Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLEMUR Neural Network Dataset: Towards Seamless AutoML
Neural networks are fundamental in artificial intelligence, driving progress in computer vision and natural language processing. High-quality datasets are crucial for their development, and there is growing interest in datasets composed of neural networks themselves to support benchmarking, automated machine learning (AutoML), and model analysis. We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing. LEMUR is primarily designed to provide a rich source of structured model representations and associated performance data, enabling the fine-tuning of large language models for AutoML applications. Leveraging Python and PyTorch, LEMUR enables seamless extension to new datasets and models while maintaining consistency. It integrates an Optuna-powered framework for evaluation, hyperparameter optimization, statistical analysis, and graphical insights. LEMUR VR extension enables the seamless deployment of models in virtual reality, optimizing their performance on resource-constrained devices. Providing tools for model evaluation, preprocessing, and database management, LEMUR supports researchers and practitioners in developing, testing, and analyzing neural networks. It offers an API that delivers comprehensive information about neural network models and their complete performance statistics with a single request, which can be used in experiments with code-generating large language models. The LEMUR and its plugins are accessible as open source projects under the MIT license at https://github.com/ABrain-One/nn-dataset, https://github.com/ABrain-One/nn-plots and https://github.com/ABrain-One/nn-vr.
LLMatic: Neural Architecture Search via Large Language Models and Quality Diversity Optimization
Large Language Models (LLMs) have emerged as powerful tools capable of accomplishing a broad spectrum of tasks. Their abilities span numerous areas, and one area where they have made a significant impact is in the domain of code generation. In this context, we view LLMs as mutation and crossover tools. Meanwhile, Quality-Diversity (QD) algorithms are known to discover diverse and robust solutions. By merging the code-generating abilities of LLMs with the diversity and robustness of QD solutions, we introduce LLMatic, a Neural Architecture Search (NAS) algorithm. While LLMs struggle to conduct NAS directly through prompts, LLMatic uses a procedural approach, leveraging QD for prompts and network architecture to create diverse and highly performant networks. We test LLMatic on the CIFAR-10 image classification benchmark, demonstrating that it can produce competitive networks with just 2,000 searches, even without prior knowledge of the benchmark domain or exposure to any previous top-performing models for the benchmark.
PythonSaga: Redefining the Benchmark to Evaluate Code Generating LLMs
Driven by the surge in code generation using large language models (LLMs), numerous benchmarks have emerged to evaluate these LLMs capabilities. We conducted a large-scale human evaluation of HumanEval and MBPP, two popular benchmarks for Python code generation, analyzing their diversity and difficulty. Our findings unveil a critical bias towards a limited set of programming concepts, neglecting most of the other concepts entirely. Furthermore, we uncover a worrying prevalence of easy tasks, potentially inflating model performance estimations. To address these limitations, we propose a novel benchmark, PythonSaga, featuring 185 hand-crafted prompts on a balanced representation of 38 programming concepts across diverse difficulty levels. The robustness of our benchmark is demonstrated by the poor performance of existing Code-LLMs.
Generating Code World Models with Large Language Models Guided by Monte Carlo Tree Search
In this work we consider Code World Models, world models generated by a Large Language Model (LLM) in the form of Python code for model-based Reinforcement Learning (RL). Calling code instead of LLMs for planning has potential to be more precise, reliable, interpretable, and extremely efficient. However, writing appropriate Code World Models requires the ability to understand complex instructions, to generate exact code with non-trivial logic and to self-debug a long program with feedback from unit tests and environment trajectories. To address these challenges, we propose Generate, Improve and Fix with Monte Carlo Tree Search (GIF-MCTS), a new code generation strategy for LLMs. To test our approach in an offline RL setting, we introduce the Code World Models Benchmark (CWMB), a suite of program synthesis and planning tasks comprised of 18 diverse RL environments paired with corresponding textual descriptions and curated trajectories. GIF-MCTS surpasses all baselines on the CWMB and two other benchmarks, and we show that the Code World Models synthesized with it can be successfully used for planning, resulting in model-based RL agents with greatly improved sample efficiency and inference speed.
UICoder: Finetuning Large Language Models to Generate User Interface Code through Automated Feedback
Large language models (LLMs) struggle to consistently generate UI code that compiles and produces visually relevant designs. Existing approaches to improve generation rely on expensive human feedback or distilling a proprietary model. In this paper, we explore the use of automated feedback (compilers and multi-modal models) to guide LLMs to generate high-quality UI code. Our method starts with an existing LLM and iteratively produces improved models by self-generating a large synthetic dataset using an original model, applying automated tools to aggressively filter, score, and de-duplicate the data into a refined higher quality dataset. The original LLM is improved by finetuning on this refined dataset. We applied our approach to several open-source LLMs and compared the resulting performance to baseline models with both automated metrics and human preferences. Our evaluation shows the resulting models outperform all other downloadable baselines and approach the performance of larger proprietary models.
Where Are Large Language Models for Code Generation on GitHub?
The increasing use of Large Language Models (LLMs) in software development has garnered significant attention from researchers assessing the quality of the code they generate. However, much of the research focuses on controlled datasets such as HumanEval, which fail to adequately represent how developers actually utilize LLMs' code generation capabilities or clarify the characteristics of LLM-generated code in real-world development scenarios. To bridge this gap, our study investigates the characteristics of LLM-generated code and its corresponding projects hosted on GitHub. Our findings reveal several key insights: (1) ChatGPT and Copilot are the most frequently utilized for generating code on GitHub. In contrast, there is very little code generated by other LLMs on GitHub. (2) Projects containing ChatGPT/Copilot-generated code are often small and less known, led by individuals or small teams. Despite this, most projects are continuously evolving and improving. (3) ChatGPT/Copilot is mainly utilized for generating Python, Java, and TypeScript scripts for data processing and transformation. C/C++ and JavaScript code generation focuses on algorithm and data structure implementation and user interface code. Most ChatGPT/Copilot-generated code snippets are relatively short and exhibit low complexity. (4) Compared to human-written code, ChatGPT/Copilot-generated code exists in a small proportion of projects and generally undergoes fewer modifications. Additionally, modifications due to bugs are even fewer, ranging from just 3% to 8% across different languages. (5) Most comments on ChatGPT/Copilot-generated code lack detailed information, often only stating the code's origin without mentioning prompts, human modifications, or testing status. Based on these findings, we discuss the implications for researchers and practitioners.
Private-Library-Oriented Code Generation with Large Language Models
Large language models (LLMs), such as Codex and GPT-4, have recently showcased their remarkable code generation abilities, facilitating a significant boost in coding efficiency. This paper will delve into utilizing LLMs for code generation in private libraries, as they are widely employed in everyday programming. Despite their remarkable capabilities, generating such private APIs poses a formidable conundrum for LLMs, as they inherently lack exposure to these private libraries during pre-training. To address this challenge, we propose a novel framework that emulates the process of programmers writing private code. This framework comprises two modules: APIFinder first retrieves potentially useful APIs from API documentation; and APICoder then leverages these retrieved APIs to generate private code. Specifically, APIFinder employs vector retrieval techniques and allows user involvement in the retrieval process. For APICoder, it can directly utilize off-the-shelf code generation models. To further cultivate explicit proficiency in invoking APIs from prompts, we continuously pre-train a reinforced version of APICoder, named CodeGenAPI. Our goal is to train the above two modules on vast public libraries, enabling generalization to private ones. Meanwhile, we create four private library benchmarks, including TorchDataEval, TorchDataComplexEval, MonkeyEval, and BeatNumEval, and meticulously handcraft test cases for each benchmark to support comprehensive evaluations. Numerous experiments on the four benchmarks consistently affirm the effectiveness of our approach. Furthermore, deeper analysis is also conducted to glean additional insights.
