- Combining Static and Contextualised Multilingual Embeddings Static and contextual multilingual embeddings have complementary strengths. Static embeddings, while less expressive than contextual language models, can be more straightforwardly aligned across multiple languages. We combine the strengths of static and contextual models to improve multilingual representations. We extract static embeddings for 40 languages from XLM-R, validate those embeddings with cross-lingual word retrieval, and then align them using VecMap. This results in high-quality, highly multilingual static embeddings. Then we apply a novel continued pre-training approach to XLM-R, leveraging the high quality alignment of our static embeddings to better align the representation space of XLM-R. We show positive results for multiple complex semantic tasks. We release the static embeddings and the continued pre-training code. Unlike most previous work, our continued pre-training approach does not require parallel text. 3 authors · Mar 17, 2022
1 Massively Multilingual Lexical Specialization of Multilingual Transformers While pretrained language models (PLMs) primarily serve as general-purpose text encoders that can be fine-tuned for a wide variety of downstream tasks, recent work has shown that they can also be rewired to produce high-quality word representations (i.e., static word embeddings) and yield good performance in type-level lexical tasks. While existing work primarily focused on the lexical specialization of monolingual PLMs with immense quantities of monolingual constraints, in this work we expose massively multilingual transformers (MMTs, e.g., mBERT or XLM-R) to multilingual lexical knowledge at scale, leveraging BabelNet as the readily available rich source of multilingual and cross-lingual type-level lexical knowledge. Concretely, we use BabelNet's multilingual synsets to create synonym pairs (or synonym-gloss pairs) across 50 languages and then subject the MMTs (mBERT and XLM-R) to a lexical specialization procedure guided by a contrastive objective. We show that such massively multilingual lexical specialization brings substantial gains in two standard cross-lingual lexical tasks, bilingual lexicon induction and cross-lingual word similarity, as well as in cross-lingual sentence retrieval. Crucially, we observe gains for languages unseen in specialization, indicating that multilingual lexical specialization enables generalization to languages with no lexical constraints. In a series of subsequent controlled experiments, we show that the number of specialization constraints plays a much greater role than the set of languages from which they originate. 3 authors · Aug 1, 2022
- CiCo: Domain-Aware Sign Language Retrieval via Cross-Lingual Contrastive Learning This work focuses on sign language retrieval-a recently proposed task for sign language understanding. Sign language retrieval consists of two sub-tasks: text-to-sign-video (T2V) retrieval and sign-video-to-text (V2T) retrieval. Different from traditional video-text retrieval, sign language videos, not only contain visual signals but also carry abundant semantic meanings by themselves due to the fact that sign languages are also natural languages. Considering this character, we formulate sign language retrieval as a cross-lingual retrieval problem as well as a video-text retrieval task. Concretely, we take into account the linguistic properties of both sign languages and natural languages, and simultaneously identify the fine-grained cross-lingual (i.e., sign-to-word) mappings while contrasting the texts and the sign videos in a joint embedding space. This process is termed as cross-lingual contrastive learning. Another challenge is raised by the data scarcity issue-sign language datasets are orders of magnitude smaller in scale than that of speech recognition. We alleviate this issue by adopting a domain-agnostic sign encoder pre-trained on large-scale sign videos into the target domain via pseudo-labeling. Our framework, termed as domain-aware sign language retrieval via Cross-lingual Contrastive learning or CiCo for short, outperforms the pioneering method by large margins on various datasets, e.g., +22.4 T2V and +28.0 V2T R@1 improvements on How2Sign dataset, and +13.7 T2V and +17.1 V2T R@1 improvements on PHOENIX-2014T dataset. Code and models are available at: https://github.com/FangyunWei/SLRT. 5 authors · Mar 22, 2023
- Augmenting Passage Representations with Query Generation for Enhanced Cross-Lingual Dense Retrieval Effective cross-lingual dense retrieval methods that rely on multilingual pre-trained language models (PLMs) need to be trained to encompass both the relevance matching task and the cross-language alignment task. However, cross-lingual data for training is often scarcely available. In this paper, rather than using more cross-lingual data for training, we propose to use cross-lingual query generation to augment passage representations with queries in languages other than the original passage language. These augmented representations are used at inference time so that the representation can encode more information across the different target languages. Training of a cross-lingual query generator does not require additional training data to that used for the dense retriever. The query generator training is also effective because the pre-training task for the generator (T5 text-to-text training) is very similar to the fine-tuning task (generation of a query). The use of the generator does not increase query latency at inference and can be combined with any cross-lingual dense retrieval method. Results from experiments on a benchmark cross-lingual information retrieval dataset show that our approach can improve the effectiveness of existing cross-lingual dense retrieval methods. Implementation of our methods, along with all generated query files are made publicly available at https://github.com/ielab/xQG4xDR. 3 authors · May 6, 2023
- MINERS: Multilingual Language Models as Semantic Retrievers Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning. 3 authors · Jun 11, 2024
- Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi. 4 authors · Aug 19, 2021
- CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval We present the Charles University system for the MRL~2023 Shared Task on Multi-lingual Multi-task Information Retrieval. The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages. Our solutions to both subtasks rely on the translate-test approach. We first translate the unlabeled examples into English using a multilingual machine translation model. Then, we run inference on the translated data using a strong task-specific model. Finally, we project the labeled data back into the original language. To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model. In both settings, we experiment with finetuning the classification models on the translated data. However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines. 2 authors · Oct 25, 2023
- Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond We introduce an architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different families and written in 28 different scripts. Our system uses a single BiLSTM encoder with a shared BPE vocabulary for all languages, which is coupled with an auxiliary decoder and trained on publicly available parallel corpora. This enables us to learn a classifier on top of the resulting embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification. Our experiments in cross-lingual natural language inference (XNLI dataset), cross-lingual document classification (MLDoc dataset) and parallel corpus mining (BUCC dataset) show the effectiveness of our approach. We also introduce a new test set of aligned sentences in 112 languages, and show that our sentence embeddings obtain strong results in multilingual similarity search even for low-resource languages. Our implementation, the pre-trained encoder and the multilingual test set are available at https://github.com/facebookresearch/LASER 2 authors · Dec 26, 2018
1 Unsupervised Dense Information Retrieval with Contrastive Learning Recently, information retrieval has seen the emergence of dense retrievers, using neural networks, as an alternative to classical sparse methods based on term-frequency. These models have obtained state-of-the-art results on datasets and tasks where large training sets are available. However, they do not transfer well to new applications with no training data, and are outperformed by unsupervised term-frequency methods such as BM25. In this work, we explore the limits of contrastive learning as a way to train unsupervised dense retrievers and show that it leads to strong performance in various retrieval settings. On the BEIR benchmark our unsupervised model outperforms BM25 on 11 out of 15 datasets for the Recall@100. When used as pre-training before fine-tuning, either on a few thousands in-domain examples or on the large MS~MARCO dataset, our contrastive model leads to improvements on the BEIR benchmark. Finally, we evaluate our approach for multi-lingual retrieval, where training data is even scarcer than for English, and show that our approach leads to strong unsupervised performance. Our model also exhibits strong cross-lingual transfer when fine-tuned on supervised English data only and evaluated on low resources language such as Swahili. We show that our unsupervised models can perform cross-lingual retrieval between different scripts, such as retrieving English documents from Arabic queries, which would not be possible with term matching methods. 7 authors · Dec 16, 2021
- LAReQA: Language-agnostic answer retrieval from a multilingual pool We present LAReQA, a challenging new benchmark for language-agnostic answer retrieval from a multilingual candidate pool. Unlike previous cross-lingual tasks, LAReQA tests for "strong" cross-lingual alignment, requiring semantically related cross-language pairs to be closer in representation space than unrelated same-language pairs. Building on multilingual BERT (mBERT), we study different strategies for achieving strong alignment. We find that augmenting training data via machine translation is effective, and improves significantly over using mBERT out-of-the-box. Interestingly, the embedding baseline that performs the best on LAReQA falls short of competing baselines on zero-shot variants of our task that only target "weak" alignment. This finding underscores our claim that languageagnostic retrieval is a substantively new kind of cross-lingual evaluation. 6 authors · Apr 11, 2020
- MFAQ: a Multilingual FAQ Dataset In this paper, we present the first multilingual FAQ dataset publicly available. We collected around 6M FAQ pairs from the web, in 21 different languages. Although this is significantly larger than existing FAQ retrieval datasets, it comes with its own challenges: duplication of content and uneven distribution of topics. We adopt a similar setup as Dense Passage Retrieval (DPR) and test various bi-encoders on this dataset. Our experiments reveal that a multilingual model based on XLM-RoBERTa achieves the best results, except for English. Lower resources languages seem to learn from one another as a multilingual model achieves a higher MRR than language-specific ones. Our qualitative analysis reveals the brittleness of the model on simple word changes. We publicly release our dataset, model and training script. 4 authors · Sep 27, 2021
- NLLB-E5: A Scalable Multilingual Retrieval Model Despite significant progress in multilingual information retrieval, the lack of models capable of effectively supporting multiple languages, particularly low-resource like Indic languages, remains a critical challenge. This paper presents NLLB-E5: A Scalable Multilingual Retrieval Model. NLLB-E5 leverages the in-built multilingual capabilities in the NLLB encoder for translation tasks. It proposes a distillation approach from multilingual retriever E5 to provide a zero-shot retrieval approach handling multiple languages, including all major Indic languages, without requiring multilingual training data. We evaluate the model on a comprehensive suite of existing benchmarks, including Hindi-BEIR, highlighting its robust performance across diverse languages and tasks. Our findings uncover task and domain-specific challenges, providing valuable insights into the retrieval performance, especially for low-resource languages. NLLB-E5 addresses the urgent need for an inclusive, scalable, and language-agnostic text retrieval model, advancing the field of multilingual information access and promoting digital inclusivity for millions of users globally. 4 authors · Sep 9, 2024
- Multilingual Universal Sentence Encoder for Semantic Retrieval We introduce two pre-trained retrieval focused multilingual sentence encoding models, respectively based on the Transformer and CNN model architectures. The models embed text from 16 languages into a single semantic space using a multi-task trained dual-encoder that learns tied representations using translation based bridge tasks (Chidambaram al., 2018). The models provide performance that is competitive with the state-of-the-art on: semantic retrieval (SR), translation pair bitext retrieval (BR) and retrieval question answering (ReQA). On English transfer learning tasks, our sentence-level embeddings approach, and in some cases exceed, the performance of monolingual, English only, sentence embedding models. Our models are made available for download on TensorFlow Hub. 12 authors · Jul 9, 2019
- Preserving Multilingual Quality While Tuning Query Encoder on English Only A dense passage retrieval system can serve as the initial stages of information retrieval, selecting the most relevant text passages for downstream tasks. In this work we conducted experiments with the goal of finding how much the quality of a multilingual retrieval could be degraded if the query part of a dual encoder is tuned on an English-only dataset (assuming scarcity of cross-lingual samples for the targeted domain or task). Specifically, starting with a high quality multilingual embedding model, we observe that an English-only tuning may not only preserve the original quality of the multilingual retrieval, but even improve it. 3 authors · Jun 30, 2024
- Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings Machine translation is highly sensitive to the size and quality of the training data, which has led to an increasing interest in collecting and filtering large parallel corpora. In this paper, we propose a new method for this task based on multilingual sentence embeddings. In contrast to previous approaches, which rely on nearest neighbor retrieval with a hard threshold over cosine similarity, our proposed method accounts for the scale inconsistencies of this measure, considering the margin between a given sentence pair and its closest candidates instead. Our experiments show large improvements over existing methods. We outperform the best published results on the BUCC mining task and the UN reconstruction task by more than 10 F1 and 30 precision points, respectively. Filtering the English-German ParaCrawl corpus with our approach, we obtain 31.2 BLEU points on newstest2014, an improvement of more than one point over the best official filtered version. 2 authors · Nov 2, 2018
- Unsupervised Multilingual Dense Retrieval via Generative Pseudo Labeling Dense retrieval methods have demonstrated promising performance in multilingual information retrieval, where queries and documents can be in different languages. However, dense retrievers typically require a substantial amount of paired data, which poses even greater challenges in multilingual scenarios. This paper introduces UMR, an Unsupervised Multilingual dense Retriever trained without any paired data. Our approach leverages the sequence likelihood estimation capabilities of multilingual language models to acquire pseudo labels for training dense retrievers. We propose a two-stage framework which iteratively improves the performance of multilingual dense retrievers. Experimental results on two benchmark datasets show that UMR outperforms supervised baselines, showcasing the potential of training multilingual retrievers without paired data, thereby enhancing their practicality. Our source code, data, and models are publicly available at https://github.com/MiuLab/UMR 5 authors · Mar 6, 2024
- Learning Cross-Lingual IR from an English Retriever We present DR.DECR (Dense Retrieval with Distillation-Enhanced Cross-Lingual Representation), a new cross-lingual information retrieval (CLIR) system trained using multi-stage knowledge distillation (KD). The teacher of DR.DECR relies on a highly effective but computationally expensive two-stage inference process consisting of query translation and monolingual IR, while the student, DR.DECR, executes a single CLIR step. We teach DR.DECR powerful multilingual representations as well as CLIR by optimizing two corresponding KD objectives. Learning useful representations of non-English text from an English-only retriever is accomplished through a cross-lingual token alignment algorithm that relies on the representation capabilities of the underlying multilingual encoders. In both in-domain and zero-shot out-of-domain evaluation, DR.DECR demonstrates far superior accuracy over direct fine-tuning with labeled CLIR data. It is also the best single-model retriever on the XOR-TyDi benchmark at the time of this writing. 6 authors · Dec 15, 2021
- L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT The multilingual Sentence-BERT (SBERT) models map different languages to common representation space and are useful for cross-language similarity and mining tasks. We propose a simple yet effective approach to convert vanilla multilingual BERT models into multilingual sentence BERT models using synthetic corpus. We simply aggregate translated NLI or STS datasets of the low-resource target languages together and perform SBERT-like fine-tuning of the vanilla multilingual BERT model. We show that multilingual BERT models are inherent cross-lingual learners and this simple baseline fine-tuning approach without explicit cross-lingual training yields exceptional cross-lingual properties. We show the efficacy of our approach on 10 major Indic languages and also show the applicability of our approach to non-Indic languages German and French. Using this approach, we further present L3Cube-IndicSBERT, the first multilingual sentence representation model specifically for Indian languages Hindi, Marathi, Kannada, Telugu, Malayalam, Tamil, Gujarati, Odia, Bengali, and Punjabi. The IndicSBERT exhibits strong cross-lingual capabilities and performs significantly better than alternatives like LaBSE, LASER, and paraphrase-multilingual-mpnet-base-v2 on Indic cross-lingual and monolingual sentence similarity tasks. We also release monolingual SBERT models for each of the languages and show that IndicSBERT performs competitively with its monolingual counterparts. These models have been evaluated using embedding similarity scores and classification accuracy. 5 authors · Apr 22, 2023
3 Leveraging LLMs for Synthesizing Training Data Across Many Languages in Multilingual Dense Retrieval Dense retrieval models have predominantly been studied for English, where models have shown great success, due to the availability of human-labeled training pairs. However, there has been limited success for multilingual retrieval so far, as training data is uneven or scarcely available across multiple languages. Synthetic training data generation is promising (e.g., InPars or Promptagator), but has been investigated only for English. Therefore, to study model capabilities across both cross-lingual and monolingual retrieval tasks, we develop SWIM-IR, a synthetic retrieval training dataset containing 33 (high to very-low resource) languages for training multilingual dense retrieval models without requiring any human supervision. To construct SWIM-IR, we propose SAP (summarize-then-ask prompting), where the large language model (LLM) generates a textual summary prior to the query generation step. SAP assists the LLM in generating informative queries in the target language. Using SWIM-IR, we explore synthetic fine-tuning of multilingual dense retrieval models and evaluate them robustly on three retrieval benchmarks: XOR-Retrieve (cross-lingual), XTREME-UP (cross-lingual) and MIRACL (monolingual). Our models, called SWIM-X, are competitive with human-supervised dense retrieval models, e.g., mContriever, finding that SWIM-IR can cheaply substitute for expensive human-labeled retrieval training data. 6 authors · Nov 9, 2023
- XOR QA: Cross-lingual Open-Retrieval Question Answering Multilingual question answering tasks typically assume answers exist in the same language as the question. Yet in practice, many languages face both information scarcity -- where languages have few reference articles -- and information asymmetry -- where questions reference concepts from other cultures. This work extends open-retrieval question answering to a cross-lingual setting enabling questions from one language to be answered via answer content from another language. We construct a large-scale dataset built on questions from TyDi QA lacking same-language answers. Our task formulation, called Cross-lingual Open Retrieval Question Answering (XOR QA), includes 40k information-seeking questions from across 7 diverse non-English languages. Based on this dataset, we introduce three new tasks that involve cross-lingual document retrieval using multi-lingual and English resources. We establish baselines with state-of-the-art machine translation systems and cross-lingual pretrained models. Experimental results suggest that XOR QA is a challenging task that will facilitate the development of novel techniques for multilingual question answering. Our data and code are available at https://nlp.cs.washington.edu/xorqa. 6 authors · Oct 22, 2020
- Sõnajaht: Definition Embeddings and Semantic Search for Reverse Dictionary Creation We present an information retrieval based reverse dictionary system using modern pre-trained language models and approximate nearest neighbors search algorithms. The proposed approach is applied to an existing Estonian language lexicon resource, S\~onaveeb (word web), with the purpose of enhancing and enriching it by introducing cross-lingual reverse dictionary functionality powered by semantic search. The performance of the system is evaluated using both an existing labeled English dataset of words and definitions that is extended to contain also Estonian and Russian translations, and a novel unlabeled evaluation approach that extracts the evaluation data from the lexicon resource itself using synonymy relations. Evaluation results indicate that the information retrieval based semantic search approach without any model training is feasible, producing median rank of 1 in the monolingual setting and median rank of 2 in the cross-lingual setting using the unlabeled evaluation approach, with models trained for cross-lingual retrieval and including Estonian in their training data showing superior performance in our particular task. 2 authors · Apr 30, 2024
- Learning Word Vectors for 157 Languages Distributed word representations, or word vectors, have recently been applied to many tasks in natural language processing, leading to state-of-the-art performance. A key ingredient to the successful application of these representations is to train them on very large corpora, and use these pre-trained models in downstream tasks. In this paper, we describe how we trained such high quality word representations for 157 languages. We used two sources of data to train these models: the free online encyclopedia Wikipedia and data from the common crawl project. We also introduce three new word analogy datasets to evaluate these word vectors, for French, Hindi and Polish. Finally, we evaluate our pre-trained word vectors on 10 languages for which evaluation datasets exists, showing very strong performance compared to previous models. 5 authors · Feb 19, 2018
