial capabilities in enhancing composite spatial problem-solving, offering insights into systematic strategies for improving VLMs' spatial reasoning capabilities.

Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling

Vision-Language Models (VLMs) excel at visual understanding but often suffer from visual hallucinations, where they generate descriptions of nonexistent objects, actions, or concepts, posing significant risks in safety-critical applications. Existing hallucination mitigation methods typically follow one of two paradigms: generation adjustment, which modifies decoding behavior to align text with visual inputs, and post-hoc verification, where external models assess and correct outputs. While effective, generation adjustment methods often rely on heuristics and lack correction mechanisms, while post-hoc verification is complicated, typically requiring multiple models and tending to reject outputs rather than refine them. In this work, we introduce REVERSE, a unified framework that integrates hallucination-aware training with on-the-fly self-verification. By leveraging a new hallucination-verification dataset containing over 1.3M semi-synthetic samples, along with a novel inference-time retrospective resampling technique, our approach enables VLMs to both detect hallucinations during generation and dynamically revise those hallucinations. Our evaluations show that REVERSE achieves state-of-the-art hallucination reduction, outperforming the best existing methods by up to 12% on CHAIR-MSCOCO and 28% on HaloQuest. Our dataset, model, and code are available at: https://reverse-vlm.github.io.

RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments

Reliable embodied perception from an egocentric perspective is challenging yet essential for autonomous navigation technology of intelligent mobile agents. With the growing demand of social robotics, near-field scene understanding becomes an important research topic in the areas of egocentric perceptual tasks related to navigation in both crowded and unstructured environments. Due to the complexity of environmental conditions and difficulty of surrounding obstacles owing to truncation and occlusion, the perception capability under this circumstance is still inferior. To further enhance the intelligence of mobile robots, in this paper, we setup an egocentric multi-sensor data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye), which supports flexible sensor configurations to enable dynamic sight of view from ego-perspective, capturing either near or farther areas. Meanwhile, a large-scale multimodal dataset is constructed, named RoboSense, to facilitate egocentric robot perception. Specifically, RoboSense contains more than 133K synchronized data with 1.4M 3D bounding box and IDs annotated in the full 360^{circ} view, forming 216K trajectories across 7.6K temporal sequences. It has 270times and 18times as many annotations of surrounding obstacles within near ranges as the previous datasets collected for autonomous driving scenarios such as KITTI and nuScenes. Moreover, we define a novel matching criterion for near-field 3D perception and prediction metrics. Based on RoboSense, we formulate 6 popular tasks to facilitate the future research development, where the detailed analysis as well as benchmarks are also provided accordingly. Data desensitization measures have been conducted for privacy protection.

CoVLM: Composing Visual Entities and Relationships in Large Language Models Via Communicative Decoding

A remarkable ability of human beings resides in compositional reasoning, i.e., the capacity to make "infinite use of finite means". However, current large vision-language foundation models (VLMs) fall short of such compositional abilities due to their "bag-of-words" behaviors and inability to construct words that correctly represent visual entities and the relations among the entities. To this end, we propose CoVLM, which can guide the LLM to explicitly compose visual entities and relationships among the text and dynamically communicate with the vision encoder and detection network to achieve vision-language communicative decoding. Specifically, we first devise a set of novel communication tokens for the LLM, for dynamic communication between the visual detection system and the language system. A communication token is generated by the LLM following a visual entity or a relation, to inform the detection network to propose regions that are relevant to the sentence generated so far. The proposed regions-of-interests (ROIs) are then fed back into the LLM for better language generation contingent on the relevant regions. The LLM is thus able to compose the visual entities and relationships through the communication tokens. The vision-to-language and language-to-vision communication are iteratively performed until the entire sentence is generated. Our framework seamlessly bridges the gap between visual perception and LLMs and outperforms previous VLMs by a large margin on compositional reasoning benchmarks (e.g., ~20% in HICO-DET mAP, ~14% in Cola top-1 accuracy, and ~3% on ARO top-1 accuracy). We also achieve state-of-the-art performances on traditional vision-language tasks such as referring expression comprehension and visual question answering.

DesCo: Learning Object Recognition with Rich Language Descriptions

Recent development in vision-language approaches has instigated a paradigm shift in learning visual recognition models from language supervision. These approaches align objects with language queries (e.g. "a photo of a cat") and improve the models' adaptability to identify novel objects and domains. Recently, several studies have attempted to query these models with complex language expressions that include specifications of fine-grained semantic details, such as attributes, shapes, textures, and relations. However, simply incorporating language descriptions as queries does not guarantee accurate interpretation by the models. In fact, our experiments show that GLIP, the state-of-the-art vision-language model for object detection, often disregards contextual information in the language descriptions and instead relies heavily on detecting objects solely by their names. To tackle the challenges, we propose a new description-conditioned (DesCo) paradigm of learning object recognition models with rich language descriptions consisting of two major innovations: 1) we employ a large language model as a commonsense knowledge engine to generate rich language descriptions of objects based on object names and the raw image-text caption; 2) we design context-sensitive queries to improve the model's ability in deciphering intricate nuances embedded within descriptions and enforce the model to focus on context rather than object names alone. On two novel object detection benchmarks, LVIS and OminiLabel, under the zero-shot detection setting, our approach achieves 34.8 APr minival (+9.1) and 29.3 AP (+3.6), respectively, surpassing the prior state-of-the-art models, GLIP and FIBER, by a large margin.