Self-Programming Artificial Intelligence Using Code-Generating Language Models
Recent progress in large-scale language models has enabled breakthroughs in previously intractable computer programming tasks. Prior work in meta-learning and neural architecture search has led to substantial successes across various task domains, spawning myriad approaches for algorithmically optimizing the design and learning dynamics of deep learning models. At the intersection of these research areas, we implement a code-generating language model with the ability to modify its own source code. Self-programming AI algorithms have been of interest since the dawn of AI itself. Although various theoretical formulations of generalized self-programming AI have been posed, no such system has been successfully implemented to date under real-world computational constraints. Applying AI-based code generation to AI itself, we develop and experimentally validate the first practical implementation of a self-programming AI system. We empirically show that a self-programming AI implemented using a code generation model can successfully modify its own source code to improve performance and program sub-models to perform auxiliary tasks. Our model can self-modify various properties including model architecture, computational capacity, and learning dynamics.
Self-planning Code Generation with Large Language Models
Although large language models have demonstrated impressive ability in code generation, they are still struggling to address the complicated intent provided by humans. It is widely acknowledged that humans typically employ planning to decompose complex problems and schedule the solution steps prior to implementation. Thus we introduce planning into code generation to help the model understand complex intent and reduce the difficulty of problem solving. This paper proposes a self-planning code generation method with large language model, which consists of two phases, namely planning phase and implementation phase. Specifically, in the planning phase, the language model plans out the solution steps from the intent combined with in-context learning. Then it enters the implementation phase, where the model generates code step by step, guided by the solution steps. The effectiveness of self-planning code generation has been rigorously evaluated on multiple code generation datasets and the results have demonstrated a marked superiority over naive direct generation approaches with language model. The improvement in performance is substantial, highlighting the significance of self-planning in code generation tasks.
How Propense Are Large Language Models at Producing Code Smells? A Benchmarking Study
Large Language Models (LLMs) have shown significant potential in automating software engineering tasks, particularly in code generation. However, current evaluation benchmarks, which primarily focus on accuracy, fall short in assessing the quality of the code generated by these models, specifically their tendency to produce code smells. To address this limitation, we introduce CodeSmellEval, a benchmark designed to evaluate the propensity of LLMs for generating code smells. Our benchmark includes a novel metric: Propensity Smelly Score (PSC), and a curated dataset of method-level code smells: CodeSmellData. To demonstrate the use of CodeSmellEval, we conducted a case study with two state-of-the-art LLMs, CodeLlama and Mistral. The results reveal that both models tend to generate code smells, such as simplifiable-condition and consider-merging-isinstance. These findings highlight the effectiveness of our benchmark in evaluating LLMs, providing valuable insights into their reliability and their propensity to introduce code smells in code generation tasks.
Beyond Accuracy: Evaluating Self-Consistency of Code Large Language Models with IdentityChain
Code Large Language Models (Code LLMs) are being increasingly employed in real-life applications, so evaluating them is critical. While the conventional accuracy evaluates the performance of Code LLMs on a set of individual tasks, their self-consistency across different tasks is overlooked. Intuitively, a trustworthy model should be self-consistent when generating natural language specifications for its own code and generating code for its own specifications. Failure to preserve self-consistency reveals a lack of understanding of the shared semantics underlying natural language and programming language, and therefore undermines the trustworthiness of a model. In this paper, we first formally define the self-consistency of Code LLMs and then design a framework, IdentityChain, which effectively and efficiently evaluates the self-consistency and conventional accuracy of a model at the same time. We study eleven Code LLMs and show that they fail to preserve self-consistency, which is indeed a distinct aspect from conventional accuracy. Furthermore, we show that IdentityChain can be used as a model debugging tool to expose weaknesses of Code LLMs by demonstrating three major weaknesses that we identify in current models using IdentityChain. Our code is available at https://github.com/marcusm117/IdentityChain.
The First Prompt Counts the Most! An Evaluation of Large Language Models on Iterative Example-based Code Generation
The capabilities of Large Language Models (LLMs) in code generation, particularly for implementing target functionalities from natural language descriptions, have been extensively studied. As an alternative form of natural language, input-output examples (I/O examples) provide an accessible, unambiguous, and flexible way to describe functionalities, but the diversity, sparseness, and incompleteness of I/O examples also place challenges on understanding and implementing requirements. Therefore, generating code from input-output examples (i.e., example-based code generation) provides a new perspective, allowing us to evaluate LLMs' capability to infer target functionalities from limited information and to process new-form requirements. However, related research about LLMs in example-based code generation remains largely unexplored. To fill this gap, this paper presents the first comprehensive study on example-based code generation using LLMs. To address the incorrectness caused by the incompleteness of I/O examples, we adopt an iterative evaluation framework and formalize the objective of example-based code generation as two sequential sub-objectives: generating code conforming to given examples and generating code that successfully implements the target functionalities from (iteratively) given examples. We assess six state-of-the-art LLMs using a new benchmark of 168 diverse target functionalities. The results demonstrate that when requirements were described using iterative I/O examples rather than natural language, the LLMs' score decreased by over 60%, indicating that example-based code generation remains challenging for the evaluated LLMs. More interestingly, the vast majority (even over 95%) of successfully implemented functionalities are achieved in the first round of iterations, suggesting that the LLMs struggle to effectively utilize the iteratively supplemented requirements.
GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
Evaluating and enhancing the general capabilities of large language models (LLMs) has been an important research topic. Graph is a common data structure in the real world, and understanding graph data is a crucial part for advancing general intelligence. To evaluate and enhance the graph understanding abilities of LLMs, in this paper, we propose a benchmark named GraphInstruct, which comprehensively includes 21 classical graph reasoning tasks, providing diverse graph generation pipelines and detailed reasoning steps. Based on GraphInstruct, we further construct GraphLM through efficient instruction-tuning, which shows prominent graph understanding capability. In order to enhance the LLM with graph reasoning capability as well, we propose a step mask training strategy, and construct a model named GraphLM+. As one of the pioneering efforts to enhance the graph understanding and reasoning abilities of LLMs, extensive experiments have demonstrated the superiority of GraphLM and GraphLM+ over other LLMs. We look forward to more researchers exploring the potential of LLMs in the graph data mining domain through GraphInstruct. Our code for generating GraphInstruct is released publicly at: https://github.com/CGCL-codes/GraphInstruct.
Simple synthetic data reduces sycophancy in large language models
Sycophancy is an undesirable behavior where models tailor their responses to follow a human user's view even when that view is not objectively correct (e.g., adapting liberal views once a user reveals that they are liberal). In this paper, we study the prevalence of sycophancy in language models and propose a simple synthetic-data intervention to reduce this behavior. First, on a set of three sycophancy tasks (Perez et al., 2022) where models are asked for an opinion on statements with no correct answers (e.g., politics), we observe that both model scaling and instruction tuning significantly increase sycophancy for PaLM models up to 540B parameters. Second, we extend sycophancy evaluations to simple addition statements that are objectively incorrect, finding that despite knowing that these statements are wrong, language models will still agree with them if the user does as well. To reduce sycophancy, we present a straightforward synthetic-data intervention that takes public NLP tasks and encourages models to be robust to user opinions on these tasks. Adding these data in a lightweight finetuning step can significantly reduce sycophantic behavior on held-out prompts. Code for generating synthetic data for intervention can be found at https://github.com/google/sycophancy-intervention.
Large Language Models Meet NL2Code: A Survey
The task of generating code from a natural language description, or NL2Code, is considered a pressing and significant challenge in code intelligence. Thanks to the rapid development of pre-training techniques, surging large language models are being proposed for code, sparking the advances in NL2Code. To facilitate further research and applications in this field, in this paper, we present a comprehensive survey of 27 existing large language models for NL2Code, and also review benchmarks and metrics. We provide an intuitive comparison of all existing models on the HumanEval benchmark. Through in-depth observation and analysis, we provide some insights and conclude that the key factors contributing to the success of large language models for NL2Code are "Large Size, Premium Data, Expert Tuning". In addition, we discuss challenges and opportunities regarding the gap between models and humans. We also create a website https://nl2code.github.io to track the latest progress through crowd-sourcing. To the best of our knowledge, this is the first survey of large language models for NL2Code, and we believe it will contribute to the ongoing development of the field.