- mRobust04: A Multilingual Version of the TREC Robust 2004 Benchmark Robust 2004 is an information retrieval benchmark whose large number of judgments per query make it a reliable evaluation dataset. In this paper, we present mRobust04, a multilingual version of Robust04 that was translated to 8 languages using Google Translate. We also provide results of three different multilingual retrievers on this dataset. The dataset is available at https://huggingface.co/datasets/unicamp-dl/mrobust 4 authors · Sep 27, 2022
- ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot Multilingual Information Retrieval State-of-the-art neural retrievers predominantly focus on high-resource languages like English, which impedes their adoption in retrieval scenarios involving other languages. Current approaches circumvent the lack of high-quality labeled data in non-English languages by leveraging multilingual pretrained language models capable of cross-lingual transfer. However, these models require substantial task-specific fine-tuning across multiple languages, often perform poorly in languages with minimal representation in the pretraining corpus, and struggle to incorporate new languages after the pretraining phase. In this work, we present a novel modular dense retrieval model that learns from the rich data of a single high-resource language and effectively zero-shot transfers to a wide array of languages, thereby eliminating the need for language-specific labeled data. Our model, ColBERT-XM, demonstrates competitive performance against existing state-of-the-art multilingual retrievers trained on more extensive datasets in various languages. Further analysis reveals that our modular approach is highly data-efficient, effectively adapts to out-of-distribution data, and significantly reduces energy consumption and carbon emissions. By demonstrating its proficiency in zero-shot scenarios, ColBERT-XM marks a shift towards more sustainable and inclusive retrieval systems, enabling effective information accessibility in numerous languages. We publicly release our code and models for the community. 4 authors · Feb 22, 2024
- C3: Continued Pretraining with Contrastive Weak Supervision for Cross Language Ad-Hoc Retrieval Pretrained language models have improved effectiveness on numerous tasks, including ad-hoc retrieval. Recent work has shown that continuing to pretrain a language model with auxiliary objectives before fine-tuning on the retrieval task can further improve retrieval effectiveness. Unlike monolingual retrieval, designing an appropriate auxiliary task for cross-language mappings is challenging. To address this challenge, we use comparable Wikipedia articles in different languages to further pretrain off-the-shelf multilingual pretrained models before fine-tuning on the retrieval task. We show that our approach yields improvements in retrieval effectiveness. 5 authors · Apr 25, 2022
- A Common Semantic Space for Monolingual and Cross-Lingual Meta-Embeddings This paper presents a new technique for creating monolingual and cross-lingual meta-embeddings. Our method integrates multiple word embeddings created from complementary techniques, textual sources, knowledge bases and languages. Existing word vectors are projected to a common semantic space using linear transformations and averaging. With our method the resulting meta-embeddings maintain the dimensionality of the original embeddings without losing information while dealing with the out-of-vocabulary problem. An extensive empirical evaluation demonstrates the effectiveness of our technique with respect to previous work on various intrinsic and extrinsic multilingual evaluations, obtaining competitive results for Semantic Textual Similarity and state-of-the-art performance for word similarity and POS tagging (English and Spanish). The resulting cross-lingual meta-embeddings also exhibit excellent cross-lingual transfer learning capabilities. In other words, we can leverage pre-trained source embeddings from a resource-rich language in order to improve the word representations for under-resourced languages. 3 authors · Jan 17, 2020
- Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages Multilingual language models have recently gained attention as a promising solution for representing multiple languages in a single model. In this paper, we propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers. Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks (POS, dependency tree labeling). In contrast, NER and sentence-level tasks (cross-lingual retrieval, NLI) benefit from sharing vocabulary. We also observe that the coverage of the language-specific tokens in the multilingual vocabulary significantly impacts the word-level tasks. Our study offers a deeper understanding of the role of tokenizers in multilingual language models and guidelines for future model developers to choose the most suitable tokenizer for their specific application before undertaking costly model pre-training 3 authors · May 26, 2023
- Adapting Multilingual Embedding Models to Historical Luxembourgish The growing volume of digitized historical texts requires effective semantic search using text embeddings. However, pre-trained multilingual models, typically evaluated on contemporary texts, face challenges with historical digitized content due to OCR noise and outdated spellings. We explore the use of multilingual embeddings for cross-lingual semantic search on historical Luxembourgish, a low-resource language. We collect historical Luxembourgish news articles spanning various time periods and use GPT-4o to segment and translate them into closely related languages, creating 20,000 parallel training sentences per language pair. We further create a historical bitext mining evaluation set and find that these models struggle to perform cross-lingual search on historical Luxembourgish. To address this, we propose a simple adaptation method using in-domain training data, achieving up to 98\% accuracy in cross-lingual evaluations. We release our adapted models and historical Luxembourgish-German/French bitexts to support further research. 4 authors · Feb 11
- Neural Approaches to Multilingual Information Retrieval Providing access to information across languages has been a goal of Information Retrieval (IR) for decades. While progress has been made on Cross Language IR (CLIR) where queries are expressed in one language and documents in another, the multilingual (MLIR) task to create a single ranked list of documents across many languages is considerably more challenging. This paper investigates whether advances in neural document translation and pretrained multilingual neural language models enable improvements in the state of the art over earlier MLIR techniques. The results show that although combining neural document translation with neural ranking yields the best Mean Average Precision (MAP), 98% of that MAP score can be achieved with an 84% reduction in indexing time by using a pretrained XLM-R multilingual language model to index documents in their native language, and that 2% difference in effectiveness is not statistically significant. Key to achieving these results for MLIR is to fine-tune XLM-R using mixed-language batches from neural translations of MS MARCO passages. 4 authors · Sep 3, 2022
- Understanding Cross-Lingual Alignment -- A Survey Cross-lingual alignment, the meaningful similarity of representations across languages in multilingual language models, has been an active field of research in recent years. We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field. We present different understandings of cross-lingual alignment and their limitations. We provide a qualitative summary of results from a large number of surveyed papers. Finally, we discuss how these insights may be applied not only to encoder models, where this topic has been heavily studied, but also to encoder-decoder or even decoder-only models, and argue that an effective trade-off between language-neutral and language-specific information is key. 3 authors · Apr 9, 2024
- Multi-EuP: The Multilingual European Parliament Dataset for Analysis of Bias in Information Retrieval We present Multi-EuP, a new multilingual benchmark dataset, comprising 22K multi-lingual documents collected from the European Parliament, spanning 24 languages. This dataset is designed to investigate fairness in a multilingual information retrieval (IR) context to analyze both language and demographic bias in a ranking context. It boasts an authentic multilingual corpus, featuring topics translated into all 24 languages, as well as cross-lingual relevance judgments. Furthermore, it offers rich demographic information associated with its documents, facilitating the study of demographic bias. We report the effectiveness of Multi-EuP for benchmarking both monolingual and multilingual IR. We also conduct a preliminary experiment on language bias caused by the choice of tokenization strategy. 3 authors · Nov 3, 2023
- InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training In this work, we present an information-theoretic framework that formulates cross-lingual language model pre-training as maximizing mutual information between multilingual-multi-granularity texts. The unified view helps us to better understand the existing methods for learning cross-lingual representations. More importantly, inspired by the framework, we propose a new pre-training task based on contrastive learning. Specifically, we regard a bilingual sentence pair as two views of the same meaning and encourage their encoded representations to be more similar than the negative examples. By leveraging both monolingual and parallel corpora, we jointly train the pretext tasks to improve the cross-lingual transferability of pre-trained models. Experimental results on several benchmarks show that our approach achieves considerably better performance. The code and pre-trained models are available at https://aka.ms/infoxlm. 10 authors · Jul 15, 2020
- Bridging the Gap Between Indexing and Retrieval for Differentiable Search Index with Query Generation The Differentiable Search Index (DSI) is an emerging paradigm for information retrieval. Unlike traditional retrieval architectures where index and retrieval are two different and separate components, DSI uses a single transformer model to perform both indexing and retrieval. In this paper, we identify and tackle an important issue of current DSI models: the data distribution mismatch that occurs between the DSI indexing and retrieval processes. Specifically, we argue that, at indexing, current DSI methods learn to build connections between the text of long documents and the identifier of the documents, but then retrieval of document identifiers is based on queries that are commonly much shorter than the indexed documents. This problem is further exacerbated when using DSI for cross-lingual retrieval, where document text and query text are in different languages. To address this fundamental problem of current DSI models, we propose a simple yet effective indexing framework for DSI, called DSI-QG. When indexing, DSI-QG represents documents with a number of potentially relevant queries generated by a query generation model and re-ranked and filtered by a cross-encoder ranker. The presence of these queries at indexing allows the DSI models to connect a document identifier to a set of queries, hence mitigating data distribution mismatches present between the indexing and the retrieval phases. Empirical results on popular mono-lingual and cross-lingual passage retrieval datasets show that DSI-QG significantly outperforms the original DSI model. 7 authors · Jun 21, 2022
2 Making a MIRACL: Multilingual Information Retrieval Across a Continuum of Languages MIRACL (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual dataset we have built for the WSDM 2023 Cup challenge that focuses on ad hoc retrieval across 18 different languages, which collectively encompass over three billion native speakers around the world. These languages have diverse typologies, originate from many different language families, and are associated with varying amounts of available resources -- including what researchers typically characterize as high-resource as well as low-resource languages. Our dataset is designed to support the creation and evaluation of models for monolingual retrieval, where the queries and the corpora are in the same language. In total, we have gathered over 700k high-quality relevance judgments for around 77k queries over Wikipedia in these 18 languages, where all assessments have been performed by native speakers hired by our team. Our goal is to spur research that will improve retrieval across a continuum of languages, thus enhancing information access capabilities for diverse populations around the world, particularly those that have been traditionally underserved. This overview paper describes the dataset and baselines that we share with the community. The MIRACL website is live at http://miracl.ai/. 9 authors · Oct 18, 2022
1 Arctic-Embed 2.0: Multilingual Retrieval Without Compromise This paper presents the training methodology of Arctic-Embed 2.0, a set of open-source text embedding models built for accurate and efficient multilingual retrieval. While prior works have suffered from degraded English retrieval quality, Arctic-Embed 2.0 delivers competitive retrieval quality on multilingual and English-only benchmarks, and supports Matryoshka Representation Learning (MRL) for efficient embedding storage with significantly lower compressed quality degradation compared to alternatives. We detail the design and implementation, presenting several important open research questions that arose during model development. We conduct experiments exploring these research questions and include extensive discussion aimed at fostering further discussion in this field. 4 authors · Dec 3, 2024
- mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models Recent studies have shown that multilingual pretrained language models can be effectively improved with cross-lingual alignment information from Wikipedia entities. However, existing methods only exploit entity information in pretraining and do not explicitly use entities in downstream tasks. In this study, we explore the effectiveness of leveraging entity representations for downstream cross-lingual tasks. We train a multilingual language model with 24 languages with entity representations and show the model consistently outperforms word-based pretrained models in various cross-lingual transfer tasks. We also analyze the model and the key insight is that incorporating entity representations into the input allows us to extract more language-agnostic features. We also evaluate the model with a multilingual cloze prompt task with the mLAMA dataset. We show that entity-based prompt elicits correct factual knowledge more likely than using only word representations. Our source code and pretrained models are available at https://github.com/studio-ousia/luke. 3 authors · Oct 15, 2021
12 In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. In this paper, we focus on machine translation (MT), a task that has been shown to benefit from in-context translation examples. However no systematic studies have been published on how best to select examples, and mixed results have been reported on the usefulness of similarity-based selection over random selection. We provide a study covering multiple LLMs and multiple in-context example retrieval strategies, comparing multilingual sentence embeddings. We cover several language directions, representing different levels of language resourcedness (English into French, German, Swahili and Wolof). Contrarily to previously published results, we find that sentence embedding similarity can improve MT, especially for low-resource language directions, and discuss the balance between selection pool diversity and quality. We also highlight potential problems with the evaluation of LLM-based MT and suggest a more appropriate evaluation protocol, adapting the COMET metric to the evaluation of LLMs. Code and outputs are freely available at https://github.com/ArmelRandy/ICL-MT. 3 authors · Aug 1, 2024 2
- Mapping Supervised Bilingual Word Embeddings from English to low-resource languages It is very challenging to work with low-resource languages due to the inadequate availability of data. Using a dictionary to map independently trained word embeddings into a shared vector space has proved to be very useful in learning bilingual embeddings in the past. Here we have tried to map individual embeddings of words in English and their corresponding translated words in low-resource languages like Estonian, Slovenian, Slovakian, and Hungarian. We have used a supervised learning approach. We report accuracy scores through various retrieval strategies which show that it is possible to approach challenging tasks in Natural Language Processing like machine translation for such languages, provided that we have at least some amount of proper bilingual data. We also conclude that we can follow an unsupervised learning path on monolingual text data as that is more suitable for low-resource languages. 1 authors · Oct 14, 2019
- POLYGLOT-NER: Massive Multilingual Named Entity Recognition The increasing diversity of languages used on the web introduces a new level of complexity to Information Retrieval (IR) systems. We can no longer assume that textual content is written in one language or even the same language family. In this paper, we demonstrate how to build massive multilingual annotators with minimal human expertise and intervention. We describe a system that builds Named Entity Recognition (NER) annotators for 40 major languages using Wikipedia and Freebase. Our approach does not require NER human annotated datasets or language specific resources like treebanks, parallel corpora, and orthographic rules. The novelty of approach lies therein - using only language agnostic techniques, while achieving competitive performance. Our method learns distributed word representations (word embeddings) which encode semantic and syntactic features of words in each language. Then, we automatically generate datasets from Wikipedia link structure and Freebase attributes. Finally, we apply two preprocessing stages (oversampling and exact surface form matching) which do not require any linguistic expertise. Our evaluation is two fold: First, we demonstrate the system performance on human annotated datasets. Second, for languages where no gold-standard benchmarks are available, we propose a new method, distant evaluation, based on statistical machine translation. 4 authors · Oct 14, 2014
- PIRB: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods We present Polish Information Retrieval Benchmark (PIRB), a comprehensive evaluation framework encompassing 41 text information retrieval tasks for Polish. The benchmark incorporates existing datasets as well as 10 new, previously unpublished datasets covering diverse topics such as medicine, law, business, physics, and linguistics. We conduct an extensive evaluation of over 20 dense and sparse retrieval models, including the baseline models trained by us as well as other available Polish and multilingual methods. Finally, we introduce a three-step process for training highly effective language-specific retrievers, consisting of knowledge distillation, supervised fine-tuning, and building sparse-dense hybrid retrievers using a lightweight rescoring model. In order to validate our approach, we train new text encoders for Polish and compare their results with previously evaluated methods. Our dense models outperform the best solutions available to date, and the use of hybrid methods further improves their performance. 3 authors · Feb 20, 2024
- Beyond Contrastive Learning: A Variational Generative Model for Multilingual Retrieval Contrastive learning has been successfully used for retrieval of semantically aligned sentences, but it often requires large batch sizes or careful engineering to work well. In this paper, we instead propose a generative model for learning multilingual text embeddings which can be used to retrieve or score sentence pairs. Our model operates on parallel data in N languages and, through an approximation we introduce, efficiently encourages source separation in this multilingual setting, separating semantic information that is shared between translations from stylistic or language-specific variation. We show careful large-scale comparisons between contrastive and generation-based approaches for learning multilingual text embeddings, a comparison that has not been done to the best of our knowledge despite the popularity of these approaches. We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval -- the last of which we introduce in this paper. Overall, our Variational Multilingual Source-Separation Transformer (VMSST) model outperforms both a strong contrastive and generative baseline on these tasks. 5 authors · Dec 20, 2022
1 Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual Retrieval State-of-the-art neural (re)rankers are notoriously data-hungry which -- given the lack of large-scale training data in languages other than English -- makes them rarely used in multilingual and cross-lingual retrieval settings. Current approaches therefore commonly transfer rankers trained on English data to other languages and cross-lingual setups by means of multilingual encoders: they fine-tune all parameters of pretrained massively multilingual Transformers (MMTs, e.g., multilingual BERT) on English relevance judgments, and then deploy them in the target language(s). In this work, we show that two parameter-efficient approaches to cross-lingual transfer, namely Sparse Fine-Tuning Masks (SFTMs) and Adapters, allow for a more lightweight and more effective zero-shot transfer to multilingual and cross-lingual retrieval tasks. We first train language adapters (or SFTMs) via Masked Language Modelling and then train retrieval (i.e., reranking) adapters (SFTMs) on top, while keeping all other parameters fixed. At inference, this modular design allows us to compose the ranker by applying the (re)ranking adapter (or SFTM) trained with source language data together with the language adapter (or SFTM) of a target language. We carry out a large scale evaluation on the CLEF-2003 and HC4 benchmarks and additionally, as another contribution, extend the former with queries in three new languages: Kyrgyz, Uyghur and Turkish. The proposed parameter-efficient methods outperform standard zero-shot transfer with full MMT fine-tuning, while being more modular and reducing training times. The gains are particularly pronounced for low-resource languages, where our approaches also substantially outperform the competitive machine translation-based rankers. 3 authors · Apr 5, 2022
- Similarity of Sentence Representations in Multilingual LMs: Resolving Conflicting Literature and Case Study of Baltic Languages Low-resource languages, such as Baltic languages, benefit from Large Multilingual Models (LMs) that possess remarkable cross-lingual transfer performance capabilities. This work is an interpretation and analysis study into cross-lingual representations of Multilingual LMs. Previous works hypothesized that these LMs internally project representations of different languages into a shared cross-lingual space. However, the literature produced contradictory results. In this paper, we revisit the prior work claiming that "BERT is not an Interlingua" and show that different languages do converge to a shared space in such language models with another choice of pooling strategy or similarity index. Then, we perform cross-lingual representational analysis for the two most popular multilingual LMs employing 378 pairwise language comparisons. We discover that while most languages share joint cross-lingual space, some do not. However, we observe that Baltic languages do belong to that shared space. The code is available at https://github.com/TartuNLP/xsim. 2 authors · Sep 2, 2021