Fine-Tuning Florence2 for Enhanced Object Detection in Un-constructed Environments: Vision-Language Model Approach

Vision-Language Models (VLMs) have emerged as powerful tools in artificial intelli-gence, capable of integrating textual and visual data for a unified understanding of complex scenes. While models such as Florence2, built on transformer architectures, have shown promise across general tasks, their performance in object detection within unstructured or cluttered environments remains underexplored. In this study, we fi-ne-tuned the Florence2 model for object detection tasks in non-constructed, complex environments. A comprehensive experimental framework was established involving multiple hardware configurations (NVIDIA T4, L4, and A100 GPUs), optimizers (AdamW, SGD), and varied hyperparameters including learning rates and LoRA (Low-Rank Adaptation) setups. Model training and evaluation were conducted on challenging datasets representative of real-world, disordered settings. The optimized Florence2 models exhibited significant improvements in object detection accuracy, with Mean Average Precision (mAP) metrics approaching or matching those of estab-lished models such as YOLOv8, YOLOv9, and YOLOv10. The integration of LoRA and careful fine-tuning of transformer layers contributed notably to these gains. Our find-ings highlight the adaptability of transformer-based VLMs like Florence2 for do-main-specific tasks, particularly in visually complex environments. The study under-scores the potential of fine-tuned VLMs to rival traditional convolution-based detec-tors, offering a flexible and scalable approach for advanced vision applications in re-al-world, unstructured settings.

VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model

Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1

Robo2VLM: Visual Question Answering from Large-Scale In-the-Wild Robot Manipulation Datasets

Vision-Language Models (VLMs) acquire real-world knowledge and general reasoning ability through Internet-scale image-text corpora. They can augment robotic systems with scene understanding and task planning, and assist visuomotor policies that are trained on robot trajectory data. We explore the reverse paradigm - using rich, real, multi-modal robot trajectory data to enhance and evaluate VLMs. In this paper, we present Robo2VLM, a Visual Question Answering (VQA) dataset generation framework for VLMs. Given a human tele-operated robot trajectory, Robo2VLM derives ground-truth from non-visual and non-descriptive sensory modalities, such as end-effector pose, gripper aperture, and force sensing. Based on these modalities, it segments the robot trajectory into a sequence of manipulation phases. At each phase, Robo2VLM uses scene and interaction understanding to identify 3D properties of the robot, task goal, and the target object. The properties are used to generate representative VQA queries - images with textural multiple-choice questions - based on spatial, goal-conditioned, and interaction reasoning question templates. We curate Robo2VLM-1, a large-scale in-the-wild dataset with 684,710 questions covering 463 distinct scenes and 3,396 robotic manipulation tasks from 176k real robot trajectories. Results suggest that Robo2VLM-1 can benchmark and improve VLM capabilities in spatial and interaction reasoning.

MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning

Starting from the resurgence of deep learning, vision-language models (VLMs) benefiting from large language models (LLMs) have never been so popular. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images. The issue can traced back to the architectural design of VLMs or pre-training data. Specifically, the current VLMs primarily emphasize utilizing multi-modal data with a single image some, rather than multi-modal prompts with interleaved multiple images and text. Even though some newly proposed VLMs could handle user prompts with multiple images, pre-training data does not provide more sophisticated multi-modal prompts than interleaved image and text crawled from the web. We propose MMICL to address the issue by considering both the model and data perspectives. We introduce a well-designed architecture capable of seamlessly integrating visual and textual context in an interleaved manner and MIC dataset to reduce the gap between the training data and the complex user prompts in real-world applications, including: 1) multi-modal context with interleaved images and text, 2) textual references for each image, and 3) multi-image data with spatial, logical, or temporal relationships. Our experiments confirm that MMICL achieves new stat-of-the-art zero-shot and few-shot performance on a wide range of general vision-language tasks, especially for complex reasoning benchmarks including MME and MMBench. Our analysis demonstrates that MMICL effectively deals with the challenge of complex multi-modal prompt understanding. The experiments on ScienceQA-IMG also show that MMICL successfully alleviates the issue of language bias in VLMs, which we believe is the reason behind the advanced performance of MMICL.

Enhancing Large Vision Language Models with Self-Training on Image Comprehension

Large vision language models (LVLMs) integrate large language models (LLMs) with pre-trained vision encoders, thereby activating the perception capability of the model to understand image inputs for different queries and conduct subsequent reasoning. Improving this capability requires high-quality vision-language data, which is costly and labor-intensive to acquire. Self-training approaches have been effective in single-modal settings to alleviate the need for labeled data by leveraging model's own generation. However, effective self-training remains a challenge regarding the unique visual perception and reasoning capability of LVLMs. To address this, we introduce Self-Training on Image Comprehension (STIC), which emphasizes a self-training approach specifically for image comprehension. First, the model self-constructs a preference dataset for image descriptions using unlabeled images. Preferred responses are generated through a step-by-step prompt, while dis-preferred responses are generated from either corrupted images or misleading prompts. To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data and append its self-generated image descriptions to the prompts. We validate the effectiveness of STIC across seven different benchmarks, demonstrating substantial performance gains of 4.0% on average while using 70% less supervised fine-tuning data than the current method. Further studies investigate various components of STIC and highlight its potential to leverage vast quantities of unlabeled images for self-training. Code and data are made publicly available.

V2PE: Improving Multimodal Long-Context Capability of Vision-Language Models with Variable Visual Position Encoding

Vision-Language Models (VLMs) have shown promising capabilities in handling various multimodal tasks, yet they struggle in long-context scenarios, particularly in tasks involving videos, high-resolution images, or lengthy image-text documents. In our work, we first conduct an empirical analysis of the long-context capabilities of VLMs using our augmented long-context multimodal datasets. Our findings reveal that directly applying the positional encoding mechanism used for textual tokens to visual tokens is suboptimal, and VLM performance degrades sharply when the position encoding exceeds the model's context window. To address this, we propose Variable Visual Position Encoding (V2PE), a novel positional encoding approach that employs variable and smaller increments for visual tokens, enabling more efficient management of long multimodal sequences. Our experiments demonstrate the effectiveness of V2PE to enhances VLMs' ability to effectively understand and reason over long multimodal contexts. We further integrate V2PE with our augmented long-context multimodal datasets to fine-tune the open-source VLM, InternVL2. The fine-tuned model achieves strong performance on both standard and long-context multimodal tasks. Notably, when the sequence length of the training dataset is increased to 256K tokens, the model is capable of processing multimodal sequences up to 1M tokens, highlighting its potential for real-world long-context applications.