Leveraging Large Language Models for Automated Proof Synthesis in Rust
Formal verification can provably guarantee the correctness of critical system software, but the high proof burden has long hindered its wide adoption. Recently, Large Language Models (LLMs) have shown success in code analysis and synthesis. In this paper, we present a combination of LLMs and static analysis to synthesize invariants, assertions, and other proof structures for a Rust-based formal verification framework called Verus. In a few-shot setting, LLMs demonstrate impressive logical ability in generating postconditions and loop invariants, especially when analyzing short code snippets. However, LLMs lack the ability to retain and propagate context information, a strength of traditional static analysis. Based on these observations, we developed a prototype based on OpenAI's GPT-4 model. Our prototype decomposes the verification task into multiple smaller ones, iteratively queries GPT-4, and combines its output with lightweight static analysis. We evaluated the prototype with a developer in the automation loop on 20 vector-manipulating programs. The results demonstrate that it significantly reduces human effort in writing entry-level proof code.
LIDA: A Tool for Automatic Generation of Grammar-Agnostic Visualizations and Infographics using Large Language Models
Systems that support users in the automatic creation of visualizations must address several subtasks - understand the semantics of data, enumerate relevant visualization goals and generate visualization specifications. In this work, we pose visualization generation as a multi-stage generation problem and argue that well-orchestrated pipelines based on large language models (LLMs) such as ChatGPT/GPT-4 and image generation models (IGMs) are suitable to addressing these tasks. We present LIDA, a novel tool for generating grammar-agnostic visualizations and infographics. LIDA comprises of 4 modules - A SUMMARIZER that converts data into a rich but compact natural language summary, a GOAL EXPLORER that enumerates visualization goals given the data, a VISGENERATOR that generates, refines, executes and filters visualization code and an INFOGRAPHER module that yields data-faithful stylized graphics using IGMs. LIDA provides a python api, and a hybrid user interface (direct manipulation and multilingual natural language) for interactive chart, infographics and data story generation. Learn more about the project here - https://microsoft.github.io/lida/
From Words to Code: Harnessing Data for Program Synthesis from Natural Language
Creating programs to correctly manipulate data is a difficult task, as the underlying programming languages and APIs can be challenging to learn for many users who are not skilled programmers. Large language models (LLMs) demonstrate remarkable potential for generating code from natural language, but in the data manipulation domain, apart from the natural language (NL) description of the intended task, we also have the dataset on which the task is to be performed, or the "data context". Existing approaches have utilized data context in a limited way by simply adding relevant information from the input data into the prompts sent to the LLM. In this work, we utilize the available input data to execute the candidate programs generated by the LLMs and gather their outputs. We introduce semantic reranking, a technique to rerank the programs generated by LLMs based on three signals coming the program outputs: (a) semantic filtering and well-formedness based score tuning: do programs even generate well-formed outputs, (b) semantic interleaving: how do the outputs from different candidates compare to each other, and (c) output-based score tuning: how do the outputs compare to outputs predicted for the same task. We provide theoretical justification for semantic interleaving. We also introduce temperature mixing, where we combine samples generated by LLMs using both high and low temperatures. We extensively evaluate our approach in three domains, namely databases (SQL), data science (Pandas) and business intelligence (Excel's Power Query M) on a variety of new and existing benchmarks. We observe substantial gains across domains, with improvements of up to 45% in top-1 accuracy and 34% in top-3 accuracy.
Improve Mathematical Reasoning in Language Models by Automated Process Supervision
Complex multi-step reasoning tasks, such as solving mathematical problems or generating code, remain a significant hurdle for even the most advanced large language models (LLMs). Verifying LLM outputs with an Outcome Reward Model (ORM) is a standard inference-time technique aimed at enhancing the reasoning performance of LLMs. However, this still proves insufficient for reasoning tasks with a lengthy or multi-hop reasoning chain, where the intermediate outcomes are neither properly rewarded nor penalized. Process supervision addresses this limitation by assigning intermediate rewards during the reasoning process. To date, the methods used to collect process supervision data have relied on either human annotation or per-step Monte Carlo estimation, both prohibitively expensive to scale, thus hindering the broad application of this technique. In response to this challenge, we propose a novel divide-and-conquer style Monte Carlo Tree Search (MCTS) algorithm named OmegaPRM for the efficient collection of high-quality process supervision data. This algorithm swiftly identifies the first error in the Chain of Thought (CoT) with binary search and balances the positive and negative examples, thereby ensuring both efficiency and quality. As a result, we are able to collect over 1.5 million process supervision annotations to train a Process Reward Model (PRM). Utilizing this fully automated process supervision alongside the weighted self-consistency algorithm, we have enhanced the instruction tuned Gemini Pro model's math reasoning performance, achieving a 69.4\% success rate on the MATH benchmark, a 36\% relative improvement from the 51\% base model performance. Additionally, the entire process operates without any human intervention, making our method both financially and computationally cost-effective compared to existing methods.
Test-Driven Development for Code Generation
Recent Large Language Models (LLMs) have demonstrated significant capabilities in generating code snippets directly from problem statements. This increasingly automated process mirrors traditional human-led software development, where code is often written in response to a requirement. Historically, Test-Driven Development (TDD) has proven its merit, requiring developers to write tests before the functional code, ensuring alignment with the initial problem statements. Applying TDD principles to LLM-based code generation offers one distinct benefit: it enables developers to verify the correctness of generated code against predefined tests. This paper investigates if and how TDD can be incorporated into AI-assisted code-generation processes. We experimentally evaluate our hypothesis that providing LLMs like GPT-4 and Llama 3 with tests in addition to the problem statements enhances code generation outcomes. We experimented with established function-level code generation benchmarks such as MBPP and HumanEval. Our results consistently demonstrate that including test cases leads to higher success in solving programming challenges. We assert that TDD is a promising paradigm for helping ensure that the code generated by LLMs effectively captures the requirements.
Selective Prompt Anchoring for Code Generation
Recent advances in large language models (LLMs) have transformed software development by automatically generating code from natural language. Yet challenges remain in generating fully correct code that aligns with user intent. Our study reveals that LLMs tend to pay less attention to user prompts as more code tokens are generated. We hypothesize that this attention dilution issue is an important reason for code generation errors. To mitigate this issue, we propose Selective Prompt Anchoring (SPA) to guide code LLMs to pay more attention to user intent when generating code. We evaluate SPA using six base LLMs across six benchmarks. Our results demonstrate that SPA enhances Pass@1 by up to 12.9%, consistently outperforming SOTA code generation methods in all settings. Our code is available at https://github.com/magic-YuanTian/Selective-Prompt-Anchoring.
ChatCoder: Chat-based Refine Requirement Improves LLMs' Code Generation
Large language models have shown good performances in generating code to meet human requirements. However, human requirements expressed in natural languages can be vague, incomplete, and ambiguous, leading large language models to misunderstand human requirements and make mistakes. Worse, it is difficult for a human user to refine the requirement. To help human users refine their requirements and improve large language models' code generation performances, we propose ChatCoder: a method to refine the requirements via chatting with large language models. We design a chat scheme in which the large language models will guide the human users to refine their expression of requirements to be more precise, unambiguous, and complete than before. Experiments show that ChatCoder has improved existing large language models' performance by a large margin. Besides, ChatCoder has the advantage over refine-based methods and LLMs fine-tuned via human response.
CreativEval: Evaluating Creativity of LLM-Based Hardware Code Generation
Large Language Models (LLMs) have proved effective and efficient in generating code, leading to their utilization within the hardware design process. Prior works evaluating LLMs' abilities for register transfer level code generation solely focus on functional correctness. However, the creativity associated with these LLMs, or the ability to generate novel and unique solutions, is a metric not as well understood, in part due to the challenge of quantifying this quality. To address this research gap, we present CreativeEval, a framework for evaluating the creativity of LLMs within the context of generating hardware designs. We quantify four creative sub-components, fluency, flexibility, originality, and elaboration, through various prompting and post-processing techniques. We then evaluate multiple popular LLMs (including GPT models, CodeLlama, and VeriGen) upon this creativity metric, with results indicating GPT-3.5 as the most creative model in generating hardware designs.