1 Improving the Consistency in Cross-Lingual Cross-Modal Retrieval with 1-to-K Contrastive Learning Cross-lingual Cross-modal Retrieval (CCR) is an essential task in web search, which aims to break the barriers between modality and language simultaneously and achieves image-text retrieval in the multi-lingual scenario with a single model. In recent years, excellent progress has been made based on cross-lingual cross-modal pre-training; particularly, the methods based on contrastive learning on large-scale data have significantly improved retrieval tasks. However, these methods directly follow the existing pre-training methods in the cross-lingual or cross-modal domain, leading to two problems of inconsistency in CCR: The methods with cross-lingual style suffer from the intra-modal error propagation, resulting in inconsistent recall performance across languages in the whole dataset. The methods with cross-modal style suffer from the inter-modal optimization direction bias, resulting in inconsistent rank across languages within each instance, which cannot be reflected by Recall@K. To solve these problems, we propose a simple but effective 1-to-K contrastive learning method, which treats each language equally and eliminates error propagation and optimization bias. In addition, we propose a new evaluation metric, Mean Rank Variance (MRV), to reflect the rank inconsistency across languages within each instance. Extensive experiments on four CCR datasets show that our method improves both recall rates and MRV with smaller-scale pre-trained data, achieving the new state-of-art. 5 authors · Jun 26, 2024
- SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval In this paper, we propose SimLM (Similarity matching with Language Model pre-training), a simple yet effective pre-training method for dense passage retrieval. It employs a simple bottleneck architecture that learns to compress the passage information into a dense vector through self-supervised pre-training. We use a replaced language modeling objective, which is inspired by ELECTRA, to improve the sample efficiency and reduce the mismatch of the input distribution between pre-training and fine-tuning. SimLM only requires access to unlabeled corpus, and is more broadly applicable when there are no labeled data or queries. We conduct experiments on several large-scale passage retrieval datasets, and show substantial improvements over strong baselines under various settings. Remarkably, SimLM even outperforms multi-vector approaches such as ColBERTv2 which incurs significantly more storage cost. 8 authors · Jul 6, 2022
- Unsupervised Context Aware Sentence Representation Pretraining for Multi-lingual Dense Retrieval Recent research demonstrates the effectiveness of using pretrained language models (PLM) to improve dense retrieval and multilingual dense retrieval. In this work, we present a simple but effective monolingual pretraining task called contrastive context prediction~(CCP) to learn sentence representation by modeling sentence level contextual relation. By pushing the embedding of sentences in a local context closer and pushing random negative samples away, different languages could form isomorphic structure, then sentence pairs in two different languages will be automatically aligned. Our experiments show that model collapse and information leakage are very easy to happen during contrastive training of language model, but language-specific memory bank and asymmetric batch normalization operation play an essential role in preventing collapsing and information leakage, respectively. Besides, a post-processing for sentence embedding is also very effective to achieve better retrieval performance. On the multilingual sentence retrieval task Tatoeba, our model achieves new SOTA results among methods without using bilingual data. Our model also shows larger gain on Tatoeba when transferring between non-English pairs. On two multi-lingual query-passage retrieval tasks, XOR Retrieve and Mr.TYDI, our model even achieves two SOTA results in both zero-shot and supervised setting among all pretraining models using bilingual data. 7 authors · Jun 7, 2022
2 Retrieving Texts based on Abstract Descriptions In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model. 5 authors · May 21, 2023
- Cross-lingual Similarity of Multilingual Representations Revisited Related works used indexes like CKA and variants of CCA to measure the similarity of cross-lingual representations in multilingual language models. In this paper, we argue that assumptions of CKA/CCA align poorly with one of the motivating goals of cross-lingual learning analysis, i.e., explaining zero-shot cross-lingual transfer. We highlight what valuable aspects of cross-lingual similarity these indexes fail to capture and provide a motivating case study demonstrating the problem empirically. Then, we introduce Average Neuron-Wise Correlation (ANC) as a straightforward alternative that is exempt from the difficulties of CKA/CCA and is good specifically in a cross-lingual context. Finally, we use ANC to construct evidence that the previously introduced ``first align, then predict'' pattern takes place not only in masked language models (MLMs) but also in multilingual models with causal language modeling objectives (CLMs). Moreover, we show that the pattern extends to the scaled versions of the MLMs and CLMs (up to 85x original mBERT).Our code is publicly available at \url{https://github.com/TartuNLP/xsim} 2 authors · Dec 4, 2022
- Towards Zero-shot Cross-lingual Image Retrieval There has been a recent spike in interest in multi-modal Language and Vision problems. On the language side, most of these models primarily focus on English since most multi-modal datasets are monolingual. We try to bridge this gap with a zero-shot approach for learning multi-modal representations using cross-lingual pre-training on the text side. We present a simple yet practical approach for building a cross-lingual image retrieval model which trains on a monolingual training dataset but can be used in a zero-shot cross-lingual fashion during inference. We also introduce a new objective function which tightens the text embedding clusters by pushing dissimilar texts from each other. Finally, we introduce a new 1K multi-lingual MSCOCO2014 caption test dataset (XTD10) in 7 languages that we collected using a crowdsourcing platform. We use this as the test set for evaluating zero-shot model performance across languages. XTD10 dataset is made publicly available here: https://github.com/adobe-research/Cross-lingual-Test-Dataset-XTD10 2 authors · Nov 24, 2020
1 Zero-Shot Listwise Document Reranking with a Large Language Model Supervised ranking methods based on bi-encoder or cross-encoder architectures have shown success in multi-stage text ranking tasks, but they require large amounts of relevance judgments as training data. In this work, we propose Listwise Reranker with a Large Language Model (LRL), which achieves strong reranking effectiveness without using any task-specific training data. Different from the existing pointwise ranking methods, where documents are scored independently and ranked according to the scores, LRL directly generates a reordered list of document identifiers given the candidate documents. Experiments on three TREC web search datasets demonstrate that LRL not only outperforms zero-shot pointwise methods when reranking first-stage retrieval results, but can also act as a final-stage reranker to improve the top-ranked results of a pointwise method for improved efficiency. Additionally, we apply our approach to subsets of MIRACL, a recent multilingual retrieval dataset, with results showing its potential to generalize across different languages. 4 authors · May 3, 2023
- Transforming LLMs into Cross-modal and Cross-lingual Retrieval Systems Large language models (LLMs) are trained on text-only data that go far beyond the languages with paired speech and text data. At the same time, Dual Encoder (DE) based retrieval systems project queries and documents into the same embedding space and have demonstrated their success in retrieval and bi-text mining. To match speech and text in many languages, we propose using LLMs to initialize multi-modal DE retrieval systems. Unlike traditional methods, our system doesn't require speech data during LLM pre-training and can exploit LLM's multilingual text understanding capabilities to match speech and text in languages unseen during retrieval training. Our multi-modal LLM-based retrieval system is capable of matching speech and text in 102 languages despite only training on 21 languages. Our system outperforms previous systems trained explicitly on all 102 languages. We achieve a 10% absolute improvement in Recall@1 averaged across these languages. Additionally, our model demonstrates cross-lingual speech and text matching, which is further enhanced by readily available machine translation data. 6 authors · Apr 1, 2024 2
- Improving Domain-Specific Retrieval by NLI Fine-Tuning The aim of this article is to investigate the fine-tuning potential of natural language inference (NLI) data to improve information retrieval and ranking. We demonstrate this for both English and Polish languages, using data from one of the largest Polish e-commerce sites and selected open-domain datasets. We employ both monolingual and multilingual sentence encoders fine-tuned by a supervised method utilizing contrastive loss and NLI data. Our results point to the fact that NLI fine-tuning increases the performance of the models in both tasks and both languages, with the potential to improve mono- and multilingual models. Finally, we investigate uniformity and alignment of the embeddings to explain the effect of NLI-based fine-tuning for an out-of-domain use-case. 4 authors · Aug 6, 2023
- Siamese BERT-based Model for Web Search Relevance Ranking Evaluated on a New Czech Dataset Web search engines focus on serving highly relevant results within hundreds of milliseconds. Pre-trained language transformer models such as BERT are therefore hard to use in this scenario due to their high computational demands. We present our real-time approach to the document ranking problem leveraging a BERT-based siamese architecture. The model is already deployed in a commercial search engine and it improves production performance by more than 3%. For further research and evaluation, we release DaReCzech, a unique data set of 1.6 million Czech user query-document pairs with manually assigned relevance levels. We also release Small-E-Czech, an Electra-small language model pre-trained on a large Czech corpus. We believe this data will support endeavours both of search relevance and multilingual-focused research communities. 4 authors · Dec 3, 2021
- Transfer Learning Approaches for Building Cross-Language Dense Retrieval Models The advent of transformer-based models such as BERT has led to the rise of neural ranking models. These models have improved the effectiveness of retrieval systems well beyond that of lexical term matching models such as BM25. While monolingual retrieval tasks have benefited from large-scale training collections such as MS MARCO and advances in neural architectures, cross-language retrieval tasks have fallen behind these advancements. This paper introduces ColBERT-X, a generalization of the ColBERT multi-representation dense retrieval model that uses the XLM-RoBERTa (XLM-R) encoder to support cross-language information retrieval (CLIR). ColBERT-X can be trained in two ways. In zero-shot training, the system is trained on the English MS MARCO collection, relying on the XLM-R encoder for cross-language mappings. In translate-train, the system is trained on the MS MARCO English queries coupled with machine translations of the associated MS MARCO passages. Results on ad hoc document ranking tasks in several languages demonstrate substantial and statistically significant improvements of these trained dense retrieval models over traditional lexical CLIR baselines. 8 authors · Jan 20, 2022
3 JaColBERT and Hard Negatives, Towards Better Japanese-First Embeddings for Retrieval: Early Technical Report Document retrieval in many languages has been largely relying on multi-lingual models, and leveraging the vast wealth of English training data. In Japanese, the best performing deep-learning based retrieval approaches rely on multilingual dense embeddings. In this work, we introduce (1) a hard-negative augmented version of the Japanese MMARCO dataset and (2) JaColBERT, a document retrieval model built on the ColBERT model architecture, specifically for Japanese. JaColBERT vastly outperform all previous monolingual retrieval approaches and competes with the best multilingual methods, despite unfavourable evaluation settings (out-of-domain vs. in-domain for the multilingual models). JaColBERT reaches an average Recall@10 of 0.813, noticeably ahead of the previous monolingual best-performing model (0.716) and only slightly behind multilingual-e5-base (0.820), though more noticeably behind multilingual-e5-large (0.856). These results are achieved using only a limited, entirely Japanese, training set, more than two orders of magnitudes smaller than multilingual embedding models. We believe these results show great promise to support retrieval-enhanced application pipelines in a wide variety of domains. 1 authors · Dec 26, 2023
- Distillation for Multilingual Information Retrieval Recent work in cross-language information retrieval (CLIR), where queries and documents are in different languages, has shown the benefit of the Translate-Distill framework that trains a cross-language neural dual-encoder model using translation and distillation. However, Translate-Distill only supports a single document language. Multilingual information retrieval (MLIR), which ranks a multilingual document collection, is harder to train than CLIR because the model must assign comparable relevance scores to documents in different languages. This work extends Translate-Distill and propose Multilingual Translate-Distill (MTD) for MLIR. We show that ColBERT-X models trained with MTD outperform their counterparts trained ith Multilingual Translate-Train, which is the previous state-of-the-art training approach, by 5% to 25% in nDCG@20 and 15% to 45% in MAP. We also show that the model is robust to the way languages are mixed in training batches. Our implementation is available on GitHub. 3 authors · May 1, 2024
1 Bootstrapping Multilingual AMR with Contextual Word Alignments We develop high performance multilingualAbstract Meaning Representation (AMR) sys-tems by projecting English AMR annotationsto other languages with weak supervision. Weachieve this goal by bootstrapping transformer-based multilingual word embeddings, in partic-ular those from cross-lingual RoBERTa (XLM-R large). We develop a novel technique forforeign-text-to-English AMR alignment, usingthe contextual word alignment between En-glish and foreign language tokens. This wordalignment is weakly supervised and relies onthe contextualized XLM-R word embeddings.We achieve a highly competitive performancethat surpasses the best published results forGerman, Italian, Spanish and Chinese. 7 authors · Feb 3, 2021
8 AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems -- those that retrieve answer content from other languages while serving people in their native language -- offer a means of filling this gap. To this end, we create AfriQA, the first cross-lingual QA dataset with a focus on African languages. AfriQA includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, AfriQA focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, AfriQA proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology. 52 authors · May 11, 2023
3 SilverRetriever: Advancing Neural Passage Retrieval for Polish Question Answering Modern open-domain question answering systems often rely on accurate and efficient retrieval components to find passages containing the facts necessary to answer the question. Recently, neural retrievers have gained popularity over lexical alternatives due to their superior performance. However, most of the work concerns popular languages such as English or Chinese. For others, such as Polish, few models are available. In this work, we present SilverRetriever, a neural retriever for Polish trained on a diverse collection of manually or weakly labeled datasets. SilverRetriever achieves much better results than other Polish models and is competitive with larger multilingual models. Together with the model, we open-source five new passage retrieval datasets. 2 authors · Sep 15, 2023
- BEIR-PL: Zero Shot Information Retrieval Benchmark for the Polish Language The BEIR dataset is a large, heterogeneous benchmark for Information Retrieval (IR) in zero-shot settings, garnering considerable attention within the research community. However, BEIR and analogous datasets are predominantly restricted to the English language. Our objective is to establish extensive large-scale resources for IR in the Polish language, thereby advancing the research in this NLP area. In this work, inspired by mMARCO and Mr.~TyDi datasets, we translated all accessible open IR datasets into Polish, and we introduced the BEIR-PL benchmark -- a new benchmark which comprises 13 datasets, facilitating further development, training and evaluation of modern Polish language models for IR tasks. We executed an evaluation and comparison of numerous IR models on the newly introduced BEIR-PL benchmark. Furthermore, we publish pre-trained open IR models for Polish language,d marking a pioneering development in this field. Additionally, the evaluation revealed that BM25 achieved significantly lower scores for Polish than for English, which can be attributed to high inflection and intricate morphological structure of the Polish language. Finally, we trained various re-ranking models to enhance the BM25 retrieval, and we compared their performance to identify their unique characteristic features. To ensure accurate model comparisons, it is necessary to scrutinise individual results rather than to average across the entire benchmark. Thus, we thoroughly analysed the outcomes of IR models in relation to each individual data subset encompassed by the BEIR benchmark. The benchmark data is available at URL {\bf https://huggingface.co/clarin-knext}. 5 authors · May 31, 2023
1 Evaluating Embedding APIs for Information Retrieval The ever-increasing size of language models curtails their widespread access to the community, thereby galvanizing many companies and startups into offering access to large language models through APIs. One particular API, suitable for dense retrieval, is the semantic embedding API that builds vector representations of a given text. With a growing number of APIs at our disposal, in this paper, our goal is to analyze semantic embedding APIs in realistic retrieval scenarios in order to assist practitioners and researchers in finding suitable services according to their needs. Specifically, we wish to investigate the capabilities of existing APIs on domain generalization and multilingual retrieval. For this purpose, we evaluate the embedding APIs on two standard benchmarks, BEIR, and MIRACL. We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective on English, in contrast to the standard practice, i.e., employing them as first-stage retrievers. For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best albeit at a higher cost. We hope our work lays the groundwork for thoroughly evaluating APIs that are critical in search and more broadly, in information retrieval. 7 authors · May 10, 2023
- T2Ranking: A large-scale Chinese Benchmark for Passage Ranking Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/ 11 authors · Apr 7, 2023
- Are Multilingual Models Effective in Code-Switching? Multilingual language models have shown decent performance in multilingual and cross-lingual natural language understanding tasks. However, the power of these multilingual models in code-switching tasks has not been fully explored. In this paper, we study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting by considering the inference speed, performance, and number of parameters to measure their practicality. We conduct experiments in three language pairs on named entity recognition and part-of-speech tagging and compare them with existing methods, such as using bilingual embeddings and multilingual meta-embeddings. Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching, while using meta-embeddings achieves similar results with significantly fewer parameters. 6 authors · Mar 24, 2021
- Cross-lingual Retrieval for Iterative Self-Supervised Training Recent studies have demonstrated the cross-lingual alignment ability of multilingual pretrained language models. In this work, we found that the cross-lingual alignment can be further improved by training seq2seq models on sentence pairs mined using their own encoder outputs. We utilized these findings to develop a new approach -- cross-lingual retrieval for iterative self-supervised training (CRISS), where mining and training processes are applied iteratively, improving cross-lingual alignment and translation ability at the same time. Using this method, we achieved state-of-the-art unsupervised machine translation results on 9 language directions with an average improvement of 2.4 BLEU, and on the Tatoeba sentence retrieval task in the XTREME benchmark on 16 languages with an average improvement of 21.5% in absolute accuracy. Furthermore, CRISS also brings an additional 1.8 BLEU improvement on average compared to mBART, when finetuned on supervised machine translation downstream tasks. 4 authors · Jun 16, 2020
- A Multilingual Parallel Corpora Collection Effort for Indian Languages We present sentence aligned parallel corpora across 10 Indian Languages - Hindi, Telugu, Tamil, Malayalam, Gujarati, Urdu, Bengali, Oriya, Marathi, Punjabi, and English - many of which are categorized as low resource. The corpora are compiled from online sources which have content shared across languages. The corpora presented significantly extends present resources that are either not large enough or are restricted to a specific domain (such as health). We also provide a separate test corpus compiled from an independent online source that can be independently used for validating the performance in 10 Indian languages. Alongside, we report on the methods of constructing such corpora using tools enabled by recent advances in machine translation and cross-lingual retrieval using deep neural network based methods. 4 authors · Jul 15, 2020
- Enhancing Answer Boundary Detection for Multilingual Machine Reading Comprehension Multilingual pre-trained models could leverage the training data from a rich source language (such as English) to improve performance on low resource languages. However, the transfer quality for multilingual Machine Reading Comprehension (MRC) is significantly worse than sentence classification tasks mainly due to the requirement of MRC to detect the word level answer boundary. In this paper, we propose two auxiliary tasks in the fine-tuning stage to create additional phrase boundary supervision: (1) A mixed MRC task, which translates the question or passage to other languages and builds cross-lingual question-passage pairs; (2) A language-agnostic knowledge masking task by leveraging knowledge phrases mined from web. Besides, extensive experiments on two cross-lingual MRC datasets show the effectiveness of our proposed approach. 8 authors · Apr 29, 2020
1 XNLI: Evaluating Cross-lingual Sentence Representations State-of-the-art natural language processing systems rely on supervision in the form of annotated data to learn competent models. These models are generally trained on data in a single language (usually English), and cannot be directly used beyond that language. Since collecting data in every language is not realistic, there has been a growing interest in cross-lingual language understanding (XLU) and low-resource cross-language transfer. In this work, we construct an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus (MultiNLI) to 15 languages, including low-resource languages such as Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual sentence understanding by providing an informative standard evaluation task. In addition, we provide several baselines for multilingual sentence understanding, including two based on machine translation systems, and two that use parallel data to train aligned multilingual bag-of-words and LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and that directly translating the test data yields the best performance among available baselines. 7 authors · Sep 13, 2018