VISCO: Benchmarking Fine-Grained Critique and Correction Towards Self-Improvement in Visual Reasoning

The ability of large vision-language models (LVLMs) to critique and correct their reasoning is an essential building block towards their self-improvement. However, a systematic analysis of such capabilities in LVLMs is still lacking. We propose VISCO, the first benchmark to extensively analyze the fine-grained critique and correction capabilities of LVLMs. Compared to existing work that uses a single scalar value to critique the entire reasoning [4], VISCO features dense and fine-grained critique, requiring LVLMs to evaluate the correctness of each step in the chain-of-thought and provide natural language explanations to support their judgments. Extensive evaluation of 24 LVLMs demonstrates that human-written critiques significantly enhance the performance after correction, showcasing the potential of the self-improvement strategy. However, the model-generated critiques are less helpful and sometimes detrimental to the performance, suggesting that critique is the crucial bottleneck. We identified three common patterns in critique failures: failure to critique visual perception, reluctance to "say no", and exaggerated assumption of error propagation. To address these issues, we propose an effective LookBack strategy that revisits the image to verify each piece of information in the initial reasoning. LookBack significantly improves critique and correction performance by up to 13.5%.

ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom

Large vision-language models (LVLMs) have witnessed significant progress on visual understanding tasks. However, they often prioritize language knowledge over image information on visual reasoning tasks, incurring performance degradation. To tackle this issue, we first identify the drawbacks of existing solutions (i.e., insufficient and irrelevant visual descriptions, and limited multi-modal capacities). We then decompose visual reasoning process into two stages: visual perception (i.e., eyesight) and textual reasoning (i.e., wisdom), and introduce a novel visual reasoning framework named ProReason. This framework features multi-run proactive perception and decoupled vision-reasoning capabilities. Briefly, given a multi-modal question, ProReason iterates proactive information collection and reasoning until the answer can be concluded with necessary and sufficient visual descriptions. Notably, the disassociation of capabilities allows seamless integration of existing large language models (LLMs) to compensate for the reasoning deficits of LVLMs. Our extensive experiments demonstrate that ProReason outperforms both existing multi-step reasoning frameworks and passive peer methods on a wide range of benchmarks for both open-source and closed-source models. In addition, with the assistance of LLMs, ProReason achieves a performance improvement of up to 15% on MMMU benchmark. Our insights into existing solutions and the decoupled perspective for feasible integration of LLMs illuminate future research on visual reasoning techniques, especially LLM-assisted ones.

Intriguing Properties of Large Language and Vision Models

Recently, large language and vision models (LLVMs) have received significant attention and development efforts due to their remarkable generalization performance across a wide range of tasks requiring perception and cognitive abilities. A key factor behind their success is their simple architecture, which consists of a vision encoder, a projector, and a large language model (LLM). Despite their achievements in advanced reasoning tasks, their performance on fundamental perception-related tasks (e.g., MMVP) remains surprisingly low. This discrepancy raises the question of how LLVMs truly perceive images and exploit the advantages of the vision encoder. To address this, we systematically investigate this question regarding several aspects: permutation invariance, robustness, math reasoning, alignment preserving and importance, by evaluating the most common LLVM's families (i.e., LLaVA) across 10 evaluation benchmarks. Our extensive experiments reveal several intriguing properties of current LLVMs: (1) they internally process the image in a global manner, even when the order of visual patch sequences is randomly permuted; (2) they are sometimes able to solve math problems without fully perceiving detailed numerical information; (3) the cross-modal alignment is overfitted to complex reasoning tasks, thereby, causing them to lose some of the original perceptual capabilities of their vision encoder; (4) the representation space in the lower layers (<25%) plays a crucial role in determining performance and enhancing visual understanding. Lastly, based on the above observations, we suggest potential future directions for building better LLVMs and constructing more challenging evaluation benchmarks.

Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs

Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of earlier modalities (e.g., images) to incorporate information from later modalities (e.g., text). To address this problem, we propose AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code is publicly available at https://github.com/sony/aki, and we will release our AKI-4B model to encourage further advancements in MLLMs across various directions.

Natural Language Generation from Visual Events: Challenges and Future Directions

The ability to use natural language to talk about visual events is at the core of human intelligence and a crucial feature of any artificial intelligence system. In recent years, a substantial body of work in visually grounded NLP has focused on describing content depicted in single images. By contrast, comparatively less attention has been devoted to exhaustively modeling scenarios in which natural language is employed to interpret and talk about events presented through videos or sequences of images. In this position paper, we argue that any NLG task dealing with sequences of images or frames is an instance of the broader, more general problem of modeling the intricate relationships between visual events unfolding over time and the features of the language used to interpret, describe, or narrate them. Therefore, solving these tasks requires models to be capable of identifying and managing such intricacies. We consider five seemingly different tasks, which we argue are compelling instances of this broader multimodal problem. Consistently, we claim that these tasks pose a common set of challenges and share similarities in terms of modeling and evaluation approaches. Building on this perspective, we identify key open questions and propose several research directions for future investigation. We claim that improving language-and-vision models' understanding of visual events is both timely and essential, given their growing applications. Additionally, this challenge offers significant scientific insight, advancing model development through principles of human cognition and language use.