ITERTL: An Iterative Framework for Fine-tuning LLMs for RTL Code Generation
Recently, large language models (LLMs) have demonstrated excellent performance in understanding human instructions and generating code, which has inspired researchers to explore the feasibility of generating RTL code with LLMs. However, the existing approaches to fine-tune LLMs on RTL codes typically are conducted on fixed datasets, which do not fully stimulate the capability of LLMs and require large amounts of reference data. To mitigate these issues , we introduce a simple yet effective iterative training paradigm named ITERTL. During each iteration, samples are drawn from the model trained in the previous cycle. Then these new samples are employed for training in this loop. Through this iterative approach, the distribution mismatch between the model and the training samples is reduced. Additionally, the model is thus enabled to explore a broader generative space and receive more comprehensive feedback. Theoretical analyses are conducted to investigate the mechanism of the effectiveness. Experimental results show the model trained through our proposed approach can compete with and even outperform the state-of-the-art (SOTA) open-source model with nearly 37\% reference samples, achieving remarkable 42.9\% and 62.2\% pass@1 rate on two VerilogEval evaluation datasets respectively. While using the same amount of reference samples, our method can achieved a relative improvement of 16.9\% and 12.5\% in pass@1 compared to the non-iterative method. This study facilitates the application of LLMs for generating RTL code in practical scenarios with limited data.
CodeV: Empowering LLMs for Verilog Generation through Multi-Level Summarization
The increasing complexity and high costs associated with modern processor design have led to a surge in demand for processor design automation. Instruction-tuned large language models (LLMs) have demonstrated remarkable performance in automatically generating code for general-purpose programming languages like Python. However, these methods fail on hardware description languages (HDLs) like Verilog due to the scarcity of high-quality instruction tuning data, as even advanced LLMs like GPT-3.5 exhibit limited performance on Verilog generation. Regarding this issue, we observe that (1) Verilog code collected from the real world has higher quality than those generated by LLMs. (2) LLMs like GPT-3.5 excel in summarizing Verilog code rather than generating it. Based on these observations, this paper introduces CodeV, a series of open-source instruction-tuned Verilog generation LLMs. Instead of generating descriptions first and then getting the corresponding code from advanced LLMs, we prompt the LLM with Verilog code and let the LLM generate the corresponding natural language description by multi-level summarization. Experimental results show that CodeV relatively surpasses the previous open-source SOTA by 14.4% (BetterV in VerilogEval) and 11.3% (RTLCoder in RTLLM) respectively, and also relatively outperforms previous commercial SOTA GPT-4 by 22.1% in VerilogEval.
SciReplicate-Bench: Benchmarking LLMs in Agent-driven Algorithmic Reproduction from Research Papers
This study evaluates large language models (LLMs) in generating code from algorithm descriptions from recent NLP papers. The task requires two key competencies: (1) algorithm comprehension: synthesizing information from papers and academic literature to understand implementation logic, and (2) coding expertise: identifying dependencies and correctly implementing necessary APIs. To facilitate rigorous evaluation, we introduce SciReplicate-Bench, a benchmark of 100 tasks from 36 NLP papers published in 2024, featuring detailed annotations and comprehensive test cases. Building on SciReplicate-Bench, we propose Sci-Reproducer, a multi-agent framework consisting of a Paper Agent that interprets algorithmic concepts from literature and a Code Agent that retrieves dependencies from repositories and implement solutions. To assess algorithm understanding, we introduce reasoning graph accuracy, which quantifies similarity between generated and reference reasoning graphs derived from code comments and structure. For evaluating implementation quality, we employ execution accuracy, CodeBLEU, and repository dependency/API recall metrics. In our experiments, we evaluate various powerful Non-Reasoning LLMs and Reasoning LLMs as foundational models. The best-performing LLM using Sci-Reproducer achieves only 39% execution accuracy, highlighting the benchmark's difficulty.Our analysis identifies missing or inconsistent algorithm descriptions as key barriers to successful reproduction. We will open-source our benchmark, and code at https://github.com/xyzCS/SciReplicate-Bench.
Controllable Text-to-Image Generation with GPT-4
Current text-to-image generation models often struggle to follow textual instructions, especially the ones requiring spatial reasoning. On the other hand, Large Language Models (LLMs), such as GPT-4, have shown remarkable precision in generating code snippets for sketching out text inputs graphically, e.g., via TikZ. In this work, we introduce Control-GPT to guide the diffusion-based text-to-image pipelines with programmatic sketches generated by GPT-4, enhancing their abilities for instruction following. Control-GPT works by querying GPT-4 to write TikZ code, and the generated sketches are used as references alongside the text instructions for diffusion models (e.g., ControlNet) to generate photo-realistic images. One major challenge to training our pipeline is the lack of a dataset containing aligned text, images, and sketches. We address the issue by converting instance masks in existing datasets into polygons to mimic the sketches used at test time. As a result, Control-GPT greatly boosts the controllability of image generation. It establishes a new state-of-art on the spatial arrangement and object positioning generation and enhances users' control of object positions, sizes, etc., nearly doubling the accuracy of prior models. Our work, as a first attempt, shows the potential for employing LLMs to enhance the performance in computer vision tasks.
Prompting and Fine-tuning Large Language Models for Automated Code Review Comment Generation
Generating accurate code review comments remains a significant challenge due to the inherently diverse and non-unique nature of the task output. Large language models pretrained on both programming and natural language data tend to perform well in code-oriented tasks. However, large-scale pretraining is not always feasible due to its environmental impact and project-specific generalizability issues. In this work, first we fine-tune open-source Large language models (LLM) in parameter-efficient, quantized low-rank (QLoRA) fashion on consumer-grade hardware to improve review comment generation. Recent studies demonstrate the efficacy of augmenting semantic metadata information into prompts to boost performance in other code-related tasks. To explore this in code review activities, we also prompt proprietary, closed-source LLMs augmenting the input code patch with function call graphs and code summaries. Both of our strategies improve the review comment generation performance, with function call graph augmented few-shot prompting on the GPT-3.5 model surpassing the pretrained baseline by around 90% BLEU-4 score on the CodeReviewer dataset. Moreover, few-shot prompted Gemini-1.0 Pro, QLoRA fine-tuned Code Llama and Llama 3.1 models achieve competitive results (ranging from 25% to 83% performance improvement) on this task. An additional human evaluation study further validates our experimental findings, reflecting real-world developers' perceptions of LLM-generated code review comments based on relevant qualitative metrics.
Can Large Language Models Write Parallel Code?
Large Language Models are becoming an increasingly popular tool for software development. Their ability to model and generate source code has been demonstrated in a variety of contexts, including code completion, summarization, translation, and lookup. However, they often struggle to generate code for more complex tasks. In this paper, we explore the ability of state-of-the-art language models to generate parallel code. We propose a benchmark, PCGBench, consisting of a set of 420 tasks for evaluating the ability of language models to generate parallel code, and we evaluate the performance of several state-of-the-art open- and closed-source language models on these tasks. We introduce novel metrics for comparing parallel code generation performance and use them to explore how well each LLM performs on various parallel programming models and computational problem types.
Examination of Code generated by Large Language Models
Large language models (LLMs), such as ChatGPT and Copilot, are transforming software development by automating code generation and, arguably, enable rapid prototyping, support education, and boost productivity. Therefore, correctness and quality of the generated code should be on par with manually written code. To assess the current state of LLMs in generating correct code of high quality, we conducted controlled experiments with ChatGPT and Copilot: we let the LLMs generate simple algorithms in Java and Python along with the corresponding unit tests and assessed the correctness and the quality (coverage) of the generated (test) codes. We observed significant differences between the LLMs, between the languages, between algorithm and test codes, and over time. The present paper reports these results together with the experimental methods allowing repeated and comparable assessments for more algorithms, languages, and LLMs over time.