23 mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval We present systematic efforts in building long-context multilingual text representation model (TRM) and reranker from scratch for text retrieval. We first introduce a text encoder (base size) enhanced with RoPE and unpadding, pre-trained in a native 8192-token context (longer than 512 of previous multilingual encoders). Then we construct a hybrid TRM and a cross-encoder reranker by contrastive learning. Evaluations show that our text encoder outperforms the same-sized previous state-of-the-art XLM-R. Meanwhile, our TRM and reranker match the performance of large-sized state-of-the-art BGE-M3 models and achieve better results on long-context retrieval benchmarks. Further analysis demonstrate that our proposed models exhibit higher efficiency during both training and inference. We believe their efficiency and effectiveness could benefit various researches and industrial applications. 13 authors · Jul 28, 2024 4
- Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation One of the challenges in information retrieval (IR) is the vocabulary mismatch problem, which happens when the terms between queries and documents are lexically different but semantically similar. While recent work has proposed to expand the queries or documents by enriching their representations with additional relevant terms to address this challenge, they usually require a large volume of query-document pairs to train an expansion model. In this paper, we propose an Unsupervised Document Expansion with Generation (UDEG) framework with a pre-trained language model, which generates diverse supplementary sentences for the original document without using labels on query-document pairs for training. For generating sentences, we further stochastically perturb their embeddings to generate more diverse sentences for document expansion. We validate our framework on two standard IR benchmark datasets. The results show that our framework significantly outperforms relevant expansion baselines for IR. 4 authors · May 3, 2021
2 IndicIRSuite: Multilingual Dataset and Neural Information Models for Indian Languages In this paper, we introduce Neural Information Retrieval resources for 11 widely spoken Indian Languages (Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, and Telugu) from two major Indian language families (Indo-Aryan and Dravidian). These resources include (a) INDIC-MARCO, a multilingual version of the MSMARCO dataset in 11 Indian Languages created using Machine Translation, and (b) Indic-ColBERT, a collection of 11 distinct Monolingual Neural Information Retrieval models, each trained on one of the 11 languages in the INDIC-MARCO dataset. To the best of our knowledge, IndicIRSuite is the first attempt at building large-scale Neural Information Retrieval resources for a large number of Indian languages, and we hope that it will help accelerate research in Neural IR for Indian Languages. Experiments demonstrate that Indic-ColBERT achieves 47.47% improvement in the MRR@10 score averaged over the INDIC-MARCO baselines for all 11 Indian languages except Oriya, 12.26% improvement in the NDCG@10 score averaged over the MIRACL Bengali and Hindi Language baselines, and 20% improvement in the MRR@100 Score over the Mr.Tydi Bengali Language baseline. IndicIRSuite is available at https://github.com/saifulhaq95/IndicIRSuite 3 authors · Dec 14, 2023 1
- XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders XTREME benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks. 6 authors · Mar 24, 2020
- ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is generally acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for low-resource languages. In this paper, we propose ERNIE-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that ERNIE-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks. 7 authors · Dec 31, 2020
- LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings Sentence embedding models play a key role in various Natural Language Processing tasks, such as in Topic Modeling, Document Clustering and Recommendation Systems. However, these models rely heavily on parallel data, which can be scarce for many low-resource languages, including Luxembourgish. This scarcity results in suboptimal performance of monolingual and cross-lingual sentence embedding models for these languages. To address this issue, we compile a relatively small but high-quality human-generated cross-lingual parallel dataset to train \tool, an enhanced sentence embedding model for Luxembourgish with strong cross-lingual capabilities. Additionally, we present evidence suggesting that including low-resource languages in parallel training datasets can be more advantageous for other low-resource languages than relying solely on high-resource language pairs. Furthermore, recognizing the lack of sentence embedding benchmarks for low-resource languages, we create a paraphrase detection benchmark specifically for Luxembourgish, aiming to partially fill this gap and promote further research. 4 authors · Dec 4, 2024
5 BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation In this paper, we present a new embedding model, called M3-Embedding, which is distinguished for its versatility in Multi-Linguality, Multi-Functionality, and Multi-Granularity. It can support more than 100 working languages, leading to new state-of-the-art performances on multi-lingual and cross-lingual retrieval tasks. It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval, which provides a unified model foundation for real-world IR applications. It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens. The effective training of M3-Embedding involves the following technical contributions. We propose a novel self-knowledge distillation approach, where the relevance scores from different retrieval functionalities can be integrated as the teacher signal to enhance the training quality. We also optimize the batching strategy, enabling a large batch size and high training throughput to ensure the discriminativeness of embeddings. To the best of our knowledge, M3-Embedding is the first embedding model which realizes such a strong versatility. The model and code will be publicly available at https://github.com/FlagOpen/FlagEmbedding. 6 authors · Feb 5, 2024
- Translate-Distill: Learning Cross-Language Dense Retrieval by Translation and Distillation Prior work on English monolingual retrieval has shown that a cross-encoder trained using a large number of relevance judgments for query-document pairs can be used as a teacher to train more efficient, but similarly effective, dual-encoder student models. Applying a similar knowledge distillation approach to training an efficient dual-encoder model for Cross-Language Information Retrieval (CLIR), where queries and documents are in different languages, is challenging due to the lack of a sufficiently large training collection when the query and document languages differ. The state of the art for CLIR thus relies on translating queries, documents, or both from the large English MS MARCO training set, an approach called Translate-Train. This paper proposes an alternative, Translate-Distill, in which knowledge distillation from either a monolingual cross-encoder or a CLIR cross-encoder is used to train a dual-encoder CLIR student model. This richer design space enables the teacher model to perform inference in an optimized setting, while training the student model directly for CLIR. Trained models and artifacts are publicly available on Huggingface. 5 authors · Jan 9, 2024
5 Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings We introduce a novel suite of state-of-the-art bilingual text embedding models that are designed to support English and another target language. These models are capable of processing lengthy text inputs with up to 8192 tokens, making them highly versatile for a range of natural language processing tasks such as text retrieval, clustering, and semantic textual similarity (STS) calculations. By focusing on bilingual models and introducing a unique multi-task learning objective, we have significantly improved the model performance on STS tasks, which outperforms the capabilities of existing multilingual models in both target language understanding and cross-lingual evaluation tasks. Moreover, our bilingual models are more efficient, requiring fewer parameters and less memory due to their smaller vocabulary needs. Furthermore, we have expanded the Massive Text Embedding Benchmark (MTEB) to include benchmarks for German and Spanish embedding models. This integration aims to stimulate further research and advancement in text embedding technologies for these languages. 19 authors · Feb 26, 2024
- Multilingual Sentence-T5: Scalable Sentence Encoders for Multilingual Applications Prior work on multilingual sentence embedding has demonstrated that the efficient use of natural language inference (NLI) data to build high-performance models can outperform conventional methods. However, the potential benefits from the recent ``exponential'' growth of language models with billions of parameters have not yet been fully explored. In this paper, we introduce Multilingual Sentence T5 (m-ST5), as a larger model of NLI-based multilingual sentence embedding, by extending Sentence T5, an existing monolingual model. By employing the low-rank adaptation (LoRA) technique, we have achieved a successful scaling of the model's size to 5.7 billion parameters. We conducted experiments to evaluate the performance of sentence embedding and verified that the method outperforms the NLI-based prior approach. Furthermore, we also have confirmed a positive correlation between the size of the model and its performance. It was particularly noteworthy that languages with fewer resources or those with less linguistic similarity to English benefited more from the parameter increase. Our model is available at https://huggingface.co/pkshatech/m-ST5. 5 authors · Mar 26, 2024
- Task-aware Retrieval with Instructions We study the problem of retrieval with instructions, where users of a retrieval system explicitly describe their intent along with their queries. We aim to develop a general-purpose task-aware retrieval system using multi-task instruction tuning, which can follow human-written instructions to find the best documents for a given query. We introduce the first large-scale collection of approximately 40 retrieval datasets with instructions, BERRI, and present TART, a multi-task retrieval system trained on BERRI with instructions. TART shows strong capabilities to adapt to a new retrieval task via instructions and advances the state of the art on two zero-shot retrieval benchmarks, BEIR and LOTTE, outperforming models up to three times larger. We further introduce a new evaluation setup, X^2-Retrieval to better reflect real-world scenarios, where diverse domains and tasks are pooled and a system needs to find documents aligning users' intents. In this setup, TART significantly outperforms competitive baselines, further demonstrating the effectiveness of guiding retrieval with instructions. 8 authors · Nov 16, 2022
- Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods, however, exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity. 3 authors · Jul 9, 2023
1 MEXMA: Token-level objectives improve sentence representations Current pre-trained cross-lingual sentence encoders approaches use sentence-level objectives only. This can lead to loss of information, especially for tokens, which then degrades the sentence representation. We propose MEXMA, a novel approach that integrates both sentence-level and token-level objectives. The sentence representation in one language is used to predict masked tokens in another language, with both the sentence representation and all tokens directly updating the encoder. We show that adding token-level objectives greatly improves the sentence representation quality across several tasks. Our approach outperforms current pre-trained cross-lingual sentence encoders on bi-text mining as well as several downstream tasks. We also analyse the information encoded in our tokens, and how the sentence representation is built from them. 4 authors · Sep 19, 2024
- Semantic Models for the First-stage Retrieval: A Comprehensive Review Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary mismatch problem, which may block re-ranking stages from relevant documents at the very beginning. Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development. In this paper, we describe the current landscape of the first-stage retrieval models under a unified framework to clarify the connection between classical term-based retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we identify some open challenges and envision some future directions, with the hope of inspiring more researches on these important yet less investigated topics. 6 authors · Mar 8, 2021
- Multilingual Event Linking to Wikidata We present a task of multilingual linking of events to a knowledge base. We automatically compile a large-scale dataset for this task, comprising of 1.8M mentions across 44 languages referring to over 10.9K events from Wikidata. We propose two variants of the event linking task: 1) multilingual, where event descriptions are from the same language as the mention, and 2) crosslingual, where all event descriptions are in English. On the two proposed tasks, we compare multiple event linking systems including BM25+ (Lv and Zhai, 2011) and multilingual adaptations of the biencoder and crossencoder architectures from BLINK (Wu et al., 2020). In our experiments on the two task variants, we find both biencoder and crossencoder models significantly outperform the BM25+ baseline. Our results also indicate that the crosslingual task is in general more challenging than the multilingual task. To test the out-of-domain generalization of the proposed linking systems, we additionally create a Wikinews-based evaluation set. We present qualitative analysis highlighting various aspects captured by the proposed dataset, including the need for temporal reasoning over context and tackling diverse event descriptions across languages. 3 authors · Apr 13, 2022
- Large Language Models are Strong Zero-Shot Retriever In this work, we propose a simple method that applies a large language model (LLM) to large-scale retrieval in zero-shot scenarios. Our method, the Language language model as Retriever (LameR), is built upon no other neural models but an LLM, while breaking brute-force combinations of retrievers with LLMs and lifting the performance of zero-shot retrieval to be very competitive on benchmark datasets. Essentially, we propose to augment a query with its potential answers by prompting LLMs with a composition of the query and the query's in-domain candidates. The candidates, regardless of correct or wrong, are obtained by a vanilla retrieval procedure on the target collection. As a part of the prompts, they are likely to help LLM generate more precise answers by pattern imitation or candidate summarization. Even if all the candidates are wrong, the prompts at least make LLM aware of in-collection patterns and genres. Moreover, due to the low performance of a self-supervised retriever, the LLM-based query augmentation becomes less effective as the retriever bottlenecks the whole pipeline. Therefore, we propose to leverage a non-parametric lexicon-based method (e.g., BM25) as the retrieval module to capture query-document overlap in a literal fashion. As such, LameR makes the retrieval procedure transparent to the LLM, thus circumventing the performance bottleneck. 6 authors · Apr 27, 2023
- mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset The MS MARCO ranking dataset has been widely used for training deep learning models for IR tasks, achieving considerable effectiveness on diverse zero-shot scenarios. However, this type of resource is scarce in languages other than English. In this work, we present mMARCO, a multilingual version of the MS MARCO passage ranking dataset comprising 13 languages that was created using machine translation. We evaluated mMARCO by finetuning monolingual and multilingual reranking models, as well as a multilingual dense retrieval model on this dataset. We also evaluated models finetuned using the mMARCO dataset in a zero-shot scenario on Mr. TyDi dataset, demonstrating that multilingual models finetuned on our translated dataset achieve superior effectiveness to models finetuned on the original English version alone. Our experiments also show that a distilled multilingual reranker is competitive with non-distilled models while having 5.4 times fewer parameters. Lastly, we show a positive correlation between translation quality and retrieval effectiveness, providing evidence that improvements in translation methods might lead to improvements in multilingual information retrieval. The translated datasets and finetuned models are available at https://github.com/unicamp-dl/mMARCO. 7 authors · Aug 31, 2021
- CoRT: Complementary Rankings from Transformers Many recent approaches towards neural information retrieval mitigate their computational costs by using a multi-stage ranking pipeline. In the first stage, a number of potentially relevant candidates are retrieved using an efficient retrieval model such as BM25. Although BM25 has proven decent performance as a first-stage ranker, it tends to miss relevant passages. In this context we propose CoRT, a simple neural first-stage ranking model that leverages contextual representations from pretrained language models such as BERT to complement term-based ranking functions while causing no significant delay at query time. Using the MS MARCO dataset, we show that CoRT significantly increases the candidate recall by complementing BM25 with missing candidates. Consequently, we find subsequent re-rankers achieve superior results with less candidates. We further demonstrate that passage retrieval using CoRT can be realized with surprisingly low latencies. 2 authors · Oct 20, 2020
32 MMTEB: Massive Multilingual Text Embedding Benchmark Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost. 86 authors · Feb 19 3
- Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus The development of automated approaches to linguistic acceptability has been greatly fostered by the availability of the English CoLA corpus, which has also been included in the widely used GLUE benchmark. However, this kind of research for languages other than English, as well as the analysis of cross-lingual approaches, has been hindered by the lack of resources with a comparable size in other languages. We have therefore developed the ItaCoLA corpus, containing almost 10,000 sentences with acceptability judgments, which has been created following the same approach and the same steps as the English one. In this paper we describe the corpus creation, we detail its content, and we present the first experiments on this new resource. We compare in-domain and out-of-domain classification, and perform a specific evaluation of nine linguistic phenomena. We also present the first cross-lingual experiments, aimed at assessing whether multilingual transformerbased approaches can benefit from using sentences in two languages during fine-tuning. 4 authors · Sep 24, 2021
- Prompting Large Language Model for Machine Translation: A Case Study Research on prompting has shown excellent performance with little or even no supervised training across many tasks. However, prompting for machine translation is still under-explored in the literature. We fill this gap by offering a systematic study on prompting strategies for translation, examining various factors for prompt template and demonstration example selection. We further explore the use of monolingual data and the feasibility of cross-lingual, cross-domain, and sentence-to-document transfer learning in prompting. Extensive experiments with GLM-130B (Zeng et al., 2022) as the testbed show that 1) the number and the quality of prompt examples matter, where using suboptimal examples degenerates translation; 2) several features of prompt examples, such as semantic similarity, show significant Spearman correlation with their prompting performance; yet, none of the correlations are strong enough; 3) using pseudo parallel prompt examples constructed from monolingual data via zero-shot prompting could improve translation; and 4) improved performance is achievable by transferring knowledge from prompt examples selected in other settings. We finally provide an analysis on the model outputs and discuss several problems that prompting still suffers from. 3 authors · Jan 17, 2023
- Models and Datasets for Cross-Lingual Summarisation We present a cross-lingual summarisation corpus with long documents in a source language associated with multi-sentence summaries in a target language. The corpus covers twelve language pairs and directions for four European languages, namely Czech, English, French and German, and the methodology for its creation can be applied to several other languages. We derive cross-lingual document-summary instances from Wikipedia by combining lead paragraphs and articles' bodies from language aligned Wikipedia titles. We analyse the proposed cross-lingual summarisation task with automatic metrics and validate it with a human study. To illustrate the utility of our dataset we report experiments with multi-lingual pre-trained models in supervised, zero- and few-shot, and out-of-domain scenarios. 2 authors · Feb 19, 2022
- InfoCTM: A Mutual Information Maximization Perspective of Cross-Lingual Topic Modeling Cross-lingual topic models have been prevalent for cross-lingual text analysis by revealing aligned latent topics. However, most existing methods suffer from producing repetitive topics that hinder further analysis and performance decline caused by low-coverage dictionaries. In this paper, we propose the Cross-lingual Topic Modeling with Mutual Information (InfoCTM). Instead of the direct alignment in previous work, we propose a topic alignment with mutual information method. This works as a regularization to properly align topics and prevent degenerate topic representations of words, which mitigates the repetitive topic issue. To address the low-coverage dictionary issue, we further propose a cross-lingual vocabulary linking method that finds more linked cross-lingual words for topic alignment beyond the translations of a given dictionary. Extensive experiments on English, Chinese, and Japanese datasets demonstrate that our method outperforms state-of-the-art baselines, producing more coherent, diverse, and well-aligned topics and showing better transferability for cross-lingual classification tasks. 6 authors · Apr 7, 2023
1 Adaptive Two-Phase Finetuning LLMs for Japanese Legal Text Retrieval Text Retrieval (TR) involves finding and retrieving text-based content relevant to a user's query from a large repository, with applications in real-world scenarios such as legal document retrieval. While most existing studies focus on English, limited work addresses Japanese contexts. In this paper, we introduce a new dataset specifically designed for Japanese legal contexts and propose a novel two-phase pipeline tailored to this domain. In the first phase, the model learns a broad understanding of global contexts, enhancing its generalization and adaptability to diverse queries. In the second phase, the model is fine-tuned to address complex queries specific to legal scenarios. Extensive experiments are conducted to demonstrate the superior performance of our method, which outperforms existing baselines. Furthermore, our pipeline proves effective in English contexts, surpassing comparable baselines on the MS MARCO dataset. We have made our code publicly available on GitHub, and the model checkpoints are accessible via HuggingFace. 5 authors · Dec 3, 2024