Towards Analyzing and Mitigating Sycophancy in Large Vision-Language Models

Large Vision-Language Models (LVLMs) have shown significant capability in vision-language understanding. However, one critical issue that persists in these models is sycophancy, which means models are unduly influenced by leading or deceptive prompts, resulting in biased outputs and hallucinations. Despite the progress in LVLMs, evaluating and mitigating sycophancy is yet much under-explored. In this work, we fill this gap by systematically analyzing sycophancy on various VL benchmarks with curated leading queries and further proposing a text contrastive decoding method for mitigation. While the specific sycophantic behavior varies significantly among models, our analysis reveals the severe deficiency of all LVLMs in resilience of sycophancy across various tasks. For improvement, we propose Leading Query Contrastive Decoding (LQCD), a model-agnostic method focusing on calibrating the LVLMs' over-reliance on leading cues by identifying and suppressing the probabilities of sycophancy tokens at the decoding stage. Extensive experiments show that LQCD effectively mitigate sycophancy, outperforming both prompt engineering methods and common methods for hallucination mitigation. We further demonstrate that LQCD does not hurt but even slightly improves LVLMs' responses to neutral queries, suggesting it being a more effective strategy for general-purpose decoding but not limited to sycophancy.

VisionLLM: Large Language Model is also an Open-Ended Decoder for Vision-Centric Tasks

Large language models (LLMs) have notably accelerated progress towards artificial general intelligence (AGI), with their impressive zero-shot capacity for user-tailored tasks, endowing them with immense potential across a range of applications. However, in the field of computer vision, despite the availability of numerous powerful vision foundation models (VFMs), they are still restricted to tasks in a pre-defined form, struggling to match the open-ended task capabilities of LLMs. In this work, we present an LLM-based framework for vision-centric tasks, termed VisionLLM. This framework provides a unified perspective for vision and language tasks by treating images as a foreign language and aligning vision-centric tasks with language tasks that can be flexibly defined and managed using language instructions. An LLM-based decoder can then make appropriate predictions based on these instructions for open-ended tasks. Extensive experiments show that the proposed VisionLLM can achieve different levels of task customization through language instructions, from fine-grained object-level to coarse-grained task-level customization, all with good results. It's noteworthy that, with a generalist LLM-based framework, our model can achieve over 60\% mAP on COCO, on par with detection-specific models. We hope this model can set a new baseline for generalist vision and language models. The demo shall be released based on https://github.com/OpenGVLab/InternGPT. The code shall be released at https://github.com/OpenGVLab/VisionLLM.

Multi-Modal Hallucination Control by Visual Information Grounding

Generative Vision-Language Models (VLMs) are prone to generate plausible-sounding textual answers that, however, are not always grounded in the input image. We investigate this phenomenon, usually referred to as "hallucination" and show that it stems from an excessive reliance on the language prior. In particular, we show that as more tokens are generated, the reliance on the visual prompt decreases, and this behavior strongly correlates with the emergence of hallucinations. To reduce hallucinations, we introduce Multi-Modal Mutual-Information Decoding (M3ID), a new sampling method for prompt amplification. M3ID amplifies the influence of the reference image over the language prior, hence favoring the generation of tokens with higher mutual information with the visual prompt. M3ID can be applied to any pre-trained autoregressive VLM at inference time without necessitating further training and with minimal computational overhead. If training is an option, we show that M3ID can be paired with Direct Preference Optimization (DPO) to improve the model's reliance on the prompt image without requiring any labels. Our empirical findings show that our algorithms maintain the fluency and linguistic capabilities of pre-trained VLMs while reducing hallucinations by mitigating visually ungrounded answers. Specifically, for the LLaVA 13B model, M3ID and M3ID+DPO reduce the percentage of hallucinated objects in captioning tasks by 25% and 28%, respectively, and improve the accuracy on VQA benchmarks such as POPE by 21% and 24%.

Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs

Is vision good enough for language? Recent advancements in multimodal models primarily stem from the powerful reasoning abilities of large language models (LLMs). However, the visual component typically depends only on the instance-level contrastive language-image pre-training (CLIP). Our research reveals that the visual capabilities in recent multimodal LLMs (MLLMs) still exhibit systematic shortcomings. To understand the roots of these errors, we explore the gap between the visual embedding space of CLIP and vision-only self-supervised learning. We identify ''CLIP-blind pairs'' - images that CLIP perceives as similar despite their clear visual differences. With these pairs, we construct the Multimodal Visual Patterns (MMVP) benchmark. MMVP exposes areas where state-of-the-art systems, including GPT-4V, struggle with straightforward questions across nine basic visual patterns, often providing incorrect answers and hallucinated explanations. We further evaluate various CLIP-based vision-and-language models and found a notable correlation between visual patterns that challenge CLIP models and those problematic for multimodal LLMs. As an initial effort to address these issues, we propose a Mixture of Features (MoF) approach, demonstrating that integrating vision self-supervised learning features with MLLMs can significantly enhance their visual grounding capabilities. Together, our research suggests visual representation learning remains an open challenge, and accurate visual grounding is crucial for future successful multimodal systems.

Semantic MapNet: Building Allocentric Semantic Maps and Representations from Egocentric Views

We study the task of semantic mapping - specifically, an embodied agent (a robot or an egocentric AI assistant) is given a tour of a new environment and asked to build an allocentric top-down semantic map ("what is where?") from egocentric observations of an RGB-D camera with known pose (via localization sensors). Towards this goal, we present SemanticMapNet (SMNet), which consists of: (1) an Egocentric Visual Encoder that encodes each egocentric RGB-D frame, (2) a Feature Projector that projects egocentric features to appropriate locations on a floor-plan, (3) a Spatial Memory Tensor of size floor-plan length x width x feature-dims that learns to accumulate projected egocentric features, and (4) a Map Decoder that uses the memory tensor to produce semantic top-down maps. SMNet combines the strengths of (known) projective camera geometry and neural representation learning. On the task of semantic mapping in the Matterport3D dataset, SMNet significantly outperforms competitive baselines by 4.01-16.81% (absolute) on mean-IoU and 3.81-19.69% (absolute) on Boundary-F1 metrics. Moreover, we show how to use the neural episodic memories and spatio-semantic allocentric representations build by SMNet for subsequent tasks in the same space - navigating to objects seen during the tour("Find chair") or answering questions about the space ("How many chairs did you see in the house?"). Project page: https://vincentcartillier.github.io/smnet.html.

Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs

Vision Language Models (VLMs) demonstrate remarkable proficiency in addressing a wide array of visual questions, which requires strong perception and reasoning faculties. Assessing these two competencies independently is crucial for model refinement, despite the inherent difficulty due to the intertwined nature of seeing and reasoning in existing VLMs. To tackle this issue, we present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving. Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information using a Large Language Model (LLM). This modular design enables the systematic comparison and assessment of both proprietary and open-source VLM for their perception and reasoning strengths. Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks. By combining a streamlined VLM focused on perception with a powerful LLM tailored for reasoning, Prism achieves superior results in general vision-language tasks while substantially cutting down on training and operational expenses. Quantitative evaluations show that Prism, when configured with a vanilla 2B LLaVA and freely accessible GPT-3.5, delivers performance on par with VLMs 10 times larger on the rigorous multimodal benchmark MMStar. The project is released at: https://github.com/SparksJoe/Prism.

VHELM: A Holistic Evaluation of Vision Language Models

Current benchmarks for assessing vision-language models (VLMs) often focus on their perception or problem-solving capabilities and neglect other critical aspects such as fairness, multilinguality, or toxicity. Furthermore, they differ in their evaluation procedures and the scope of the evaluation, making it difficult to compare models. To address these issues, we extend the HELM framework to VLMs to present the Holistic Evaluation of Vision Language Models (VHELM). VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety. In doing so, we produce a comprehensive, multi-dimensional view of the capabilities of the VLMs across these important factors. In addition, we standardize the standard inference parameters, methods of prompting, and evaluation metrics to enable fair comparisons across models. Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast. Our initial run evaluates 22 VLMs on 21 existing datasets to provide a holistic snapshot of the models. We uncover new key findings, such as the fact that efficiency-focused models (e.g., Claude 3 Haiku or Gemini 1.5 Flash) perform significantly worse than their full models (e.g., Claude 3 Opus or Gemini 1.5 Pro) on the bias benchmark but not when evaluated on the other aspects. For transparency, we release the raw model generations and complete results on our website (https://crfm.stanford.edu/helm/vhelm/v2.0.1). VHELM is intended to be a living benchmark, and we hope to continue adding new datasets and models over time.

MMCOMPOSITION: Revisiting the Compositionality of Pre-trained Vision-Language Models

The advent of large Vision-Language Models (VLMs) has significantly advanced multimodal understanding, enabling more sophisticated and accurate integration of visual and textual information across various tasks, including image and video captioning, visual question answering, and cross-modal retrieval. Despite VLMs' superior capabilities, researchers lack a comprehensive understanding of their compositionality -- the ability to understand and produce novel combinations of known visual and textual components. Prior benchmarks provide only a relatively rough compositionality evaluation from the perspectives of objects, relations, and attributes while neglecting deeper reasoning about object interactions, counting, and complex compositions. However, compositionality is a critical ability that facilitates coherent reasoning and understanding across modalities for VLMs. To address this limitation, we propose MMCOMPOSITION, a novel human-annotated benchmark for comprehensively and accurately evaluating VLMs' compositionality. Our proposed benchmark serves as a complement to these earlier works. With MMCOMPOSITION, we can quantify and explore the compositionality of the mainstream VLMs. Surprisingly, we find GPT-4o's compositionality inferior to the best open-source model, and we analyze the underlying reasons. Our experimental analysis reveals the limitations of VLMs in fine-grained compositional perception and reasoning, and points to areas for improvement in VLM design and training. Resources available at: https://hanghuacs.github.io/MMComposition/

DARE: Diverse Visual Question Answering with Robustness Evaluation

Vision Language Models (VLMs) extend remarkable capabilities of text-only large language models and vision-only models, and are able to learn from and process multi-modal vision-text input. While modern VLMs perform well on a number of standard image classification and image-text matching tasks, they still struggle with a number of crucial vision-language (VL) reasoning abilities such as counting and spatial reasoning. Moreover, while they might be very brittle to small variations in instructions and/or evaluation protocols, existing benchmarks fail to evaluate their robustness (or rather the lack of it). In order to couple challenging VL scenarios with comprehensive robustness evaluation, we introduce DARE, Diverse Visual Question Answering with Robustness Evaluation, a carefully created and curated multiple-choice VQA benchmark. DARE evaluates VLM performance on five diverse categories and includes four robustness-oriented evaluations based on the variations of: prompts, the subsets of answer options, the output format and the number of correct answers. Among a spectrum of other findings, we report that state-of-the-art VLMs still struggle with questions in most categories and are unable to consistently deliver their peak performance across the tested robustness evaluations. The worst case performance across the subsets of options is up to 34% below the performance in the standard case. The robustness of the open-source VLMs such as LLaVA 1.6 and Idefics2 cannot match the closed-source models such as GPT-4 and Gemini, but even the latter remain very brittle to different variations.

NuPlanQA: A Large-Scale Dataset and Benchmark for Multi-View Driving Scene Understanding in Multi-Modal Large Language Models

Recent advances in multi-modal large language models (MLLMs) have demonstrated strong performance across various domains; however, their ability to comprehend driving scenes remains less proven. The complexity of driving scenarios, which includes multi-view information, poses significant challenges for existing MLLMs. In this paper, we introduce NuPlanQA-Eval, a multi-view, multi-modal evaluation benchmark for driving scene understanding. To further support generalization to multi-view driving scenarios, we also propose NuPlanQA-1M, a large-scale dataset comprising 1M real-world visual question-answering (VQA) pairs. For context-aware analysis of traffic scenes, we categorize our dataset into nine subtasks across three core skills: Road Environment Perception, Spatial Relations Recognition, and Ego-Centric Reasoning. Furthermore, we present BEV-LLM, integrating Bird's-Eye-View (BEV) features from multi-view images into MLLMs. Our evaluation results reveal key challenges that existing MLLMs face in driving scene-specific perception and spatial reasoning from ego-centric perspectives. In contrast, BEV-LLM demonstrates remarkable adaptability to this domain, outperforming other models in six of the nine subtasks. These findings highlight how BEV integration enhances multi-view MLLMs while also identifying key areas that require further refinement for effective adaptation to driving scenes. To facilitate further research, we publicly release NuPlanQA at https://github.com/sungyeonparkk/NuPlanQA.