Benchmarking Large Language Models for Automated Verilog RTL Code Generation
Automating hardware design could obviate a significant amount of human error from the engineering process and lead to fewer errors. Verilog is a popular hardware description language to model and design digital systems, thus generating Verilog code is a critical first step. Emerging large language models (LLMs) are able to write high-quality code in other programming languages. In this paper, we characterize the ability of LLMs to generate useful Verilog. For this, we fine-tune pre-trained LLMs on Verilog datasets collected from GitHub and Verilog textbooks. We construct an evaluation framework comprising test-benches for functional analysis and a flow to test the syntax of Verilog code generated in response to problems of varying difficulty. Our findings show that across our problem scenarios, the fine-tuning results in LLMs more capable of producing syntactically correct code (25.9% overall). Further, when analyzing functional correctness, a fine-tuned open-source CodeGen LLM can outperform the state-of-the-art commercial Codex LLM (6.5% overall). Training/evaluation scripts and LLM checkpoints are available: https://github.com/shailja-thakur/VGen.
Large Language Models for Code: Security Hardening and Adversarial Testing
Large language models (large LMs) are increasingly trained on massive codebases and used to generate code. However, LMs lack awareness of security and are found to frequently produce unsafe code. This work studies the security of LMs along two important axes: (i) security hardening, which aims to enhance LMs' reliability in generating secure code, and (ii) adversarial testing, which seeks to evaluate LMs' security at an adversarial standpoint. We address both of these by formulating a new security task called controlled code generation. The task is parametric and takes as input a binary property to guide the LM to generate secure or unsafe code, while preserving the LM's capability of generating functionally correct code. We propose a novel learning-based approach called SVEN to solve this task. SVEN leverages property-specific continuous vectors to guide program generation towards the given property, without modifying the LM's weights. Our training procedure optimizes these continuous vectors by enforcing specialized loss terms on different regions of code, using a high-quality dataset carefully curated by us. Our extensive evaluation shows that SVEN is highly effective in achieving strong security control. For instance, a state-of-the-art CodeGen LM with 2.7B parameters generates secure code for 59.1% of the time. When we employ SVEN to perform security hardening (or adversarial testing) on this LM, the ratio is significantly boosted to 92.3% (or degraded to 36.8%). Importantly, SVEN closely matches the original LMs in functional correctness.
Code Security Vulnerability Repair Using Reinforcement Learning with Large Language Models
With the recent advancement of Large Language Models (LLMs), generating functionally correct code has become less complicated for a wide array of developers. While using LLMs has sped up the functional development process, it poses a heavy risk to code security. Code generation with proper security measures using LLM is a significantly more challenging task than functional code generation. Security measures may include adding a pair of lines of code with the original code, consisting of null pointer checking or prepared statements for SQL injection prevention. Currently, available code repair LLMs generate code repair by supervised fine-tuning, where the model looks at cross-entropy loss. However, the original and repaired codes are mostly similar in functionality and syntactically, except for a few (1-2) lines, which act as security measures. This imbalance between the lines needed for security measures and the functional code enforces the supervised fine-tuned model to prioritize generating functional code without adding proper security measures, which also benefits the model by resulting in minimal loss. Therefore, in this work, for security hardening and strengthening of generated code from LLMs, we propose a reinforcement learning-based method for program-specific repair with the combination of semantic and syntactic reward mechanisms that focus heavily on adding security and functional measures in the code, respectively.
What's Wrong with Your Code Generated by Large Language Models? An Extensive Study
The increasing development of large language models (LLMs) in code generation has drawn significant attention among researchers. To enhance LLM-based code generation ability, current efforts are predominantly directed towards collecting high-quality datasets and leveraging diverse training technologies. However, there is a notable lack of comprehensive studies examining the limitations and boundaries of these existing methods. To bridge this gap, we conducted an extensive empirical study evaluating the performance of three leading closed-source LLMs and four popular open-source LLMs on three commonly used benchmarks. Our investigation, which evaluated the length, cyclomatic complexity and API number of the generated code, revealed that these LLMs face challenges in generating successful code for more complex problems, and tend to produce code that is shorter yet more complicated as compared to canonical solutions. Additionally, we developed a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types. Furthermore, to better understand the performance of LLMs in real-world projects, we manually created a real-world benchmark comprising 140 code generation tasks. Our analysis highlights distinct differences in bug distributions between actual scenarios and existing benchmarks. Finally, we propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback. Experimental results demonstrate that our approach can significantly mitigate bugs and increase the passing rate by 29.2% after two iterations, indicating substantial potential for LLMs to handle more complex problems.
Can LLMs Obfuscate Code? A Systematic Analysis of Large Language Models into Assembly Code Obfuscation
Malware authors often employ code obfuscations to make their malware harder to detect. Existing tools for generating obfuscated code often require access to the original source code (e.g., C++ or Java), and adding new obfuscations is a non-trivial, labor-intensive process. In this study, we ask the following question: Can Large Language Models (LLMs) potentially generate a new obfuscated assembly code? If so, this poses a risk to anti-virus engines and potentially increases the flexibility of attackers to create new obfuscation patterns. We answer this in the affirmative by developing the MetamorphASM benchmark comprising MetamorphASM Dataset (MAD) along with three code obfuscation techniques: dead code, register substitution, and control flow change. The MetamorphASM systematically evaluates the ability of LLMs to generate and analyze obfuscated code using MAD, which contains 328,200 obfuscated assembly code samples. We release this dataset and analyze the success rate of various LLMs (e.g., GPT-3.5/4, GPT-4o-mini, Starcoder, CodeGemma, CodeLlama, CodeT5, and LLaMA 3.1) in generating obfuscated assembly code. The evaluation was performed using established information-theoretic metrics and manual human review to ensure correctness and provide the foundation for researchers to study and develop remediations to this risk. The source code can be found at the following GitHub link: https://github.com/mohammadi-ali/MetamorphASM.
Linguistics Theory Meets LLM: Code-Switched Text Generation via Equivalence Constrained Large Language Models
Code-switching, the phenomenon of alternating between two or more languages in a single conversation, presents unique challenges for Natural Language Processing (NLP). Most existing research focuses on either syntactic constraints or neural generation, with few efforts to integrate linguistic theory with large language models (LLMs) for generating natural code-switched text. In this paper, we introduce EZSwitch, a novel framework that combines Equivalence Constraint Theory (ECT) with LLMs to produce linguistically valid and fluent code-switched text. We evaluate our method using both human judgments and automatic metrics, demonstrating a significant improvement in the quality of generated code-switching sentences compared to baseline LLMs. To address the lack of suitable evaluation metrics, we conduct a comprehensive correlation study of various automatic metrics against human scores, revealing that current metrics often fail to capture the nuanced fluency of code-switched text. Additionally, we create CSPref, a human preference dataset based on human ratings and analyze model performance across ``hard`` and ``easy`` examples. Our findings indicate that incorporating linguistic constraints into LLMs leads to more robust and human-aligned generation, paving the way for scalable code-switching text generation across diverse language pairs.
Large Language Models for Compiler Optimization
We explore the novel application of Large Language Models to code optimization. We present a 7B-parameter transformer model trained from scratch to optimize LLVM assembly for code size. The model takes as input unoptimized assembly and outputs a list of compiler options to best optimize the program. Crucially, during training, we ask the model to predict the instruction counts before and after optimization, and the optimized code itself. These auxiliary learning tasks significantly improve the optimization performance of the model and improve the model's depth of understanding. We evaluate on a large suite of test programs. Our approach achieves a 3.0% improvement in reducing instruction counts over the compiler, outperforming two state-of-the-art baselines that require thousands of compilations. Furthermore, the model shows surprisingly strong code reasoning abilities, generating compilable code 91% of the time and perfectly emulating the output of the compiler 70% of the time.
CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing
Recent developments in large language models (LLMs) have been impressive. However, these models sometimes show inconsistencies and problematic behavior, such as hallucinating facts, generating flawed code, or creating offensive and toxic content. Unlike these models, humans typically utilize external tools to cross-check and refine their initial content, like using a search engine for fact-checking, or a code interpreter for debugging. Inspired by this observation, we introduce a framework called CRITIC that allows LLMs, which are essentially "black boxes" to validate and progressively amend their own outputs in a manner similar to human interaction with tools. More specifically, starting with an initial output, CRITIC interacts with appropriate tools to evaluate certain aspects of the text, and then revises the output based on the feedback obtained during this validation process. Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs. Meanwhile, our research highlights the crucial importance of external feedback in promoting the ongoing self-improvement of LLMs.
Creative Robot Tool Use with Large Language Models
Tool use is a hallmark of advanced intelligence, exemplified in both animal behavior and robotic capabilities. This paper investigates the feasibility of imbuing robots with the ability to creatively use tools in tasks that involve implicit physical constraints and long-term planning. Leveraging Large Language Models (LLMs), we develop RoboTool, a system that accepts natural language instructions and outputs executable code for controlling robots in both simulated and real-world environments. RoboTool incorporates four pivotal components: (i) an "Analyzer" that interprets natural language to discern key task-related concepts, (ii) a "Planner" that generates comprehensive strategies based on the language input and key concepts, (iii) a "Calculator" that computes parameters for each skill, and (iv) a "Coder" that translates these plans into executable Python code. Our results show that RoboTool can not only comprehend explicit or implicit physical constraints and environmental factors but also demonstrate creative tool use. Unlike traditional Task and Motion Planning (TAMP) methods that rely on explicit optimization, our LLM-based system offers a more flexible, efficient, and user-friendly solution for complex robotics tasks. Through extensive experiments, we validate that RoboTool is proficient in handling tasks that would otherwise be infeasible without the creative use of tools, thereby expanding the capabilities of robotic systems. Demos are available on our project page: https://creative-robotool.github.io/.
Drawing Pandas: A Benchmark for LLMs in Generating Plotting Code
This paper introduces the human-curated PandasPlotBench dataset, designed to evaluate language models' effectiveness as assistants in visual data exploration. Our benchmark focuses on generating code for visualizing tabular data - such as a Pandas DataFrame - based on natural language instructions, complementing current evaluation tools and expanding their scope. The dataset includes 175 unique tasks. Our experiments assess several leading Large Language Models (LLMs) across three visualization libraries: Matplotlib, Seaborn, and Plotly. We show that the shortening of tasks has a minimal effect on plotting capabilities, allowing for the user interface that accommodates concise user input without sacrificing functionality or accuracy. Another of our findings reveals that while LLMs perform well with popular libraries like Matplotlib and Seaborn, challenges persist with Plotly, highlighting areas for improvement. We hope that the modular design of our benchmark will broaden the current studies on generating visualizations. Our benchmark is available online: https://huggingface.co/datasets/JetBrains-Research/plot_bench. The code for running the benchmark is also available: https://github.com/JetBrains-Research/PandasPlotBench.
Performance-Aligned LLMs for Generating Fast Code
Optimizing scientific software is a difficult task because codebases are often large and complex, and performance can depend upon several factors including the algorithm, its implementation, and hardware among others. Causes of poor performance can originate from disparate sources and be difficult to diagnose. Recent years have seen a multitude of work that use large language models (LLMs) to assist in software development tasks. However, these tools are trained to model the distribution of code as text, and are not specifically designed to understand performance aspects of code. In this work, we introduce a reinforcement learning based methodology to align the outputs of code LLMs with performance. This allows us to build upon the current code modeling capabilities of LLMs and extend them to generate better performing code. We demonstrate that our fine-tuned model improves the expected speedup of generated code over base models for a set of benchmark tasks from 0.9 to 1.6 for serial code and 1.9 to 4.5 for OpenMP code.
Generating refactored code accurately using reinforcement learning
Automated source code refactoring, particularly extract method refactoring, is a crucial and frequently employed technique during software development. Despite its importance and frequent use by practitioners, current automated techniques face significant limitations. These approaches often rely on developers to identify the precise bounds of refactoring opportunities in terms of source code statements. Also, they often do not capture the semantic context, resulting in offering no automated means to suggest meaningful method name, for instance. To address these challenges, we propose a novel reinforcement learning-based approach for fine-tuning and aligning code language models to perform automated, intelligent extract method refactoring on Java source code. Our approach fine-tunes sequence-to-sequence generative models and aligns them using the Proximal Policy Optimization (PPO) algorithm. We utilize code compilation and presence of the refactoring in the generated code as reward signals, providing a code-centric optimization process. Our experiments demonstrate that our approach significantly enhances the performance of large language models in code refactoring, as evidenced by both quantitative evaluation metrics such as BLEU, ROUGE, and CodeBLEU, and qualitative measures including syntactical and functional correctness. The supervised fine-tuned model, further aligned with PPO, surpasses traditional supervised fine-tuning by 11.96% and 16.45% in terms of BLEU and CodeBLEU scores, respectively. When subjected to a suite of 122 unit tests, the number of successful tests increased from 41 to 66 for the reinforcement learning aligned fine-tuned Code-T5 model, highlighting the effectiveness of our approach in producing functionally correct refactorings.
Fine-Tune an SLM or Prompt an LLM? The Case of Generating Low-Code Workflows
Large Language Models (LLMs) such as GPT-4o can handle a wide range of complex tasks with the right prompt. As per token costs are reduced, the advantages of fine-tuning Small Language Models (SLMs) for real-world applications -- faster inference, lower costs -- may no longer be clear. In this work, we present evidence that, for domain-specific tasks that require structured outputs, SLMs still have a quality advantage. We compare fine-tuning an SLM against prompting LLMs on the task of generating low-code workflows in JSON form. We observe that while a good prompt can yield reasonable results, fine-tuning improves quality by 10% on average. We also perform systematic error analysis to reveal model limitations.
LogoMotion: Visually Grounded Code Generation for Content-Aware Animation
Animated logos are a compelling and ubiquitous way individuals and brands represent themselves online. Manually authoring these logos can require significant artistic skill and effort. To help novice designers animate logos, design tools currently offer templates and animation presets. However, these solutions can be limited in their expressive range. Large language models have the potential to help novice designers create animated logos by generating animation code that is tailored to their content. In this paper, we introduce LogoMotion, an LLM-based system that takes in a layered document and generates animated logos through visually-grounded program synthesis. We introduce techniques to create an HTML representation of a canvas, identify primary and secondary elements, synthesize animation code, and visually debug animation errors. When compared with an industry standard tool, we find that LogoMotion produces animations that are more content-aware and are on par in terms of quality. We conclude with a discussion of the implications of LLM-generated animation for motion design.
CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges
Large Language Models (LLMs) have shown promise in automated code generation but typically excel only in simpler tasks such as generating standalone code units. Real-world software development, however, often involves complex code repositories (named repo) with complex dependencies and extensive documentation. To fill this gap, our research pivots towards evaluating LLMs in a more realistic setting -- real-world repo-level code generation. We introduce CodeAgentBench, a manually curated benchmark for repo-level code generation. This benchmark comprises five high-quality Python projects, encompassing a total of 101 samples. We assess nine leading LLMs on repo-level tasks and observe a decline in their performance. To tackle this, we present CodeAgent, a novel LLM-based agent framework that employs external tools for effective repo-level code generation. CodeAgent integrates five programming tools, enabling interaction with software artifacts for information retrieval, code symbol navigation, and code testing. We implement four agent strategies to optimize these tools' usage. Our experiments on CodeAgentBench show that CodeAgent enhances LLM performance significantly, with improvements ranging from 18.1\% to 250\%. Further tests on the HumanEval benchmark confirm CodeAgent's adaptability and efficacy across various code generation tasks. Notably, CodeAgent outperforms commercial products like Github Copilot, showcasing superior accuracy and efficiency. These results demonstrate CodeAgent's robust capabilities in code generation, highlighting its potential for real-world repo-level coding challenges.
MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code
Code has been shown to be effective in enhancing the mathematical reasoning abilities of large language models due to its precision and accuracy. Previous works involving continued mathematical pretraining often include code that utilizes math-related packages, which are primarily designed for fields such as engineering, machine learning, signal processing, or module testing, rather than being directly focused on mathematical reasoning. In this paper, we introduce a novel method for generating mathematical code accompanied with corresponding reasoning steps for continued pretraining. Our approach begins with the construction of a high-quality mathematical continued pretraining dataset by incorporating math-related web data, code using mathematical packages, math textbooks, and synthetic data. Next, we construct reasoning steps by extracting LaTeX expressions, the conditions needed for the expressions, and the results of the expressions from the previously collected dataset. Based on this extracted information, we generate corresponding code to accurately capture the mathematical reasoning process. Appending the generated code to each reasoning step results in data consisting of paired natural language reasoning steps and their corresponding code. Combining this data with the original dataset results in a 19.2B-token high-performing mathematical pretraining corpus, which we name MathCode-Pile. Training several popular base models with this corpus significantly improves their mathematical abilities, leading to the creation of the MathCoder2 family of models. All of our data processing and training code is open-sourced, ensuring full transparency and easy reproducibility of the entire data collection and training pipeline. The code is released at https://github.com/mathllm/MathCoder2 .
WAFFLE: Multi-Modal Model for Automated Front-End Development
Web development involves turning UI designs into functional webpages, which can be difficult for both beginners and experienced developers due to the complexity of HTML's hierarchical structures and styles. While Large Language Models (LLMs) have shown promise in generating source code, two major challenges persist in UI-to-HTML code generation: (1) effectively representing HTML's hierarchical structure for LLMs, and (2) bridging the gap between the visual nature of UI designs and the text-based format of HTML code. To tackle these challenges, we introduce Waffle, a new fine-tuning strategy that uses a structure-aware attention mechanism to improve LLMs' understanding of HTML's structure and a contrastive fine-tuning approach to align LLMs' understanding of UI images and HTML code. Models fine-tuned with Waffle show up to 9.00 pp (percentage point) higher HTML match, 0.0982 higher CW-SSIM, 32.99 higher CLIP, and 27.12 pp higher LLEM on our new benchmark WebSight-Test and an existing benchmark Design2Code, outperforming current fine-tuning methods.
Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data?
Despite the power of Large Language Models (LLMs) like GPT-4, they still struggle with tasks that require generating complex, structured outputs. In this study, we assess the capability of Current LLMs in generating complex structured data and propose a structure-aware fine-tuning approach as a solution to improve this ability. To perform a comprehensive evaluation, we propose Struc-Bench, include five representative LLMs (i.e., GPT-NeoX 20B, GPT-3.5, GPT-4, and Vicuna) and evaluate them on our carefully constructed datasets spanning raw text, HTML, and LaTeX tables. Based on our analysis of current model performance, we identify specific common formatting errors and areas of potential improvement. To address complex formatting requirements, we utilize FormatCoT (Chain-of-Thought) to generate format instructions from target outputs. Our experiments show that our structure-aware fine-tuning method, when applied to LLaMA-7B, significantly improves adherence to natural language constraints, outperforming other evaluated LLMs. Based on these results, we present an ability map of model capabilities from six dimensions (i.e., coverage, formatting, reasoning, comprehension, pragmatics, and hallucination). This map highlights the weaknesses of LLMs in handling complex structured outputs and suggests promising directions for future work. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench.
Exploring Large Language Models for Code Explanation
Automating code documentation through explanatory text can prove highly beneficial in code understanding. Large Language Models (LLMs) have made remarkable strides in Natural Language Processing, especially within software engineering tasks such as code generation and code summarization. This study specifically delves into the task of generating natural-language summaries for code snippets, using various LLMs. The findings indicate that Code LLMs outperform their generic counterparts, and zero-shot methods yield superior results when dealing with datasets with dissimilar distributions between training and testing sets.
Code Soliloquies for Accurate Calculations in Large Language Models
High-quality conversational datasets are integral to the successful development of Intelligent Tutoring Systems (ITS) that employ a Large Language Model (LLM) backend. These datasets, when used to fine-tune the LLM backend, significantly enhance the quality of interactions between students and ITS. A common strategy for developing these datasets involves generating synthetic student-teacher dialogues using advanced GPT-4 models. However, challenges arise when these dialogues demand complex calculations, common in subjects like physics. Despite its advanced capabilities, GPT-4's performance falls short in reliably handling even simple multiplication tasks, marking a significant limitation in its utility for these subjects. To address these challenges, this paper introduces an innovative stateful prompt design. Our approach generates a mock conversation between a student and a tutorbot, both roles simulated by GPT-4. Each student response triggers a soliloquy (an inner monologue) in the GPT-tutorbot, which assesses whether its response would necessitate calculations. If so, it proceeds to script the required code in Python and then uses the resulting output to construct its response to the student. Our approach notably enhances the quality of synthetic conversation datasets, especially for subjects that are calculation-intensive. Our findings show that our Higgs model -- a LLaMA finetuned with datasets generated through our novel stateful prompt design -- proficiently utilizes Python for computations. Consequently, finetuning with our datasets enriched with code soliloquies enhances not just the accuracy but also the computational reliability of Higgs' responses.
GenSim: Generating Robotic Simulation Tasks via Large Language Models
Collecting large amounts of real-world interaction data to train general robotic policies is often prohibitively expensive, thus motivating the use of simulation data. However, existing methods for data generation have generally focused on scene-level diversity (e.g., object instances and poses) rather than task-level diversity, due to the human effort required to come up with and verify novel tasks. This has made it challenging for policies trained on simulation data to demonstrate significant task-level generalization. In this paper, we propose to automatically generate rich simulation environments and expert demonstrations by exploiting a large language models' (LLM) grounding and coding ability. Our approach, dubbed GenSim, has two modes: goal-directed generation, wherein a target task is given to the LLM and the LLM proposes a task curriculum to solve the target task, and exploratory generation, wherein the LLM bootstraps from previous tasks and iteratively proposes novel tasks that would be helpful in solving more complex tasks. We use GPT4 to expand the existing benchmark by ten times to over 100 tasks, on which we conduct supervised finetuning and evaluate several LLMs including finetuned GPTs and Code Llama on code generation for robotic simulation tasks. Furthermore, we observe that LLMs-generated simulation programs can enhance task-level generalization significantly when used for multitask policy training. We further find that with minimal sim-to-real adaptation, the multitask policies pretrained on GPT4-generated simulation tasks exhibit stronger transfer to unseen long-horizon tasks in the real world and outperform baselines by 25%. See the project website (https://liruiw.github.io/gensim) for code, demos, and videos.
ASSERTIFY: Utilizing Large Language Models to Generate Assertions for Production Code
Production assertions are statements embedded in the code to help developers validate their assumptions about the code. They assist developers in debugging, provide valuable documentation, and enhance code comprehension. Current research in this area primarily focuses on assertion generation for unit tests using techniques, such as static analysis and deep learning. While these techniques have shown promise, they fall short when it comes to generating production assertions, which serve a different purpose. This preprint addresses the gap by introducing Assertify, an automated end-to-end tool that leverages Large Language Models (LLMs) and prompt engineering with few-shot learning to generate production assertions. By creating context-rich prompts, the tool emulates the approach developers take when creating production assertions for their code. To evaluate our approach, we compiled a dataset of 2,810 methods by scraping 22 mature Java repositories from GitHub. Our experiments demonstrate the effectiveness of few-shot learning by producing assertions with an average ROUGE-L score of 0.526, indicating reasonably high structural similarity with the assertions written by developers. This research demonstrates the potential of LLMs in automating the generation of production assertions that resemble the original assertions.