- ECLeKTic: a Novel Challenge Set for Evaluation of Cross-Lingual Knowledge Transfer To achieve equitable performance across languages, multilingual large language models (LLMs) must be able to abstract knowledge beyond the language in which it was acquired. However, the current literature lacks reliable ways to measure LLMs' capability of cross-lingual knowledge transfer. To that end, we present ECLeKTic, a multilingual closed-book QA (CBQA) dataset that Evaluates Cross-Lingual Knowledge Transfer in a simple, black-box manner. We detected information with uneven coverage across languages by controlling for presence and absence of Wikipedia articles in 12 languages. We generated knowledge-seeking questions in a source language, for which the answer appears in a relevant Wikipedia article and translated them to all other 11 languages, for which the respective Wikipedias lack equivalent articles. Assuming that Wikipedia reflects the prominent knowledge in the LLM's training data, to solve ECLeKTic's CBQA task the model is required to transfer knowledge between languages. Experimenting with 8 LLMs, we show that SOTA models struggle to effectively share knowledge across, languages even if they can predict the answer well for queries in the same language the knowledge was acquired in. 14 authors · Feb 28
- Exploring the Representation of Word Meanings in Context: A Case Study on Homonymy and Synonymy This paper presents a multilingual study of word meaning representations in context. We assess the ability of both static and contextualized models to adequately represent different lexical-semantic relations, such as homonymy and synonymy. To do so, we created a new multilingual dataset that allows us to perform a controlled evaluation of several factors such as the impact of the surrounding context or the overlap between words, conveying the same or different senses. A systematic assessment on four scenarios shows that the best monolingual models based on Transformers can adequately disambiguate homonyms in context. However, as they rely heavily on context, these models fail at representing words with different senses when occurring in similar sentences. Experiments are performed in Galician, Portuguese, English, and Spanish, and both the dataset (with more than 3,000 evaluation items) and new models are freely released with this study. 1 authors · Jun 25, 2021
- One ruler to measure them all: Benchmarking multilingual long-context language models We present ONERULER, a multilingual benchmark designed to evaluate long-context language models across 26 languages. ONERULER adapts the English-only RULER benchmark (Hsieh et al., 2024) by including seven synthetic tasks that test both retrieval and aggregation, including new variations of the "needle-in-a-haystack" task that allow for the possibility of a nonexistent needle. We create ONERULER through a two-step process, first writing English instructions for each task and then collaborating with native speakers to translate them into 25 additional languages. Experiments with both open-weight and closed LLMs reveal a widening performance gap between low- and high-resource languages as context length increases from 8K to 128K tokens. Surprisingly, English is not the top-performing language on long-context tasks (ranked 6th out of 26), with Polish emerging as the top language. Our experiments also show that many LLMs (particularly OpenAI's o3-mini-high) incorrectly predict the absence of an answer, even in high-resource languages. Finally, in cross-lingual scenarios where instructions and context appear in different languages, performance can fluctuate by up to 20% depending on the instruction language. We hope the release of ONERULER will facilitate future research into improving multilingual and cross-lingual long-context training pipelines. 4 authors · Mar 3
1 Prompt-Tuning Can Be Much Better Than Fine-Tuning on Cross-lingual Understanding With Multilingual Language Models Pre-trained multilingual language models show significant performance gains for zero-shot cross-lingual model transfer on a wide range of natural language understanding (NLU) tasks. Previously, for zero-shot cross-lingual evaluation, pre-trained models are only fine-tuned on English data and tested on a variety of target languages. In this paper, we do cross-lingual evaluation on various NLU tasks (sentence classification, sequence labeling, question answering) using prompt-tuning and compare it with fine-tuning. The results show that prompt tuning achieves much better cross-lingual transfer than fine-tuning across datasets, with only 0.1% to 0.3% tuned parameters. Additionally, we demonstrate through the analysis that prompt tuning can have better cross-lingual transferability of representations on downstream tasks with better aligned decision boundaries. 3 authors · Oct 22, 2022
- A Supervised Word Alignment Method based on Cross-Language Span Prediction using Multilingual BERT We present a novel supervised word alignment method based on cross-language span prediction. We first formalize a word alignment problem as a collection of independent predictions from a token in the source sentence to a span in the target sentence. As this is equivalent to a SQuAD v2.0 style question answering task, we then solve this problem by using multilingual BERT, which is fine-tuned on a manually created gold word alignment data. We greatly improved the word alignment accuracy by adding the context of the token to the question. In the experiments using five word alignment datasets among Chinese, Japanese, German, Romanian, French, and English, we show that the proposed method significantly outperformed previous supervised and unsupervised word alignment methods without using any bitexts for pretraining. For example, we achieved an F1 score of 86.7 for the Chinese-English data, which is 13.3 points higher than the previous state-of-the-art supervised methods. 3 authors · Apr 29, 2020
- UMBCLU at SemEval-2024 Task 1A and 1C: Semantic Textual Relatedness with and without machine translation This paper describes the system we developed for SemEval-2024 Task 1, "Semantic Textual Relatedness for African and Asian Languages." The aim of the task is to build a model that can identify semantic textual relatedness (STR) between two sentences of a target language belonging to a collection of African and Asian languages. We participated in Subtasks A and C and explored supervised and cross-lingual training leveraging large language models (LLMs). Pre-trained large language models have been extensively used for machine translation and semantic similarity. Using a combination of machine translation and sentence embedding LLMs, we developed a unified STR model, TranSem, for subtask A and fine-tuned the T5 family of models on the STR data, FineSem, for use in subtask C. Our model results for 7 languages in subtask A were better than the official baseline for 3 languages and on par with the baseline for the remaining 4 languages. Our model results for the 12 languages in subtask C resulted in 1st place for Africaans, 2nd place for Indonesian, and 3rd place for English with low performance for the remaining 9 languages. 2 authors · Feb 20, 2024
- Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation We present an easy and efficient method to extend existing sentence embedding models to new languages. This allows to create multilingual versions from previously monolingual models. The training is based on the idea that a translated sentence should be mapped to the same location in the vector space as the original sentence. We use the original (monolingual) model to generate sentence embeddings for the source language and then train a new system on translated sentences to mimic the original model. Compared to other methods for training multilingual sentence embeddings, this approach has several advantages: It is easy to extend existing models with relatively few samples to new languages, it is easier to ensure desired properties for the vector space, and the hardware requirements for training is lower. We demonstrate the effectiveness of our approach for 50+ languages from various language families. Code to extend sentence embeddings models to more than 400 languages is publicly available. 2 authors · Apr 21, 2020
1 How Transliterations Improve Crosslingual Alignment Recent studies have shown that post-aligning multilingual pretrained language models (mPLMs) using alignment objectives on both original and transliterated data can improve crosslingual alignment. This improvement further leads to better crosslingual transfer performance. However, it remains unclear how and why a better crosslingual alignment is achieved, as this technique only involves transliterations, and does not use any parallel data. This paper attempts to explicitly evaluate the crosslingual alignment and identify the key elements in transliteration-based approaches that contribute to better performance. For this, we train multiple models under varying setups for two pairs of related languages: (1) Polish and Ukrainian and (2) Hindi and Urdu. To assess alignment, we define four types of similarities based on sentence representations. Our experiments show that adding transliterations alone improves the overall similarities, even for random sentence pairs. With the help of auxiliary alignment objectives, especially the contrastive objective, the model learns to distinguish matched from random pairs, leading to better alignments. However, we also show that better alignment does not always yield better downstream performance, suggesting that further research is needed to clarify the connection between alignment and performance. 9 authors · Sep 25, 2024
- LLM for Everyone: Representing the Underrepresented in Large Language Models Natural language processing (NLP) has witnessed a profound impact of large language models (LLMs) that excel in a multitude of tasks. However, the limitation of LLMs in multilingual settings, particularly in underrepresented languages, remains a significant hurdle. This thesis aims to bridge the gap in NLP research and development by focusing on underrepresented languages. A comprehensive evaluation of LLMs is conducted to assess their capabilities in these languages, revealing the challenges of multilingual and multicultural generalization. Addressing the multilingual generalization gap, this thesis proposes data-and-compute-efficient methods to mitigate the disparity in LLM ability in underrepresented languages, allowing better generalization on underrepresented languages without the loss of task generalization ability. The proposed solutions cover cross-lingual continual instruction tuning, retrieval-based cross-lingual in-context learning, and in-context query alignment. Furthermore, a novel method to measure cultural values alignment between LLMs operating in different languages is proposed, ensuring cultural sensitivity and inclusivity. These contributions aim to enhance the multilingual and multicultural alignment of LLMs in underrepresented languages, ultimately advancing the NLP field toward greater equality and inclusiveness. 1 authors · Sep 20, 2024
- CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB We show that margin-based bitext mining in a multilingual sentence space can be applied to monolingual corpora of billions of sentences. We are using ten snapshots of a curated common crawl corpus (Wenzek et al., 2019) totalling 32.7 billion unique sentences. Using one unified approach for 38 languages, we were able to mine 4.5 billions parallel sentences, out of which 661 million are aligned with English. 20 language pairs have more then 30 million parallel sentences, 112 more then 10 million, and most more than one million, including direct alignments between many European or Asian languages. To evaluate the quality of the mined bitexts, we train NMT systems for most of the language pairs and evaluate them on TED, WMT and WAT test sets. Using our mined bitexts only and no human translated parallel data, we achieve a new state-of-the-art for a single system on the WMT'19 test set for translation between English and German, Russian and Chinese, as well as German/French. In particular, our English/German system outperforms the best single one by close to 4 BLEU points and is almost on pair with best WMT'19 evaluation system which uses system combination and back-translation. We also achieve excellent results for distant languages pairs like Russian/Japanese, outperforming the best submission at the 2019 workshop on Asian Translation (WAT). 5 authors · Nov 10, 2019
2 Language-agnostic BERT Sentence Embedding While BERT is an effective method for learning monolingual sentence embeddings for semantic similarity and embedding based transfer learning (Reimers and Gurevych, 2019), BERT based cross-lingual sentence embeddings have yet to be explored. We systematically investigate methods for learning multilingual sentence embeddings by combining the best methods for learning monolingual and cross-lingual representations including: masked language modeling (MLM), translation language modeling (TLM) (Conneau and Lample, 2019), dual encoder translation ranking (Guo et al., 2018), and additive margin softmax (Yang et al., 2019a). We show that introducing a pre-trained multilingual language model dramatically reduces the amount of parallel training data required to achieve good performance by 80%. Composing the best of these methods produces a model that achieves 83.7% bi-text retrieval accuracy over 112 languages on Tatoeba, well above the 65.5% achieved by Artetxe and Schwenk (2019b), while still performing competitively on monolingual transfer learning benchmarks (Conneau and Kiela, 2018). Parallel data mined from CommonCrawl using our best model is shown to train competitive NMT models for en-zh and en-de. We publicly release our best multilingual sentence embedding model for 109+ languages at https://tfhub.dev/google/LaBSE. 5 authors · Jul 3, 2020
- XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation Machine learning has brought striking advances in multilingual natural language processing capabilities over the past year. For example, the latest techniques have improved the state-of-the-art performance on the XTREME multilingual benchmark by more than 13 points. While a sizeable gap to human-level performance remains, improvements have been easier to achieve in some tasks than in others. This paper analyzes the current state of cross-lingual transfer learning and summarizes some lessons learned. In order to catalyze meaningful progress, we extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks, including challenging language-agnostic retrieval tasks, and covers 50 typologically diverse languages. In addition, we provide a massively multilingual diagnostic suite (MultiCheckList) and fine-grained multi-dataset evaluation capabilities through an interactive public leaderboard to gain a better understanding of such models. The leaderboard and code for XTREME-R will be made available at https://sites.research.google/xtreme and https://github.com/google-research/xtreme respectively. 11 authors · Apr 15, 2021
1 A General-Purpose Multilingual Document Encoder Massively multilingual pretrained transformers (MMTs) have tremendously pushed the state of the art on multilingual NLP and cross-lingual transfer of NLP models in particular. While a large body of work leveraged MMTs to mine parallel data and induce bilingual document embeddings, much less effort has been devoted to training general-purpose (massively) multilingual document encoder that can be used for both supervised and unsupervised document-level tasks. In this work, we pretrain a massively multilingual document encoder as a hierarchical transformer model (HMDE) in which a shallow document transformer contextualizes sentence representations produced by a state-of-the-art pretrained multilingual sentence encoder. We leverage Wikipedia as a readily available source of comparable documents for creating training data, and train HMDE by means of a cross-lingual contrastive objective, further exploiting the category hierarchy of Wikipedia for creation of difficult negatives. We evaluate the effectiveness of HMDE in two arguably most common and prominent cross-lingual document-level tasks: (1) cross-lingual transfer for topical document classification and (2) cross-lingual document retrieval. HMDE is significantly more effective than (i) aggregations of segment-based representations and (ii) multilingual Longformer. Crucially, owing to its massively multilingual lower transformer, HMDE successfully generalizes to languages unseen in document-level pretraining. We publicly release our code and models at https://github.com/ogaloglu/pre-training-multilingual-document-encoders . 3 authors · May 11, 2023
- Multilingual Controllable Transformer-Based Lexical Simplification Text is by far the most ubiquitous source of knowledge and information and should be made easily accessible to as many people as possible; however, texts often contain complex words that hinder reading comprehension and accessibility. Therefore, suggesting simpler alternatives for complex words without compromising meaning would help convey the information to a broader audience. This paper proposes mTLS, a multilingual controllable Transformer-based Lexical Simplification (LS) system fined-tuned with the T5 model. The novelty of this work lies in the use of language-specific prefixes, control tokens, and candidates extracted from pre-trained masked language models to learn simpler alternatives for complex words. The evaluation results on three well-known LS datasets -- LexMTurk, BenchLS, and NNSEval -- show that our model outperforms the previous state-of-the-art models like LSBert and ConLS. Moreover, further evaluation of our approach on the part of the recent TSAR-2022 multilingual LS shared-task dataset shows that our model performs competitively when compared with the participating systems for English LS and even outperforms the GPT-3 model on several metrics. Moreover, our model obtains performance gains also for Spanish and Portuguese. 2 authors · Jul 5, 2023 1
1 A New Massive Multilingual Dataset for High-Performance Language Technologies We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ~5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work. 13 authors · Mar 20, 2024
- Babel-ImageNet: Massively Multilingual Evaluation of Vision-and-Language Representations Vision-and-language (VL) models with separate encoders for each modality (e.g., CLIP) have become the go-to models for zero-shot image classification and image-text retrieval. The bulk of the evaluation of these models is, however, performed with English text only: the costly creation of language-specific image-caption datasets has limited multilingual VL benchmarks to a handful of high-resource languages. In this work, we introduce Babel-ImageNet, a massively multilingual benchmark that offers (partial) translations of 1000 ImageNet labels to 92 languages, built without resorting to machine translation (MT) or requiring manual annotation. We instead automatically obtain reliable translations of ImageNext concepts by linking them -- via shared WordNet synsets -- to BabelNet, a massively multilingual lexico-semantic network. We evaluate 8 different publicly available multilingual CLIP models on zero-shot image classification (ZS-IC) for each of the 92 Babel-ImageNet languages, demonstrating a significant gap between English ImageNet performance and that of high-resource languages (e.g., German or Chinese), and an even bigger gap for low-resource languages (e.g., Sinhala or Lao). Crucially, we show that the models' ZS-IC performance on Babel-ImageNet highly correlates with their performance in image-text retrieval, validating that Babel-ImageNet is suitable for estimating the quality of the multilingual VL representation spaces for the vast majority of languages that lack gold image-text data. Finally, we show that the performance of multilingual CLIP for low-resource languages can be drastically improved via cheap, parameter-efficient language-specific training. We make our code and data publicly available: https://github.com/gregor-ge/Babel-ImageNet 3 authors · Jun 14, 2023
7 Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 18 datasets annotated with named entities in a cross-lingual consistent schema across 12 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We release the data, code, and fitted models to the public. 13 authors · Nov 15, 2023 1
- Linear Cross-Lingual Mapping of Sentence Embeddings Semantics of a sentence is defined with much less ambiguity than semantics of a single word, and it should be better preserved by translation to another language. If multilingual sentence embeddings intend to represent sentence semantics, then the similarity between embeddings of any two sentences must be invariant with respect to translation. Based on this suggestion, we consider a simple linear cross-lingual mapping as a possible improvement of the multilingual embeddings. We also consider deviation from orthogonality conditions as a measure of deficiency of the embeddings. 3 authors · May 23, 2023
- MessIRve: A Large-Scale Spanish Information Retrieval Dataset Information retrieval (IR) is the task of finding relevant documents in response to a user query. Although Spanish is the second most spoken native language, current IR benchmarks lack Spanish data, hindering the development of information access tools for Spanish speakers. We introduce MessIRve, a large-scale Spanish IR dataset with around 730 thousand queries from Google's autocomplete API and relevant documents sourced from Wikipedia. MessIRve's queries reflect diverse Spanish-speaking regions, unlike other datasets that are translated from English or do not consider dialectal variations. The large size of the dataset allows it to cover a wide variety of topics, unlike smaller datasets. We provide a comprehensive description of the dataset, comparisons with existing datasets, and baseline evaluations of prominent IR models. Our contributions aim to advance Spanish IR research and improve information access for Spanish speakers. 6 authors · Sep 9, 2024
- How Language-Neutral is Multilingual BERT? Multilingual BERT (mBERT) provides sentence representations for 104 languages, which are useful for many multi-lingual tasks. Previous work probed the cross-linguality of mBERT using zero-shot transfer learning on morphological and syntactic tasks. We instead focus on the semantic properties of mBERT. We show that mBERT representations can be split into a language-specific component and a language-neutral component, and that the language-neutral component is sufficiently general in terms of modeling semantics to allow high-accuracy word-alignment and sentence retrieval but is not yet good enough for the more difficult task of MT quality estimation. Our work presents interesting challenges which must be solved to build better language-neutral representations, particularly for tasks requiring linguistic transfer of semantics. 3 authors · Nov 8, 2019
- Bilingual BSARD: Extending Statutory Article Retrieval to Dutch Statutory article retrieval plays a crucial role in making legal information more accessible to both laypeople and legal professionals. Multilingual countries like Belgium present unique challenges for retrieval models due to the need for handling legal issues in multiple languages. Building on the Belgian Statutory Article Retrieval Dataset (BSARD) in French, we introduce the bilingual version of this dataset, bBSARD. The dataset contains parallel Belgian statutory articles in both French and Dutch, along with legal questions from BSARD and their Dutch translation. Using bBSARD, we conduct extensive benchmarking of retrieval models available for Dutch and French. Our benchmarking setup includes lexical models, zero-shot dense models, and fine-tuned small foundation models. Our experiments show that BM25 remains a competitive baseline compared to many zero-shot dense models in both languages. We also observe that while proprietary models outperform open alternatives in the zero-shot setting, they can be matched or surpassed by fine-tuning small language-specific models. Our dataset and evaluation code are publicly available. 4 authors · Dec 10, 2024