Aligning Modalities in Vision Large Language Models via Preference Fine-tuning

Instruction-following Vision Large Language Models (VLLMs) have achieved significant progress recently on a variety of tasks. These approaches merge strong pre-trained vision models and large language models (LLMs). Since these components are trained separately, the learned representations need to be aligned with joint training on additional image-language pairs. This procedure is not perfect and can cause the model to hallucinate - provide answers that do not accurately reflect the image, even when the core LLM is highly factual and the vision backbone has sufficiently complete representations. In this work, we frame the hallucination problem as an alignment issue, tackle it with preference tuning. Specifically, we propose POVID to generate feedback data with AI models. We use ground-truth instructions as the preferred response and a two-stage approach to generate dispreferred data. First, we prompt GPT-4V to inject plausible hallucinations into the correct answer. Second, we distort the image to trigger the inherent hallucination behavior of the VLLM. This is an automated approach, which does not rely on human data generation or require a perfect expert, which makes it easily scalable. Finally, both of these generation strategies are integrated into an RLHF pipeline via Direct Preference Optimization. In experiments across broad benchmarks, we show that we can not only reduce hallucinations, but improve model performance across standard benchmarks, outperforming prior approaches. Our data and code are available at https://github.com/YiyangZhou/POVID.

Re-Aligning Language to Visual Objects with an Agentic Workflow

Language-based object detection (LOD) aims to align visual objects with language expressions. A large amount of paired data is utilized to improve LOD model generalizations. During the training process, recent studies leverage vision-language models (VLMs) to automatically generate human-like expressions for visual objects, facilitating training data scaling up. In this process, we observe that VLM hallucinations bring inaccurate object descriptions (e.g., object name, color, and shape) to deteriorate VL alignment quality. To reduce VLM hallucinations, we propose an agentic workflow controlled by an LLM to re-align language to visual objects via adaptively adjusting image and text prompts. We name this workflow Real-LOD, which includes planning, tool use, and reflection steps. Given an image with detected objects and VLM raw language expressions, Real-LOD reasons its state automatically and arranges action based on our neural symbolic designs (i.e., planning). The action will adaptively adjust the image and text prompts and send them to VLMs for object re-description (i.e., tool use). Then, we use another LLM to analyze these refined expressions for feedback (i.e., reflection). These steps are conducted in a cyclic form to gradually improve language descriptions for re-aligning to visual objects. We construct a dataset that contains a tiny amount of 0.18M images with re-aligned language expression and train a prevalent LOD model to surpass existing LOD methods by around 50% on the standard benchmarks. Our Real-LOD workflow, with automatic VL refinement, reveals a potential to preserve data quality along with scaling up data quantity, which further improves LOD performance from a data-alignment perspective.

Mitigating Object Hallucination via Concentric Causal Attention

Recent Large Vision Language Models (LVLMs) present remarkable zero-shot conversational and reasoning capabilities given multimodal queries. Nevertheless, they suffer from object hallucination, a phenomenon where LVLMs are prone to generate textual responses not factually aligned with image inputs. Our pilot study reveals that object hallucination is closely tied with Rotary Position Encoding (RoPE), a widely adopted positional dependency modeling design in existing LVLMs. Due to the long-term decay in RoPE, LVLMs tend to hallucinate more when relevant visual cues are distant from instruction tokens in the multimodal input sequence. Additionally, we observe a similar effect when reversing the sequential order of visual tokens during multimodal alignment. Our tests indicate that long-term decay in RoPE poses challenges to LVLMs while capturing visual-instruction interactions across long distances. We propose Concentric Causal Attention (CCA), a simple yet effective positional alignment strategy that mitigates the impact of RoPE long-term decay in LVLMs by naturally reducing relative distance between visual and instruction tokens. With CCA, visual tokens can better interact with instruction tokens, thereby enhancing model's perception capability and alleviating object hallucination. Without bells and whistles, our positional alignment method surpasses existing hallucination mitigation strategies by large margins on multiple object hallucination benchmarks.

GIMMICK -- Globally Inclusive Multimodal Multitask Cultural Knowledge Benchmarking

Large Vision-Language Models (LVLMs) have recently gained attention due to their distinctive performance and broad applicability. While it has been previously shown that their efficacy in usage scenarios involving non-Western contexts falls short, existing studies are limited in scope, covering just a narrow range of cultures, focusing exclusively on a small number of cultural aspects, or evaluating a limited selection of models on a single task only. Towards globally inclusive LVLM research, we introduce GIMMICK, an extensive multimodal benchmark designed to assess a broad spectrum of cultural knowledge across 144 countries representing six global macro-regions. GIMMICK comprises six tasks built upon three new datasets that span 728 unique cultural events or facets on which we evaluated 20 LVLMs and 11 LLMs, including five proprietary and 26 open-weight models of all sizes. We systematically examine (1) regional cultural biases, (2) the influence of model size, (3) input modalities, and (4) external cues. Our analyses reveal strong biases toward Western cultures across models and tasks and highlight strong correlations between model size and performance, as well as the effectiveness of multimodal input and external geographic cues. We further find that models have more knowledge of tangible than intangible aspects (e.g., food vs. rituals) and that they excel in recognizing broad cultural origins but struggle with a more nuanced understanding.

RePLan: Robotic Replanning with Perception and Language Models

Advancements in large language models (LLMs) have demonstrated their potential in facilitating high-level reasoning, logical reasoning and robotics planning. Recently, LLMs have also been able to generate reward functions for low-level robot actions, effectively bridging the interface between high-level planning and low-level robot control. However, the challenge remains that even with syntactically correct plans, robots can still fail to achieve their intended goals. This failure can be attributed to imperfect plans proposed by LLMs or to unforeseeable environmental circumstances that hinder the execution of planned subtasks due to erroneous assumptions about the state of objects. One way to prevent these challenges is to rely on human-provided step-by-step instructions, limiting the autonomy of robotic systems. Vision Language Models (VLMs) have shown remarkable success in tasks such as visual question answering and image captioning. Leveraging the capabilities of VLMs, we present a novel framework called Robotic Replanning with Perception and Language Models (RePLan) that enables real-time replanning capabilities for long-horizon tasks. This framework utilizes the physical grounding provided by a VLM's understanding of the world's state to adapt robot actions when the initial plan fails to achieve the desired goal. We test our approach within four environments containing seven long-horizion tasks. We find that RePLan enables a robot to successfully adapt to unforeseen obstacles while accomplishing open-ended, long-horizon goals, where baseline models cannot. Find more information at https://replan-lm.github.io/replan.github.io/

Right Side Up? Disentangling Orientation Understanding in MLLMs with Fine-grained Multi-axis Perception Tasks

Object orientation understanding represents a fundamental challenge in visual perception critical for applications like robotic manipulation and augmented reality. Current vision-language benchmarks fail to isolate this capability, often conflating it with positional relationships and general scene understanding. We introduce DORI (Discriminative Orientation Reasoning Intelligence), a comprehensive benchmark establishing object orientation perception as a primary evaluation target. DORI assesses four dimensions of orientation comprehension: frontal alignment, rotational transformations, relative directional relationships, and canonical orientation understanding. Through carefully curated tasks from 11 datasets spanning 67 object categories across synthetic and real-world scenarios, DORI provides insights on how multi-modal systems understand object orientations. Our evaluation of 15 state-of-the-art vision-language models reveals critical limitations: even the best models achieve only 54.2% accuracy on coarse tasks and 33.0% on granular orientation judgments, with performance deteriorating for tasks requiring reference frame shifts or compound rotations. These findings demonstrate the need for dedicated orientation representation mechanisms, as models show systematic inability to perform precise angular estimations, track orientation changes across viewpoints, and understand compound rotations - suggesting limitations in their internal 3D spatial representations. As the first diagnostic framework specifically designed for orientation awareness in multimodal systems, DORI offers implications for improving robotic control, 3D scene reconstruction, and human-AI interaction in physical environments. DORI data: https://huggingface.co/datasets/appledora/DORI-Benchmark

A Survey on Vision-Language-Action Models for Embodied AI

Embodied AI is widely recognized as a key element of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. In recent years, a myriad of VLAs have been developed, making it imperative to capture the rapidly evolving landscape through a comprehensive survey. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges faced by VLAs and outline promising future directions in embodied AI. We have created a project associated with this survey, which is available at https://github.com/yueen-ma/Awesome-VLA.

PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs

Vision language models (VLMs) have shown impressive capabilities across a variety of tasks, from logical reasoning to visual understanding. This opens the door to richer interaction with the world, for example robotic control. However, VLMs produce only textual outputs, while robotic control and other spatial tasks require outputting continuous coordinates, actions, or trajectories. How can we enable VLMs to handle such settings without fine-tuning on task-specific data? In this paper, we propose a novel visual prompting approach for VLMs that we call Prompting with Iterative Visual Optimization (PIVOT), which casts tasks as iterative visual question answering. In each iteration, the image is annotated with a visual representation of proposals that the VLM can refer to (e.g., candidate robot actions, localizations, or trajectories). The VLM then selects the best ones for the task. These proposals are iteratively refined, allowing the VLM to eventually zero in on the best available answer. We investigate PIVOT on real-world robotic navigation, real-world manipulation from images, instruction following in simulation, and additional spatial inference tasks such as localization. We find, perhaps surprisingly, that our approach enables zero-shot control of robotic systems without any robot training data, navigation in a variety of environments, and other capabilities. Although current performance is far from perfect, our work highlights potentials and limitations of this new regime and shows a promising approach for Internet-Scale VLMs in robotic and spatial reasoning domains. Website: pivot-prompt.github.io and HuggingFace: https://huggingface.co/spaces/pivot-prompt/pivot-prompt-demo.

mRAG: Elucidating the Design Space of Multi-modal Retrieval-Augmented Generation

Large Vision-Language Models (LVLMs) have made remarkable strides in multimodal tasks such as visual question answering, visual grounding, and complex reasoning. However, they remain limited by static training data, susceptibility to hallucinations, and inability to verify claims against up-to-date, external evidence, compromising their performance in dynamic real-world applications. Retrieval-Augmented Generation (RAG) offers a practical solution to mitigate these challenges by allowing the LVLMs to access large-scale knowledge databases via retrieval mechanisms, thereby grounding model outputs in factual, contextually relevant information. Here in this paper, we conduct the first systematic dissection of the multimodal RAG pipeline for LVLMs, explicitly investigating (1) the retrieval phase: on the modality configurations and retrieval strategies, (2) the re-ranking stage: on strategies to mitigate positional biases and improve the relevance of retrieved evidence, and (3) the generation phase: we further investigate how to best integrate retrieved candidates into the final generation process. Finally, we extend to explore a unified agentic framework that integrates re-ranking and generation through self-reflection, enabling LVLMs to select relevant evidence and suppress irrelevant context dynamically. Our full-stack exploration of RAG for LVLMs yields substantial insights, resulting in an average performance boost of 5% without any fine-tuning.