1 Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers Multilingual Large Language Models are capable of using powerful Large Language Models to handle and respond to queries in multiple languages, which achieves remarkable success in multilingual natural language processing tasks. Despite these breakthroughs, there still remains a lack of a comprehensive survey to summarize existing approaches and recent developments in this field. To this end, in this paper, we present a thorough review and provide a unified perspective to summarize the recent progress as well as emerging trends in multilingual large language models (MLLMs) literature. The contributions of this paper can be summarized: (1) First survey: to our knowledge, we take the first step and present a thorough review in MLLMs research field according to multi-lingual alignment; (2) New taxonomy: we offer a new and unified perspective to summarize the current progress of MLLMs; (3) New frontiers: we highlight several emerging frontiers and discuss the corresponding challenges; (4) Abundant resources: we collect abundant open-source resources, including relevant papers, data corpora, and leaderboards. We hope our work can provide the community with quick access and spur breakthrough research in MLLMs. 9 authors · Apr 7, 2024
- Samanantar: The Largest Publicly Available Parallel Corpora Collection for 11 Indic Languages We present Samanantar, the largest publicly available parallel corpora collection for Indic languages. The collection contains a total of 49.7 million sentence pairs between English and 11 Indic languages (from two language families). Specifically, we compile 12.4 million sentence pairs from existing, publicly-available parallel corpora, and additionally mine 37.4 million sentence pairs from the web, resulting in a 4x increase. We mine the parallel sentences from the web by combining many corpora, tools, and methods: (a) web-crawled monolingual corpora, (b) document OCR for extracting sentences from scanned documents, (c) multilingual representation models for aligning sentences, and (d) approximate nearest neighbor search for searching in a large collection of sentences. Human evaluation of samples from the newly mined corpora validate the high quality of the parallel sentences across 11 languages. Further, we extract 83.4 million sentence pairs between all 55 Indic language pairs from the English-centric parallel corpus using English as the pivot language. We trained multilingual NMT models spanning all these languages on Samanantar, which outperform existing models and baselines on publicly available benchmarks, such as FLORES, establishing the utility of Samanantar. Our data and models are available publicly at https://indicnlp.ai4bharat.org/samanantar/ and we hope they will help advance research in NMT and multilingual NLP for Indic languages. 18 authors · Apr 12, 2021
- An Empirical Study on Cross-lingual Vocabulary Adaptation for Efficient Generative LLM Inference The development of state-of-the-art generative large language models (LLMs) disproportionately relies on English-centric tokenizers, vocabulary and pre-training data. Despite the fact that some LLMs have multilingual capabilities, recent studies have shown that their inference efficiency deteriorates when generating text in languages other than English. This results in increased inference time and costs. Cross-lingual vocabulary adaptation methods have been proposed for adapting models to a target language aiming to improve downstream performance. However, the effectiveness of these methods on increasing inference efficiency of generative LLMs has yet to be explored. In this paper, we perform an empirical study of various cross-lingual vocabulary adaptation methods on five generative LLMs (including monolingual and multilingual models) across four typologically-diverse languages and four natural language understanding tasks. We find that cross-lingual vocabulary adaptation substantially contributes to LLM inference speedups of up to 271.5%. We also show that adapting LLMs that have been pre-trained on more balanced multilingual data results in downstream performance comparable to the original models. 3 authors · Feb 16, 2024
- The Less the Merrier? Investigating Language Representation in Multilingual Models Multilingual Language Models offer a way to incorporate multiple languages in one model and utilize cross-language transfer learning to improve performance for different Natural Language Processing (NLP) tasks. Despite progress in multilingual models, not all languages are supported as well, particularly in low-resource settings. In this work, we investigate the linguistic representation of different languages in multilingual models. We start by asking the question which languages are supported in popular multilingual models and which languages are left behind. Then, for included languages, we look at models' learned representations based on language family and dialect and try to understand how models' learned representations for~(1) seen and~(2) unseen languages vary across different language groups. In addition, we test and analyze performance on downstream tasks such as text generation and Named Entity Recognition. We observe from our experiments that community-centered models -- models that focus on languages of a given family or geographical location and are built by communities who speak them -- perform better at distinguishing between languages in the same family for low-resource languages. Our paper contributes to the literature in understanding multilingual models and their shortcomings and offers insights on potential ways to improve them. 3 authors · Oct 19, 2023
2 Multilingual Sentence-Level Semantic Search using Meta-Distillation Learning Multilingual semantic search is the task of retrieving relevant contents to a query expressed in different language combinations. This requires a better semantic understanding of the user's intent and its contextual meaning. Multilingual semantic search is less explored and more challenging than its monolingual or bilingual counterparts, due to the lack of multilingual parallel resources for this task and the need to circumvent "language bias". In this work, we propose an alignment approach: MAML-Align, specifically for low-resource scenarios. Our approach leverages meta-distillation learning based on MAML, an optimization-based Model-Agnostic Meta-Learner. MAML-Align distills knowledge from a Teacher meta-transfer model T-MAML, specialized in transferring from monolingual to bilingual semantic search, to a Student model S-MAML, which meta-transfers from bilingual to multilingual semantic search. To the best of our knowledge, we are the first to extend meta-distillation to a multilingual search application. Our empirical results show that on top of a strong baseline based on sentence transformers, our meta-distillation approach boosts the gains provided by MAML and significantly outperforms naive fine-tuning methods. Furthermore, multilingual meta-distillation learning improves generalization even to unseen languages. 5 authors · Sep 15, 2023
- LLM-RM at SemEval-2023 Task 2: Multilingual Complex NER using XLM-RoBERTa Named Entity Recognition(NER) is a task of recognizing entities at a token level in a sentence. This paper focuses on solving NER tasks in a multilingual setting for complex named entities. Our team, LLM-RM participated in the recently organized SemEval 2023 task, Task 2: MultiCoNER II,Multilingual Complex Named Entity Recognition. We approach the problem by leveraging cross-lingual representation provided by fine-tuning XLM-Roberta base model on datasets of all of the 12 languages provided -- Bangla, Chinese, English, Farsi, French, German, Hindi, Italian, Portuguese, Spanish, Swedish and Ukrainian 2 authors · May 5, 2023
- MT4CrossOIE: Multi-stage Tuning for Cross-lingual Open Information Extraction Cross-lingual open information extraction aims to extract structured information from raw text across multiple languages. Previous work uses a shared cross-lingual pre-trained model to handle the different languages but underuses the potential of the language-specific representation. In this paper, we propose an effective multi-stage tuning framework called MT4CrossIE, designed for enhancing cross-lingual open information extraction by injecting language-specific knowledge into the shared model. Specifically, the cross-lingual pre-trained model is first tuned in a shared semantic space (e.g., embedding matrix) in the fixed encoder and then other components are optimized in the second stage. After enough training, we freeze the pre-trained model and tune the multiple extra low-rank language-specific modules using mixture-of-LoRAs for model-based cross-lingual transfer. In addition, we leverage two-stage prompting to encourage the large language model (LLM) to annotate the multi-lingual raw data for data-based cross-lingual transfer. The model is trained with multi-lingual objectives on our proposed dataset OpenIE4++ by combing the model-based and data-based transfer techniques. Experimental results on various benchmarks emphasize the importance of aggregating multiple plug-in-and-play language-specific modules and demonstrate the effectiveness of MT4CrossIE in cross-lingual OIE\url{https://github.com/CSJianYang/Multilingual-Multimodal-NLP}. 11 authors · Aug 12, 2023
- MultiLegalSBD: A Multilingual Legal Sentence Boundary Detection Dataset Sentence Boundary Detection (SBD) is one of the foundational building blocks of Natural Language Processing (NLP), with incorrectly split sentences heavily influencing the output quality of downstream tasks. It is a challenging task for algorithms, especially in the legal domain, considering the complex and different sentence structures used. In this work, we curated a diverse multilingual legal dataset consisting of over 130'000 annotated sentences in 6 languages. Our experimental results indicate that the performance of existing SBD models is subpar on multilingual legal data. We trained and tested monolingual and multilingual models based on CRF, BiLSTM-CRF, and transformers, demonstrating state-of-the-art performance. We also show that our multilingual models outperform all baselines in the zero-shot setting on a Portuguese test set. To encourage further research and development by the community, we have made our dataset, models, and code publicly available. 3 authors · May 2, 2023 1
- Embedding structure matters: Comparing methods to adapt multilingual vocabularies to new languages Pre-trained multilingual language models underpin a large portion of modern NLP tools outside of English. A strong baseline for specializing these models for specific languages is Language-Adaptive Pre-Training (LAPT). However, retaining a large cross-lingual vocabulary and embedding matrix comes at considerable excess computational cost during adaptation. In this study, we propose several simple techniques to replace a cross-lingual vocabulary with a compact, language-specific one. Namely, we address strategies for re-initializing the token embedding matrix after vocabulary specialization. We then provide a systematic experimental comparison of our techniques, in addition to the recently-proposed Focus method. We demonstrate that: 1) Embedding-replacement techniques in the monolingual transfer literature are inadequate for adapting multilingual models. 2) Replacing cross-lingual vocabularies with smaller specialized ones provides an efficient method to improve performance in low-resource languages. 3) Simple embedding re-initialization techniques based on script-wise sub-distributions rival techniques such as Focus, which rely on similarity scores obtained from an auxiliary model. 4 authors · Sep 9, 2023
- CLASP: Contrastive Language-Speech Pretraining for Multilingual Multimodal Information Retrieval This study introduces CLASP (Contrastive Language-Speech Pretraining), a multilingual, multimodal representation tailored for audio-text information retrieval. CLASP leverages the synergy between spoken content and textual data. During training, we utilize our newly introduced speech-text dataset, which encompasses 15 diverse categories ranging from fiction to religion. CLASP's audio component integrates audio spectrograms with a pre-trained self-supervised speech model, while its language encoding counterpart employs a sentence encoder pre-trained on over 100 languages. This unified lightweight model bridges the gap between various modalities and languages, enhancing its effectiveness in handling and retrieving multilingual and multimodal data. Our evaluations across multiple languages demonstrate that CLASP establishes new benchmarks in HITS@1, MRR, and meanR metrics, outperforming traditional ASR-based retrieval approaches in specific scenarios. 2 authors · Dec 17, 2024
2 Do Language Models Care About Text Quality? Evaluating Web-Crawled Corpora Across 11 Languages Large, curated, web-crawled corpora play a vital role in training language models (LMs). They form the lion's share of the training data in virtually all recent LMs, such as the well-known GPT, LLaMA and XLM-RoBERTa models. However, despite this importance, relatively little attention has been given to the quality of these corpora. In this paper, we compare four of the currently most relevant large, web-crawled corpora (CC100, MaCoCu, mC4 and OSCAR) across eleven lower-resourced European languages. Our approach is two-fold: first, we perform an intrinsic evaluation by performing a human evaluation of the quality of samples taken from different corpora; then, we assess the practical impact of the qualitative differences by training specific LMs on each of the corpora and evaluating their performance on downstream tasks. We find that there are clear differences in quality of the corpora, with MaCoCu and OSCAR obtaining the best results. However, during the extrinsic evaluation, we actually find that the CC100 corpus achieves the highest scores. We conclude that, in our experiments, the quality of the web-crawled corpora does not seem to play a significant role when training LMs. 7 authors · Mar 13, 2024 1
- Overview of the TREC 2023 NeuCLIR Track The principal goal of the TREC Neural Cross-Language Information Retrieval (NeuCLIR) track is to study the impact of neural approaches to cross-language information retrieval. The track has created four collections, large collections of Chinese, Persian, and Russian newswire and a smaller collection of Chinese scientific abstracts. The principal tasks are ranked retrieval of news in one of the three languages, using English topics. Results for a multilingual task, also with English topics but with documents from all three newswire collections, are also reported. New in this second year of the track is a pilot technical documents CLIR task for ranked retrieval of Chinese technical documents using English topics. A total of 220 runs across all tasks were submitted by six participating teams and, as baselines, by track coordinators. Task descriptions and results are presented. 7 authors · Apr 11, 2024
6 BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval-Augmented Generation Large language models excel at creative generation but continue to struggle with the issues of hallucination and bias. While retrieval-augmented generation (RAG) provides a framework for grounding LLMs' responses in accurate and up-to-date information, it still raises the question of bias: which sources should be selected for inclusion in the context? And how should their importance be weighted? In this paper, we study the challenge of cross-lingual RAG and present a dataset to investigate the robustness of existing systems at answering queries about geopolitical disputes, which exist at the intersection of linguistic, cultural, and political boundaries. Our dataset is sourced from Wikipedia pages containing information relevant to the given queries and we investigate the impact of including additional context, as well as the composition of this context in terms of language and source, on an LLM's response. Our results show that existing RAG systems continue to be challenged by cross-lingual use cases and suffer from a lack of consistency when they are provided with competing information in multiple languages. We present case studies to illustrate these issues and outline steps for future research to address these challenges. We make our dataset and code publicly available at https://github.com/manestay/bordIRlines. 5 authors · Oct 1, 2024 4
- HEAD-QA: A Healthcare Dataset for Complex Reasoning We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work. 2 authors · Jun 11, 2019
- A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias Based on the foundation of Large Language Models (LLMs), Multilingual Large Language Models (MLLMs) have been developed to address the challenges of multilingual natural language processing tasks, hoping to achieve knowledge transfer from high-resource to low-resource languages. However, significant limitations and challenges still exist, such as language imbalance, multilingual alignment, and inherent bias. In this paper, we aim to provide a comprehensive analysis of MLLMs, delving deeply into discussions surrounding these critical issues. First of all, we start by presenting an overview of MLLMs, covering their evolution, key techniques, and multilingual capacities. Secondly, we explore widely utilized multilingual corpora for MLLMs' training and multilingual datasets oriented for downstream tasks that are crucial for enhancing the cross-lingual capability of MLLMs. Thirdly, we survey the existing studies on multilingual representations and investigate whether the current MLLMs can learn a universal language representation. Fourthly, we discuss bias on MLLMs including its category and evaluation metrics, and summarize the existing debiasing techniques. Finally, we discuss existing challenges and point out promising research directions. By demonstrating these aspects, this paper aims to facilitate a deeper understanding of MLLMs and their potentiality in various domains. 6 authors · Apr 1, 2024
- Sinhala-English Word Embedding Alignment: Introducing Datasets and Benchmark for a Low Resource Language Since their inception, embeddings have become a primary ingredient in many flavours of Natural Language Processing (NLP) tasks supplanting earlier types of representation. Even though multilingual embeddings have been used for the increasing number of multilingual tasks, due to the scarcity of parallel training data, low-resource languages such as Sinhala, tend to focus more on monolingual embeddings. Then when it comes to the aforementioned multi-lingual tasks, it is challenging to utilize these monolingual embeddings given that even if the embedding spaces have a similar geometric arrangement due to an identical training process, the embeddings of the languages considered are not aligned. This is solved by the embedding alignment task. Even in this, high-resource language pairs are in the limelight while low-resource languages such as Sinhala which is in dire need of help seem to have fallen by the wayside. In this paper, we try to align Sinhala and English word embedding spaces based on available alignment techniques and introduce a benchmark for Sinhala language embedding alignment. In addition to that, to facilitate the supervised alignment, as an intermediate task, we also introduce Sinhala-English alignment datasets. These datasets serve as our anchor datasets for supervised word embedding alignment. Even though we do not obtain results comparable to the high-resource languages such as French, German, or Chinese, we believe our work lays the groundwork for more specialized alignment between English and Sinhala embeddings. 2 authors · Nov 17, 2023
- Cross-Lingual Transfer from Related Languages: Treating Low-Resource Maltese as Multilingual Code-Switching Although multilingual language models exhibit impressive cross-lingual transfer capabilities on unseen languages, the performance on downstream tasks is impacted when there is a script disparity with the languages used in the multilingual model's pre-training data. Using transliteration offers a straightforward yet effective means to align the script of a resource-rich language with a target language, thereby enhancing cross-lingual transfer capabilities. However, for mixed languages, this approach is suboptimal, since only a subset of the language benefits from the cross-lingual transfer while the remainder is impeded. In this work, we focus on Maltese, a Semitic language, with substantial influences from Arabic, Italian, and English, and notably written in Latin script. We present a novel dataset annotated with word-level etymology. We use this dataset to train a classifier that enables us to make informed decisions regarding the appropriate processing of each token in the Maltese language. We contrast indiscriminate transliteration or translation to mixing processing pipelines that only transliterate words of Arabic origin, thereby resulting in text with a mixture of scripts. We fine-tune the processed data on four downstream tasks and show that conditional transliteration based on word etymology yields the best results, surpassing fine-tuning with raw Maltese or Maltese processed with non-selective pipelines. 5 authors · Jan 30, 2024
1 WebFAQ: A Multilingual Collection of Natural Q&A Datasets for Dense Retrieval We present WebFAQ, a large-scale collection of open-domain question answering datasets derived from FAQ-style schema.org annotations. In total, the data collection consists of 96 million natural question-answer (QA) pairs across 75 languages, including 47 million (49%) non-English samples. WebFAQ further serves as the foundation for 20 monolingual retrieval benchmarks with a total size of 11.2 million QA pairs (5.9 million non-English). These datasets are carefully curated through refined filtering and near-duplicate detection, yielding high-quality resources for training and evaluating multilingual dense retrieval models. To empirically confirm WebFAQ's efficacy, we use the collected QAs to fine-tune an in-domain pretrained XLM-RoBERTa model. Through this process of dataset-specific fine-tuning, the model achieves significant retrieval performance gains, which generalize - beyond WebFAQ - to other multilingual retrieval benchmarks evaluated in zero-shot setting. Last but not least, we utilize WebFAQ to construct a set of QA-aligned bilingual corpora spanning over 1000 language pairs using state-of-the-art bitext mining and automated LLM-assessed translation evaluation. Due to our advanced, automated method of bitext dataset generation, the resulting bilingual corpora demonstrate higher translation quality compared to similar datasets. WebFAQ and all associated resources are publicly available on GitHub and HuggingFace. 5 authors · Feb 28
- Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Compared to monolingual models, cross-lingual models usually require a more expressive vocabulary to represent all languages adequately. We find that many languages are under-represented in recent cross-lingual language models due to the limited vocabulary capacity. To this end, we propose an algorithm VoCap to determine the desired vocabulary capacity of each language. However, increasing the vocabulary size significantly slows down the pre-training speed. In order to address the issues, we propose k-NN-based target sampling to accelerate the expensive softmax. Our experiments show that the multilingual vocabulary learned with VoCap benefits cross-lingual language model pre-training. Moreover, k-NN-based target sampling mitigates the side-effects of increasing the vocabulary size while achieving comparable performance and faster pre-training speed. The code and the pretrained multilingual vocabularies are available at https://github.com/bozheng-hit/VoCapXLM. 8 authors · Sep 15, 2021
1 A Unified Generative Retriever for Knowledge-Intensive Language Tasks via Prompt Learning Knowledge-intensive language tasks (KILTs) benefit from retrieving high-quality relevant contexts from large external knowledge corpora. Learning task-specific retrievers that return relevant contexts at an appropriate level of semantic granularity, such as a document retriever, passage retriever, sentence retriever, and entity retriever, may help to achieve better performance on the end-to-end task. But a task-specific retriever usually has poor generalization ability to new domains and tasks, and it may be costly to deploy a variety of specialised retrievers in practice. We propose a unified generative retriever (UGR) that combines task-specific effectiveness with robust performance over different retrieval tasks in KILTs. To achieve this goal, we make two major contributions: (i) To unify different retrieval tasks into a single generative form, we introduce an n-gram-based identifier for relevant contexts at different levels of granularity in KILTs. And (ii) to address different retrieval tasks with a single model, we employ a prompt learning strategy and investigate three methods to design prompt tokens for each task. In this way, the proposed UGR model can not only share common knowledge across tasks for better generalization, but also perform different retrieval tasks effectively by distinguishing task-specific characteristics. We train UGR on a heterogeneous set of retrieval corpora with well-designed prompts in a supervised and multi-task fashion. Experimental results on the KILT benchmark demonstrate the effectiveness of UGR on in-domain datasets, out-of-domain datasets, and unseen tasks. 7 authors · Apr 28, 2023
- CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs We present CrossSum, a large-scale cross-lingual abstractive summarization dataset comprising 1.7 million article-summary samples in 1500+ language pairs. We create CrossSum by aligning identical articles written in different languages via cross-lingual retrieval from a multilingual summarization dataset. We propose a multi-stage data sampling algorithm to effectively train a cross-lingual summarization model capable of summarizing an article in any target language. We also propose LaSE, a new metric for automatically evaluating model-generated summaries and showing a strong correlation with ROUGE. Performance on ROUGE and LaSE indicate that pretrained models fine-tuned on CrossSum consistently outperform baseline models, even when the source and target language pairs are linguistically distant. To the best of our knowledge, CrossSum is the largest cross-lingual summarization dataset and the first-ever that does not rely solely on English as the pivot language. We are releasing the dataset, alignment and training scripts, and the models to spur future research on cross-lingual abstractive summarization. The resources can be found at https://github.com/csebuetnlp/CrossSum. 6 authors · Dec 16, 2021
1 SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation We propose the SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation learning framework. Unlike previous works on speech representation learning, which learns multilingual contextual speech embedding at the resolution of an acoustic frame (10-20ms), this work focuses on learning multimodal (speech-text) multilingual speech embedding at the resolution of a sentence (5-10s) such that the embedding vector space is semantically aligned across different languages. We combine state-of-the-art multilingual acoustic frame-level speech representation learning model XLS-R with the Language Agnostic BERT Sentence Embedding (LaBSE) model to create an utterance-level multimodal multilingual speech encoder SAMU-XLSR. Although we train SAMU-XLSR with only multilingual transcribed speech data, cross-lingual speech-text and speech-speech associations emerge in its learned representation space. To substantiate our claims, we use SAMU-XLSR speech encoder in combination with a pre-trained LaBSE text sentence encoder for cross-lingual speech-to-text translation retrieval, and SAMU-XLSR alone for cross-lingual speech-to-speech translation retrieval. We highlight these applications by performing several cross-lingual text and speech translation retrieval tasks across several datasets. 3 authors · May 17, 2022
- Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models Large language models (LLMs) have demonstrated strong multilingual capabilities; yet, they are mostly English-centric due to the imbalanced training corpora. Existing works leverage this phenomenon to improve their multilingual performances on NLP tasks. In this work, we extend the evaluation from NLP tasks to real user queries. We find that even though translation into English can help improve the performance of multilingual NLP tasks for English-centric LLMs, it may not be optimal for all scenarios. For culture-related tasks that need deep language understanding, prompting in the native language proves to be more promising since it can capture the nuances related to culture and language. Therefore, we advocate for more efforts towards the development of strong multilingual LLMs instead of just English-centric LLMs. 5 authors · Mar 15, 2024
- HC4: A New Suite of Test Collections for Ad Hoc CLIR HC4 is a new suite of test collections for ad hoc Cross-Language Information Retrieval (CLIR), with Common Crawl News documents in Chinese, Persian, and Russian, topics in English and in the document languages, and graded relevance judgments. New test collections are needed because existing CLIR test collections built using pooling of traditional CLIR runs have systematic gaps in their relevance judgments when used to evaluate neural CLIR methods. The HC4 collections contain 60 topics and about half a million documents for each of Chinese and Persian, and 54 topics and five million documents for Russian. Active learning was used to determine which documents to annotate after being seeded using interactive search and judgment. Documents were judged on a three-grade relevance scale. This paper describes the design and construction of the new test collections and provides baseline results for demonstrating their utility for evaluating systems. 4 authors · Jan 24, 2022
1 MuRIL: Multilingual Representations for Indian Languages India is a multilingual society with 1369 rationalized languages and dialects being spoken across the country (INDIA, 2011). Of these, the 22 scheduled languages have a staggering total of 1.17 billion speakers and 121 languages have more than 10,000 speakers (INDIA, 2011). India also has the second largest (and an ever growing) digital footprint (Statista, 2020). Despite this, today's state-of-the-art multilingual systems perform suboptimally on Indian (IN) languages. This can be explained by the fact that multilingual language models (LMs) are often trained on 100+ languages together, leading to a small representation of IN languages in their vocabulary and training data. Multilingual LMs are substantially less effective in resource-lean scenarios (Wu and Dredze, 2020; Lauscher et al., 2020), as limited data doesn't help capture the various nuances of a language. One also commonly observes IN language text transliterated to Latin or code-mixed with English, especially in informal settings (for example, on social media platforms) (Rijhwani et al., 2017). This phenomenon is not adequately handled by current state-of-the-art multilingual LMs. To address the aforementioned gaps, we propose MuRIL, a multilingual LM specifically built for IN languages. MuRIL is trained on significantly large amounts of IN text corpora only. We explicitly augment monolingual text corpora with both translated and transliterated document pairs, that serve as supervised cross-lingual signals in training. MuRIL significantly outperforms multilingual BERT (mBERT) on all tasks in the challenging cross-lingual XTREME benchmark (Hu et al., 2020). We also present results on transliterated (native to Latin script) test sets of the chosen datasets and demonstrate the efficacy of MuRIL in handling transliterated data. 14 authors · Mar 19, 2021
1 Quati: A Brazilian Portuguese Information Retrieval Dataset from Native Speakers Despite Portuguese being one of the most spoken languages in the world, there is a lack of high-quality information retrieval datasets in that language. We present Quati, a dataset specifically designed for the Brazilian Portuguese language. It comprises a collection of queries formulated by native speakers and a curated set of documents sourced from a selection of high-quality Brazilian Portuguese websites. These websites are frequented more likely by real users compared to those randomly scraped, ensuring a more representative and relevant corpus. To label the query-document pairs, we use a state-of-the-art LLM, which shows inter-annotator agreement levels comparable to human performance in our assessments. We provide a detailed description of our annotation methodology to enable others to create similar datasets for other languages, providing a cost-effective way of creating high-quality IR datasets with an arbitrary number of labeled documents per query. Finally, we evaluate a diverse range of open-source and commercial retrievers to serve as baseline systems. Quati is publicly available at https://huggingface.co/datasets/unicamp-dl/quati and all scripts at https://github.com/unicamp-dl/quati . 5 authors · Apr 10, 2024
- Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages Scaling multilingual representation learning beyond the hundred most frequent languages is challenging, in particular to cover the long tail of low-resource languages. A promising approach has been to train one-for-all multilingual models capable of cross-lingual transfer, but these models often suffer from insufficient capacity and interference between unrelated languages. Instead, we move away from this approach and focus on training multiple language (family) specific representations, but most prominently enable all languages to still be encoded in the same representational space. To achieve this, we focus on teacher-student training, allowing all encoders to be mutually compatible for bitext mining, and enabling fast learning of new languages. We introduce a new teacher-student training scheme which combines supervised and self-supervised training, allowing encoders to take advantage of monolingual training data, which is valuable in the low-resource setting. Our approach significantly outperforms the original LASER encoder. We study very low-resource languages and handle 50 African languages, many of which are not covered by any other model. For these languages, we train sentence encoders, mine bitexts, and validate the bitexts by training NMT systems. 3 authors · May 25, 2022
- CROP: Zero-shot Cross-lingual Named Entity Recognition with Multilingual Labeled Sequence Translation Named entity recognition (NER) suffers from the scarcity of annotated training data, especially for low-resource languages without labeled data. Cross-lingual NER has been proposed to alleviate this issue by transferring knowledge from high-resource languages to low-resource languages via aligned cross-lingual representations or machine translation results. However, the performance of cross-lingual NER methods is severely affected by the unsatisfactory quality of translation or label projection. To address these problems, we propose a Cross-lingual Entity Projection framework (CROP) to enable zero-shot cross-lingual NER with the help of a multilingual labeled sequence translation model. Specifically, the target sequence is first translated into the source language and then tagged by a source NER model. We further adopt a labeled sequence translation model to project the tagged sequence back to the target language and label the target raw sentence. Ultimately, the whole pipeline is integrated into an end-to-end model by the way of self-training. Experimental results on two benchmarks demonstrate that our method substantially outperforms the previous strong baseline by a large margin of +3~7 F1 scores and achieves state-of-the-art performance. 9 authors · Oct 13, 2022
- The Impact of Cross-Lingual Adjustment of Contextual Word Representations on Zero-Shot Transfer Large multilingual language models such as mBERT or XLM-R enable zero-shot cross-lingual transfer in various IR and NLP tasks. Cao et al. (2020) proposed a data- and compute-efficient method for cross-lingual adjustment of mBERT that uses a small parallel corpus to make embeddings of related words across languages similar to each other. They showed it to be effective in NLI for five European languages. In contrast we experiment with a typologically diverse set of languages (Spanish, Russian, Vietnamese, and Hindi) and extend their original implementations to new tasks (XSR, NER, and QA) and an additional training regime (continual learning). Our study reproduced gains in NLI for four languages, showed improved NER, XSR, and cross-lingual QA results in three languages (though some cross-lingual QA gains were not statistically significant), while mono-lingual QA performance never improved and sometimes degraded. Analysis of distances between contextualized embeddings of related and unrelated words (across languages) showed that fine-tuning leads to "forgetting" some of the cross-lingual alignment information. Based on this observation, we further improved NLI performance using continual learning. 4 authors · Apr 13, 2022
1 Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Experimental Setups Matter Cross-lingual transfer is a popular approach to increase the amount of training data for NLP tasks in a low-resource context. However, the best strategy to decide which cross-lingual data to include is unclear. Prior research often focuses on a small set of languages from a few language families and/or a single task. It is still an open question how these findings extend to a wider variety of languages and tasks. In this work, we analyze cross-lingual transfer for 266 languages from a wide variety of language families. Moreover, we include three popular NLP tasks: POS tagging, dependency parsing, and topic classification. Our findings indicate that the effect of linguistic similarity on transfer performance depends on a range of factors: the NLP task, the (mono- or multilingual) input representations, and the definition of linguistic similarity. 3 authors · Jan 24
- GermanQuAD and GermanDPR: Improving Non-English Question Answering and Passage Retrieval A major challenge of research on non-English machine reading for question answering (QA) is the lack of annotated datasets. In this paper, we present GermanQuAD, a dataset of 13,722 extractive question/answer pairs. To improve the reproducibility of the dataset creation approach and foster QA research on other languages, we summarize lessons learned and evaluate reformulation of question/answer pairs as a way to speed up the annotation process. An extractive QA model trained on GermanQuAD significantly outperforms multilingual models and also shows that machine-translated training data cannot fully substitute hand-annotated training data in the target language. Finally, we demonstrate the wide range of applications of GermanQuAD by adapting it to GermanDPR, a training dataset for dense passage retrieval (DPR), and train and evaluate the first non-English DPR model. 3 authors · Apr 26, 2021
1 SONAR: Sentence-Level Multimodal and Language-Agnostic Representations We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space. Our single text encoder, covering 200 languages, substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks. Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. Our encoders outperform existing speech encoders on similarity search tasks. We also provide a text decoder for 200 languages, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations. Our text-to-text results are competitive compared to the state-of-the-art NLLB~1B model, despite the fixed-size bottleneck representation. Our zero-shot speech-to-text translation results compare favorably with strong supervised baselines such as Whisper. 3 authors · Aug 22, 2023
3 Large Language Models for Information Retrieval: A Survey As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field. 8 authors · Aug 14, 2023
70 EuroBERT: Scaling Multilingual Encoders for European Languages General-purpose multilingual vector representations, used in retrieval, regression and classification, are traditionally obtained from bidirectional encoder models. Despite their wide applicability, encoders have been recently overshadowed by advances in generative decoder-only models. However, many innovations driving this progress are not inherently tied to decoders. In this paper, we revisit the development of multilingual encoders through the lens of these advances, and introduce EuroBERT, a family of multilingual encoders covering European and widely spoken global languages. Our models outperform existing alternatives across a diverse range of tasks, spanning multilingual capabilities, mathematics, and coding, and natively supporting sequences of up to 8,192 tokens. We also examine the design decisions behind EuroBERT, offering insights into our dataset composition and training pipeline. We publicly release the EuroBERT models, including intermediate training checkpoints, together with our training framework. 19 authors · Mar 7 9
- Some Like It Small: Czech Semantic Embedding Models for Industry Applications This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance. 4 authors · Nov 23, 2023
- Multi-task Retrieval for Knowledge-Intensive Tasks Retrieving relevant contexts from a large corpus is a crucial step for tasks such as open-domain question answering and fact checking. Although neural retrieval outperforms traditional methods like tf-idf and BM25, its performance degrades considerably when applied to out-of-domain data. Driven by the question of whether a neural retrieval model can be universal and perform robustly on a wide variety of problems, we propose a multi-task trained model. Our approach not only outperforms previous methods in the few-shot setting, but also rivals specialised neural retrievers, even when in-domain training data is abundant. With the help of our retriever, we improve existing models for downstream tasks and closely match or improve the state of the art on multiple benchmarks. 7 authors · Dec 31, 2020
22 JaColBERTv2.5: Optimising Multi-Vector Retrievers to Create State-of-the-Art Japanese Retrievers with Constrained Resources Neural Information Retrieval has advanced rapidly in high-resource languages, but progress in lower-resource ones such as Japanese has been hindered by data scarcity, among other challenges. Consequently, multilingual models have dominated Japanese retrieval, despite their computational inefficiencies and inability to capture linguistic nuances. While recent multi-vector monolingual models like JaColBERT have narrowed this gap, they still lag behind multilingual methods in large-scale evaluations. This work addresses the suboptimal training methods of multi-vector retrievers in lower-resource settings, focusing on Japanese. We systematically evaluate and improve key aspects of the inference and training settings of JaColBERT, and more broadly, multi-vector models. We further enhance performance through a novel checkpoint merging step, showcasing it to be an effective way of combining the benefits of fine-tuning with the generalization capabilities of the original checkpoint. Building on our analysis, we introduce a novel training recipe, resulting in the JaColBERTv2.5 model. JaColBERTv2.5, with only 110 million parameters and trained in under 15 hours on 4 A100 GPUs, significantly outperforms all existing methods across all common benchmarks, reaching an average score of 0.754, significantly above the previous best of 0.720. To support future research, we make our final models, intermediate checkpoints and all data used publicly available. 1 authors · Jul 30, 2024 2
- LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation The fine-tuning of open-source large language models (LLMs) for machine translation has recently received considerable attention, marking a shift towards data-centric research from traditional neural machine translation. However, the area of data collection for instruction fine-tuning in machine translation remains relatively underexplored. In this paper, we present LexMatcher, a simple yet effective method for data collection that leverages bilingual dictionaries to generate a dataset, the design of which is driven by the coverage of senses found in these dictionaries. The dataset comprises a subset retrieved from an existing corpus and a smaller synthesized subset which supplements the infrequent senses of polysemous words. Utilizing LLaMA2 as our base model, our approach outperforms the established baselines on the WMT2022 test sets and also exhibits significant performance improvements in tasks related to word sense disambiguation and specialized terminology translation. These results underscore the effectiveness of LexMatcher in enhancing LLM-based machine translation. 5 authors · Jun 3, 2024
- Language Ranker: A Metric for Quantifying LLM Performance Across High and Low-Resource Languages The development of Large Language Models (LLMs) relies on extensive text corpora, which are often unevenly distributed across languages. This imbalance results in LLMs performing significantly better on high-resource languages like English, German, and French, while their capabilities in low-resource languages remain inadequate. Currently, there is a lack of quantitative methods to evaluate the performance of LLMs in these low-resource languages. To address this gap, we propose the Language Ranker, an intrinsic metric designed to benchmark and rank languages based on LLM performance using internal representations. By comparing the LLM's internal representation of various languages against a baseline derived from English, we can assess the model's multilingual capabilities in a robust and language-agnostic manner. Our analysis reveals that high-resource languages exhibit higher similarity scores with English, demonstrating superior performance, while low-resource languages show lower similarity scores, underscoring the effectiveness of our metric in assessing language-specific capabilities. Besides, the experiments show that there is a strong correlation between the LLM's performance in different languages and the proportion of those languages in its pre-training corpus. These insights underscore the efficacy of the Language Ranker as a tool for evaluating LLM performance across different languages, particularly those with limited resources. 7 authors · Apr 17, 2024
- Scaling up COMETKIWI: Unbabel-IST 2023 Submission for the Quality Estimation Shared Task We present the joint contribution of Unbabel and Instituto Superior T\'ecnico to the WMT 2023 Shared Task on Quality Estimation (QE). Our team participated on all tasks: sentence- and word-level quality prediction (task 1) and fine-grained error span detection (task 2). For all tasks, we build on the COMETKIWI-22 model (Rei et al., 2022b). Our multilingual approaches are ranked first for all tasks, reaching state-of-the-art performance for quality estimation at word-, span- and sentence-level granularity. Compared to the previous state-of-the-art COMETKIWI-22, we show large improvements in correlation with human judgements (up to 10 Spearman points). Moreover, we surpass the second-best multilingual submission to the shared-task with up to 3.8 absolute points. 8 authors · Sep 21, 2023