DenseFusion-1M: Merging Vision Experts for Comprehensive Multimodal Perception

Existing Multimodal Large Language Models (MLLMs) increasingly emphasize complex understanding of various visual elements, including multiple objects, text information, and spatial relations. Their development for comprehensive visual perception hinges on the availability of high-quality image-text datasets that offer diverse visual elements and throughout image descriptions. However, the scarcity of such hyper-detailed datasets currently hinders progress within the MLLM community. The bottleneck stems from the limited perceptual capabilities of current caption engines, which fall short in providing complete and accurate annotations. To facilitate the cutting-edge research of MLLMs on comprehensive vision perception, we thereby propose Perceptual Fusion, using a low-budget but highly effective caption engine for complete and accurate image descriptions. Specifically, Perceptual Fusion integrates diverse perception experts as image priors to provide explicit information on visual elements and adopts an efficient MLLM as a centric pivot to mimic advanced MLLMs' perception abilities. We carefully select 1M highly representative images from uncurated LAION dataset and generate dense descriptions using our engine, dubbed DenseFusion-1M. Extensive experiments validate that our engine outperforms its counterparts, where the resulting dataset significantly improves the perception and cognition abilities of existing MLLMs across diverse vision-language benchmarks, especially with high-resolution images as inputs. The dataset and code are publicly available at https://github.com/baaivision/DenseFusion.

ROCKET-1: Master Open-World Interaction with Visual-Temporal Context Prompting

Vision-language models (VLMs) have excelled in multimodal tasks, but adapting them to embodied decision-making in open-world environments presents challenges. A key issue is the difficulty in smoothly connecting individual entities in low-level observations with abstract concepts required for planning. A common approach to address this problem is through the use of hierarchical agents, where VLMs serve as high-level reasoners that break down tasks into executable sub-tasks, typically specified using language and imagined observations. However, language often fails to effectively convey spatial information, while generating future images with sufficient accuracy remains challenging. To address these limitations, we propose visual-temporal context prompting, a novel communication protocol between VLMs and policy models. This protocol leverages object segmentation from both past and present observations to guide policy-environment interactions. Using this approach, we train ROCKET-1, a low-level policy that predicts actions based on concatenated visual observations and segmentation masks, with real-time object tracking provided by SAM-2. Our method unlocks the full potential of VLMs visual-language reasoning abilities, enabling them to solve complex creative tasks, especially those heavily reliant on spatial understanding. Experiments in Minecraft demonstrate that our approach allows agents to accomplish previously unattainable tasks, highlighting the effectiveness of visual-temporal context prompting in embodied decision-making. Codes and demos will be available on the project page: https://craftjarvis.github.io/ROCKET-1.

Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding

Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions to assist in diagnostic and treatment tasks. However, VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information. This challenge is particularly pronounced in the medical domain, where we do not only require VLM outputs to be accurate in single interactions but also to be consistent with clinical reasoning and diagnostic pathways throughout multi-turn conversations. For this purpose, we propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge. These representations are utilized to (i) generate GPT-4-guided visual instruction tuning data at scale, simulating clinician-VLM conversations with demonstrations of clinical reasoning, and (ii) create an automatic reward function that evaluates the clinical validity of VLM generations throughout clinician-VLM interactions. Our algorithm eliminates the need for human involvement in training data generation or reward model construction, reducing costs compared to standard reinforcement learning with human feedback (RLHF). We apply our alignment algorithm to develop Dr-LLaVA, a conversational VLM finetuned for analyzing bone marrow pathology slides, demonstrating strong performance in multi-turn medical conversations.

Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance

Large vision-language models (LVLMs) have achieved impressive results in various vision-language tasks. However, despite showing promising performance, LVLMs suffer from hallucinations caused by language bias, leading to diminished focus on images and ineffective visual comprehension. We identify two primary reasons for this bias: 1. Different scales of training data between the pretraining stage of LLM and multimodal alignment stage. 2. The learned inference bias due to short-term dependency of text data. Therefore, we propose LACING, a systemic framework designed to address the language bias of LVLMs with muLtimodal duAl-attention meChanIsm (MDA) aNd soft-image Guidance (IFG). Specifically, MDA introduces a parallel dual-attention mechanism that enhances the integration of visual inputs across the model. IFG introduces a learnable soft visual prompt during training and inference to replace visual inputs, designed to compel LVLMs to prioritize text inputs. Then, IFG further proposes a novel decoding strategy using the soft visual prompt to mitigate the model's over-reliance on adjacent text inputs. Comprehensive experiments demonstrate that our method effectively debiases LVLMs from their language bias, enhancing visual comprehension and reducing hallucinations without requiring additional training resources or data. The code and model are available at [lacing-lvlm.github.io](https://lacing-lvlm.github.io).

Select2Plan: Training-Free ICL-Based Planning through VQA and Memory Retrieval

This study explores the potential of off-the-shelf Vision-Language Models (VLMs) for high-level robot planning in the context of autonomous navigation. Indeed, while most of existing learning-based approaches for path planning require extensive task-specific training/fine-tuning, we demonstrate how such training can be avoided for most practical cases. To do this, we introduce Select2Plan (S2P), a novel training-free framework for high-level robot planning which completely eliminates the need for fine-tuning or specialised training. By leveraging structured Visual Question-Answering (VQA) and In-Context Learning (ICL), our approach drastically reduces the need for data collection, requiring a fraction of the task-specific data typically used by trained models, or even relying only on online data. Our method facilitates the effective use of a generally trained VLM in a flexible and cost-efficient way, and does not require additional sensing except for a simple monocular camera. We demonstrate its adaptability across various scene types, context sources, and sensing setups. We evaluate our approach in two distinct scenarios: traditional First-Person View (FPV) and infrastructure-driven Third-Person View (TPV) navigation, demonstrating the flexibility and simplicity of our method. Our technique significantly enhances the navigational capabilities of a baseline VLM of approximately 50% in TPV scenario, and is comparable to trained models in the FPV one, with as few as 20 demonstrations.