- Leveraging Domain Adaptation and Data Augmentation to Improve Qur'anic IR in English and Arabic In this work, we approach the problem of Qur'anic information retrieval (IR) in Arabic and English. Using the latest state-of-the-art methods in neural IR, we research what helps to tackle this task more efficiently. Training retrieval models requires a lot of data, which is difficult to obtain for training in-domain. Therefore, we commence with training on a large amount of general domain data and then continue training on in-domain data. To handle the lack of in-domain data, we employed a data augmentation technique, which considerably improved results in MRR@10 and NDCG@5 metrics, setting the state-of-the-art in Qur'anic IR for both English and Arabic. The absence of an Islamic corpus and domain-specific model for IR task in English motivated us to address this lack of resources and take preliminary steps of the Islamic corpus compilation and domain-specific language model (LM) pre-training, which helped to improve the performance of the retrieval models that use the domain-specific LM as the shared backbone. We examined several language models (LMs) in Arabic to select one that efficiently deals with the Qur'anic IR task. Besides transferring successful experiments from English to Arabic, we conducted additional experiments with retrieval task in Arabic to amortize the scarcity of general domain datasets used to train the retrieval models. Handling Qur'anic IR task combining English and Arabic allowed us to enhance the comparison and share valuable insights across models and languages. 1 authors · Dec 5, 2023
- Multilingual LAMA: Investigating Knowledge in Multilingual Pretrained Language Models Recently, it has been found that monolingual English language models can be used as knowledge bases. Instead of structural knowledge base queries, masked sentences such as "Paris is the capital of [MASK]" are used as probes. We translate the established benchmarks TREx and GoogleRE into 53 languages. Working with mBERT, we investigate three questions. (i) Can mBERT be used as a multilingual knowledge base? Most prior work only considers English. Extending research to multiple languages is important for diversity and accessibility. (ii) Is mBERT's performance as knowledge base language-independent or does it vary from language to language? (iii) A multilingual model is trained on more text, e.g., mBERT is trained on 104 Wikipedias. Can mBERT leverage this for better performance? We find that using mBERT as a knowledge base yields varying performance across languages and pooling predictions across languages improves performance. Conversely, mBERT exhibits a language bias; e.g., when queried in Italian, it tends to predict Italy as the country of origin. 3 authors · Feb 1, 2021
1 Transfer to a Low-Resource Language via Close Relatives: The Case Study on Faroese Multilingual language models have pushed state-of-the-art in cross-lingual NLP transfer. The majority of zero-shot cross-lingual transfer, however, use one and the same massively multilingual transformer (e.g., mBERT or XLM-R) to transfer to all target languages, irrespective of their typological, etymological, and phylogenetic relations to other languages. In particular, readily available data and models of resource-rich sibling languages are often ignored. In this work, we empirically show, in a case study for Faroese -- a low-resource language from a high-resource language family -- that by leveraging the phylogenetic information and departing from the 'one-size-fits-all' paradigm, one can improve cross-lingual transfer to low-resource languages. In particular, we leverage abundant resources of other Scandinavian languages (i.e., Danish, Norwegian, Swedish, and Icelandic) for the benefit of Faroese. Our evaluation results show that we can substantially improve the transfer performance to Faroese by exploiting data and models of closely-related high-resource languages. Further, we release a new web corpus of Faroese and Faroese datasets for named entity recognition (NER), semantic text similarity (STS), and new language models trained on all Scandinavian languages. 4 authors · Apr 18, 2023
4 mT5: A massively multilingual pre-trained text-to-text transformer The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model checkpoints used in this work are publicly available. 8 authors · Oct 22, 2020
- UniBridge: A Unified Approach to Cross-Lingual Transfer Learning for Low-Resource Languages In this paper, we introduce UniBridge (Cross-Lingual Transfer Learning with Optimized Embeddings and Vocabulary), a comprehensive approach developed to improve the effectiveness of Cross-Lingual Transfer Learning, particularly in languages with limited resources. Our approach tackles two essential elements of a language model: the initialization of embeddings and the optimal vocabulary size. Specifically, we propose a novel embedding initialization method that leverages both lexical and semantic alignment for a language. In addition, we present a method for systematically searching for the optimal vocabulary size, ensuring a balance between model complexity and linguistic coverage. Our experiments across multilingual datasets show that our approach greatly improves the F1-Score in several languages. UniBridge is a robust and adaptable solution for cross-lingual systems in various languages, highlighting the significance of initializing embeddings and choosing the right vocabulary size in cross-lingual environments. 3 authors · Jun 14, 2024
12 INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks. Despite this, their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language. While prompt-based methods can provide task descriptions to LLMs, they often fall short in facilitating comprehensive understanding and execution of IR tasks, thereby limiting LLMs' applicability. To address this gap, in this work, we explore the potential of instruction tuning to enhance LLMs' proficiency in IR tasks. We introduce a novel instruction tuning dataset, INTERS, encompassing 21 tasks across three fundamental IR categories: query understanding, document understanding, and query-document relationship understanding. The data are derived from 43 distinct datasets with manually written templates. Our empirical results reveal that INTERS significantly boosts the performance of various publicly available LLMs, such as LLaMA, Mistral, and Phi, in search-related tasks. Furthermore, we conduct a comprehensive analysis to ascertain the effects of base model selection, instruction design, volume of instructions, and task variety on performance. We make our dataset and the models fine-tuned on it publicly accessible at https://github.com/DaoD/INTERS. 8 authors · Jan 12, 2024 7
3 Distributed Representations of Words and Phrases and their Compositionality The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible. 5 authors · Oct 16, 2013
- Align after Pre-train: Improving Multilingual Generative Models with Cross-lingual Alignment Multilingual generative models obtain remarkable cross-lingual capabilities through pre-training on large-scale corpora. However, they still exhibit a performance bias toward high-resource languages, and learn isolated distributions of sentence representations across languages. To bridge this gap, we propose a simple yet effective alignment framework exploiting pairs of translation sentences. It aligns the internal sentence representations across different languages via multilingual contrastive learning and aligns model outputs by answering prompts in different languages. Experimental results demonstrate that even with less than 0.1 {\textperthousand} of pre-training tokens, our alignment framework significantly boosts the cross-lingual abilities of generative models and mitigates the performance gap. Further analysis reveals that it results in a better internal multilingual representation distribution of multilingual models. 4 authors · Nov 14, 2023
14 KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model As retrieval-augmented generation prevails in large language models, embedding models are becoming increasingly crucial. Despite the growing number of general embedding models, prior work often overlooks the critical role of training data quality. In this work, we introduce KaLM-Embedding, a general multilingual embedding model that leverages a large quantity of cleaner, more diverse, and domain-specific training data. Our model has been trained with key techniques proven to enhance performance: (1) persona-based synthetic data to create diversified examples distilled from LLMs, (2) ranking consistency filtering to remove less informative samples, and (3) semi-homogeneous task batch sampling to improve training efficacy. Departing from traditional BERT-like architectures, we adopt Qwen2-0.5B as the pre-trained model, facilitating the adaptation of auto-regressive language models for general embedding tasks. Extensive evaluations of the MTEB benchmark across multiple languages show that our model outperforms others of comparable size, setting a new standard for multilingual embedding models with <1B parameters. 11 authors · Jan 1
- Modular Adaptation of Multilingual Encoders to Written Swiss German Dialect Creating neural text encoders for written Swiss German is challenging due to a dearth of training data combined with dialectal variation. In this paper, we build on several existing multilingual encoders and adapt them to Swiss German using continued pre-training. Evaluation on three diverse downstream tasks shows that simply adding a Swiss German adapter to a modular encoder achieves 97.5% of fully monolithic adaptation performance. We further find that for the task of retrieving Swiss German sentences given Standard German queries, adapting a character-level model is more effective than the other adaptation strategies. We release our code and the models trained for our experiments at https://github.com/ZurichNLP/swiss-german-text-encoders 3 authors · Jan 25, 2024
- Enriching Word Vectors with Subword Information Continuous word representations, trained on large unlabeled corpora are useful for many natural language processing tasks. Popular models that learn such representations ignore the morphology of words, by assigning a distinct vector to each word. This is a limitation, especially for languages with large vocabularies and many rare words. In this paper, we propose a new approach based on the skipgram model, where each word is represented as a bag of character n-grams. A vector representation is associated to each character n-gram; words being represented as the sum of these representations. Our method is fast, allowing to train models on large corpora quickly and allows us to compute word representations for words that did not appear in the training data. We evaluate our word representations on nine different languages, both on word similarity and analogy tasks. By comparing to recently proposed morphological word representations, we show that our vectors achieve state-of-the-art performance on these tasks. 4 authors · Jul 15, 2016
- Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT Pretrained contextual representation models (Peters et al., 2018; Devlin et al., 2018) have pushed forward the state-of-the-art on many NLP tasks. A new release of BERT (Devlin, 2018) includes a model simultaneously pretrained on 104 languages with impressive performance for zero-shot cross-lingual transfer on a natural language inference task. This paper explores the broader cross-lingual potential of mBERT (multilingual) as a zero shot language transfer model on 5 NLP tasks covering a total of 39 languages from various language families: NLI, document classification, NER, POS tagging, and dependency parsing. We compare mBERT with the best-published methods for zero-shot cross-lingual transfer and find mBERT competitive on each task. Additionally, we investigate the most effective strategy for utilizing mBERT in this manner, determine to what extent mBERT generalizes away from language specific features, and measure factors that influence cross-lingual transfer. 2 authors · Apr 19, 2019
- Facebook AI WMT21 News Translation Task Submission We describe Facebook's multilingual model submission to the WMT2021 shared task on news translation. We participate in 14 language directions: English to and from Czech, German, Hausa, Icelandic, Japanese, Russian, and Chinese. To develop systems covering all these directions, we focus on multilingual models. We utilize data from all available sources --- WMT, large-scale data mining, and in-domain backtranslation --- to create high quality bilingual and multilingual baselines. Subsequently, we investigate strategies for scaling multilingual model size, such that one system has sufficient capacity for high quality representations of all eight languages. Our final submission is an ensemble of dense and sparse Mixture-of-Expert multilingual translation models, followed by finetuning on in-domain news data and noisy channel reranking. Compared to previous year's winning submissions, our multilingual system improved the translation quality on all language directions, with an average improvement of 2.0 BLEU. In the WMT2021 task, our system ranks first in 10 directions based on automatic evaluation. 6 authors · Aug 6, 2021
1 Word Alignment by Fine-tuning Embeddings on Parallel Corpora Word alignment over parallel corpora has a wide variety of applications, including learning translation lexicons, cross-lingual transfer of language processing tools, and automatic evaluation or analysis of translation outputs. The great majority of past work on word alignment has worked by performing unsupervised learning on parallel texts. Recently, however, other work has demonstrated that pre-trained contextualized word embeddings derived from multilingually trained language models (LMs) prove an attractive alternative, achieving competitive results on the word alignment task even in the absence of explicit training on parallel data. In this paper, we examine methods to marry the two approaches: leveraging pre-trained LMs but fine-tuning them on parallel text with objectives designed to improve alignment quality, and proposing methods to effectively extract alignments from these fine-tuned models. We perform experiments on five language pairs and demonstrate that our model can consistently outperform previous state-of-the-art models of all varieties. In addition, we demonstrate that we are able to train multilingual word aligners that can obtain robust performance on different language pairs. Our aligner, AWESOME (Aligning Word Embedding Spaces of Multilingual Encoders), with pre-trained models is available at https://github.com/neulab/awesome-align 2 authors · Jan 20, 2021 2
- RankingGPT: Empowering Large Language Models in Text Ranking with Progressive Enhancement Text ranking is a critical task in various information retrieval applications, and the recent success of Large Language Models (LLMs) in natural language processing has sparked interest in their application to text ranking. These methods primarily involve combining query and candidate documents and leveraging prompt learning to determine query-document relevance using the LLM's output probabilities for specific tokens or by directly generating a ranked list of candidate documents. Although these approaches have demonstrated promise, a noteworthy disparity arises between the training objective of LLMs, which typically centers around next token prediction, and the objective of evaluating query-document relevance. To address this gap and fully leverage LLM potential in text ranking tasks, we propose a progressive multi-stage training strategy. Firstly, we introduce a large-scale weakly supervised dataset of relevance texts to enable the LLMs to acquire the ability to predict relevant tokens without altering their original training objective. Subsequently, we incorporate supervised training to further enhance LLM ranking capability. Our experimental results on multiple benchmarks demonstrate the superior performance of our proposed method compared to previous competitive approaches, both in in-domain and out-of-domain scenarios. 6 authors · Nov 28, 2023
1 SetCSE: Set Operations using Contrastive Learning of Sentence Embeddings Taking inspiration from Set Theory, we introduce SetCSE, an innovative information retrieval framework. SetCSE employs sets to represent complex semantics and incorporates well-defined operations for structured information querying under the provided context. Within this framework, we introduce an inter-set contrastive learning objective to enhance comprehension of sentence embedding models concerning the given semantics. Furthermore, we present a suite of operations, including SetCSE intersection, difference, and operation series, that leverage sentence embeddings of the enhanced model for complex sentence retrieval tasks. Throughout this paper, we demonstrate that SetCSE adheres to the conventions of human language expressions regarding compounded semantics, provides a significant enhancement in the discriminatory capability of underlying sentence embedding models, and enables numerous information retrieval tasks involving convoluted and intricate prompts which cannot be achieved using existing querying methods. 1 authors · Apr 24, 2024
- Detecting Fine-Grained Cross-Lingual Semantic Divergences without Supervision by Learning to Rank Detecting fine-grained differences in content conveyed in different languages matters for cross-lingual NLP and multilingual corpora analysis, but it is a challenging machine learning problem since annotation is expensive and hard to scale. This work improves the prediction and annotation of fine-grained semantic divergences. We introduce a training strategy for multilingual BERT models by learning to rank synthetic divergent examples of varying granularity. We evaluate our models on the Rationalized English-French Semantic Divergences, a new dataset released with this work, consisting of English-French sentence-pairs annotated with semantic divergence classes and token-level rationales. Learning to rank helps detect fine-grained sentence-level divergences more accurately than a strong sentence-level similarity model, while token-level predictions have the potential of further distinguishing between coarse and fine-grained divergences. 2 authors · Oct 7, 2020
- Exploring Anisotropy and Outliers in Multilingual Language Models for Cross-Lingual Semantic Sentence Similarity Previous work has shown that the representations output by contextual language models are more anisotropic than static type embeddings, and typically display outlier dimensions. This seems to be true for both monolingual and multilingual models, although much less work has been done on the multilingual context. Why these outliers occur and how they affect the representations is still an active area of research. We investigate outlier dimensions and their relationship to anisotropy in multiple pre-trained multilingual language models. We focus on cross-lingual semantic similarity tasks, as these are natural tasks for evaluating multilingual representations. Specifically, we examine sentence representations. Sentence transformers which are fine-tuned on parallel resources (that are not always available) perform better on this task, and we show that their representations are more isotropic. However, we aim to improve multilingual representations in general. We investigate how much of the performance difference can be made up by only transforming the embedding space without fine-tuning, and visualise the resulting spaces. We test different operations: Removing individual outlier dimensions, cluster-based isotropy enhancement, and ZCA whitening. We publish our code for reproducibility. 4 authors · Jun 1, 2023
7 UnifiedCrawl: Aggregated Common Crawl for Affordable Adaptation of LLMs on Low-Resource Languages Large language models (LLMs) under-perform on low-resource languages due to limited training data. We present a method to efficiently collect text data for low-resource languages from the entire Common Crawl corpus. Our approach, UnifiedCrawl, filters and extracts common crawl using minimal compute resources, yielding mono-lingual datasets much larger than previously available sources. We demonstrate that leveraging this data to fine-tuning multilingual LLMs via efficient adapter methods (QLoRA) significantly boosts performance on the low-resource language, while minimizing VRAM usage. Our experiments show large improvements in language modeling perplexity and an increase in few-shot prompting scores. Our work and released source code provide an affordable approach to improve LLMs for low-resource languages using consumer hardware. Our source code is available here at https://github.com/bethelmelesse/unifiedcrawl. 3 authors · Nov 21, 2024 2
4 LightRAG: Simple and Fast Retrieval-Augmented Generation Retrieval-Augmented Generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge sources, enabling more accurate and contextually relevant responses tailored to user needs. However, existing RAG systems have significant limitations, including reliance on flat data representations and inadequate contextual awareness, which can lead to fragmented answers that fail to capture complex inter-dependencies. To address these challenges, we propose LightRAG, which incorporates graph structures into text indexing and retrieval processes. This innovative framework employs a dual-level retrieval system that enhances comprehensive information retrieval from both low-level and high-level knowledge discovery. Additionally, the integration of graph structures with vector representations facilitates efficient retrieval of related entities and their relationships, significantly improving response times while maintaining contextual relevance. This capability is further enhanced by an incremental update algorithm that ensures the timely integration of new data, allowing the system to remain effective and responsive in rapidly changing data environments. Extensive experimental validation demonstrates considerable improvements in retrieval accuracy and efficiency compared to existing approaches. We have made our LightRAG open-source and available at the link: https://github.com/HKUDS/LightRAG. 5 authors · Oct 8, 2024
13 LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models Recent advancements in large language models (LLMs) based embedding models have established new state-of-the-art benchmarks for text embedding tasks, particularly in dense vector-based retrieval. However, these models predominantly focus on English, leaving multilingual embedding capabilities largely unexplored. To address this limitation, we present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision. LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks. These components are seamlessly integrated through a minimal set of trainable parameters that act as a connector, effectively transferring the multilingual encoder's language understanding capabilities to the specialized embedding model. Additionally, to comprehensively evaluate multilingual embedding performance, we introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages. Extensive experimental results demonstrate that LUSIFER significantly enhances the multilingual performance across various embedding tasks, particularly for medium and low-resource languages, without requiring explicit multilingual training data. 6 authors · Jan 1 2
- Towards Cross-Cultural Machine Translation with Retrieval-Augmented Generation from Multilingual Knowledge Graphs Translating text that contains entity names is a challenging task, as cultural-related references can vary significantly across languages. These variations may also be caused by transcreation, an adaptation process that entails more than transliteration and word-for-word translation. In this paper, we address the problem of cross-cultural translation on two fronts: (i) we introduce XC-Translate, the first large-scale, manually-created benchmark for machine translation that focuses on text that contains potentially culturally-nuanced entity names, and (ii) we propose KG-MT, a novel end-to-end method to integrate information from a multilingual knowledge graph into a neural machine translation model by leveraging a dense retrieval mechanism. Our experiments and analyses show that current machine translation systems and large language models still struggle to translate texts containing entity names, whereas KG-MT outperforms state-of-the-art approaches by a large margin, obtaining a 129% and 62% relative improvement compared to NLLB-200 and GPT-4, respectively. 6 authors · Oct 17, 2024