Generating and Evolving Reward Functions for Highway Driving with Large Language Models
Reinforcement Learning (RL) plays a crucial role in advancing autonomous driving technologies by maximizing reward functions to achieve the optimal policy. However, crafting these reward functions has been a complex, manual process in many practices. To reduce this complexity, we introduce a novel framework that integrates Large Language Models (LLMs) with RL to improve reward function design in autonomous driving. This framework utilizes the coding capabilities of LLMs, proven in other areas, to generate and evolve reward functions for highway scenarios. The framework starts with instructing LLMs to create an initial reward function code based on the driving environment and task descriptions. This code is then refined through iterative cycles involving RL training and LLMs' reflection, which benefits from their ability to review and improve the output. We have also developed a specific prompt template to improve LLMs' understanding of complex driving simulations, ensuring the generation of effective and error-free code. Our experiments in a highway driving simulator across three traffic configurations show that our method surpasses expert handcrafted reward functions, achieving a 22% higher average success rate. This not only indicates safer driving but also suggests significant gains in development productivity.
Generating with Confidence: Uncertainty Quantification for Black-box Large Language Models
Large language models (LLMs) specializing in natural language generation (NLG) have recently started exhibiting promising capabilities across a variety of domains. However, gauging the trustworthiness of responses generated by LLMs remains an open challenge, with limited research on uncertainty quantification (UQ) for NLG. Furthermore, existing literature typically assumes white-box access to language models, which is becoming unrealistic either due to the closed-source nature of the latest LLMs or computational constraints. In this work, we investigate UQ in NLG for black-box LLMs. We first differentiate uncertainty vs confidence: the former refers to the "dispersion" of the potential predictions for a fixed input, and the latter refers to the confidence on a particular prediction/generation. We then propose and compare several confidence/uncertainty metrics, applying them to selective NLG where unreliable results could either be ignored or yielded for further assessment. Experiments were carried out with several popular LLMs on question-answering datasets (for evaluation purposes). Results reveal that a simple metric for the semantic dispersion can be a reliable predictor of the quality of LLM responses, providing valuable insights for practitioners on uncertainty management when adopting LLMs. The code to replicate our experiments is available at https://github.com/zlin7/UQ-NLG.
SolEval: Benchmarking Large Language Models for Repository-level Solidity Code Generation
Large language models (LLMs) have transformed code generation. However, most existing approaches focus on mainstream languages such as Python and Java, neglecting the Solidity language, the predominant programming language for Ethereum smart contracts. Due to the lack of adequate benchmarks for Solidity, LLMs' ability to generate secure, cost-effective smart contracts remains unexplored. To fill this gap, we construct SolEval, the first repository-level benchmark designed for Solidity smart contract generation, to evaluate the performance of LLMs on Solidity. SolEval consists of 1,125 samples from 9 different repositories, covering 6 popular domains, providing LLMs with a comprehensive evaluation benchmark. Unlike the existing Solidity benchmark, SolEval not only includes complex function calls but also reflects the real-world complexity of the Ethereum ecosystem by incorporating gas fee and vulnerability rate. We evaluate 10 LLMs on SolEval, and our results show that the best-performing LLM achieves only 26.29% Pass@10, highlighting substantial room for improvement in Solidity code generation by LLMs. We release our data and code at https://anonymous.4open.science/r/SolEval-1C06/.
Generating Data for Symbolic Language with Large Language Models
While large language models (LLMs) bring not only performance but also complexity, recent work has started to turn LLMs into data generators rather than task inferencers, where another affordable task model is trained for efficient deployment and inference. However, such an approach has primarily been applied to natural language tasks and has not yet been explored for symbolic language tasks with complex structured outputs (e.g., semantic parsing and code generation). In this paper, we propose SymGen which utilizes LLMs for generating various annotation-expensive symbolic language data. SymGen consists of an informative prompt to steer generation and an agreement-based verifier to improve data correctness. We conduct extensive experiments on six symbolic language tasks across various settings. Compared with the LLMs, we demonstrate the 1\%-sized task model can achieve comparable or better performance, largely cutting inference and deployment costs. We also show that generated data with only a few human demonstrations can be as effective as over 10 times the amount of human-annotated data when training the task model, saving a considerable amount of annotation effort. SymGen sheds new light on data generation for complex tasks, and we release the code at https://github.com/HKUNLP/SymGen{https://github.com/HKUNLP/SymGen}.
On the Effectiveness of Large Language Models in Domain-Specific Code Generation
Large language models (LLMs) such as ChatGPT have shown remarkable capabilities in code generation. Despite their great success, their effectiveness within particular domains (e.g., web development) necessitates further evaluation. In this study, we conduct an empirical study of domain-specific code generation with LLMs. We demonstrate that LLMs exhibit sub-optimal performance in generating domain-specific code, due to their limited proficiency in utilizing domain-specific libraries. We further observe that incorporating API knowledge as prompts can empower LLMs to generate more professional code. Based on these findings, we further investigate how to efficiently incorporate API knowledge into the code generation process. We experiment with three strategies for incorporating domain knowledge, namely, external knowledge inquirer, chain-of-thought prompting, and chain-of-thought fine-tuning. We refer to these strategies as a new code generation approach called DomCoder. Experimental results show that all strategies of DomCoder lead to improvement in the effectiveness of domain-specific code generation under certain settings. The results also show that there is still ample room for further improvement, based on which we suggest possible future works.
Synthetic Data Generation Using Large Language Models: Advances in Text and Code
Large language models (LLMs) have unlocked new possibilities for generating synthetic training data in both natural language and code. By producing artificial but task-relevant examples, these models can significantly augment or even replace real-world datasets, especially when labeled data is scarce or sensitive. This paper surveys recent advances in using LLMs to create synthetic text and code, emphasizing prompt-based generation, retrieval-augmented pipelines, and iterative self-refinement. We show how these methods enrich low-resource tasks such as classification and question answering, as well as code-centric applications such as instruction tuning, code translation, and bug repair, by enabling automated verification of functional correctness. Alongside potential benefits like cost-effectiveness, broad coverage, and controllable diversity, we address challenges such as factual inaccuracies in generated text, lack of stylistic realism, and the risk of bias amplification. Proposed mitigations include filtering and weighting outputs and reinforcement learning with execution feedback for code. We conclude with open research directions like automated prompt engineering, cross-modal data synthesis, and robust evaluation frameworks, highlighting the importance of LLM-generated synthetic data in advancing AI while emphasizing ethical and quality safeguards.
Generating Exceptional Behavior Tests with Reasoning Augmented Large Language Models
Many popular programming languages, including C#, Java, and Python, support exceptions. Exceptions are thrown during program execution if an unwanted event happens, e.g., a method is invoked with an illegal argument value. Software developers write exceptional behavior tests (EBTs) to check that their code detects unwanted events and throws appropriate exceptions. Prior research studies have shown the importance of EBTs, but those studies also highlighted that developers put most of their efforts on "happy paths", e.g., paths without unwanted events. To help developers fill the gap, we present the first framework, dubbed exLong, that automatically generates EBTs. exLong is a large language model instruction-tuned from CodeLlama and embeds reasoning about traces that lead to throw statements, conditional expressions that guard throw statements, and non-exceptional behavior tests that execute similar traces. We compare exLong with the state-of-the-art models for test generation (CAT-LM) and one of the strongest foundation models (GPT3.5), as well as with analysis-based tools for test generation (Randoop and EvoSuite). Our results show that exLong outperforms existing models and tools. Furthermore, we contributed several pull requests to open-source projects and 23 EBTs generated by exLong were already accepted.
HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation
We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs. In this task, models are presented with a base problem and a related, more complex problem. They must solve the base problem and then utilize its solution to address the more complex one. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks, resulting in three new benchmarks: HumanEval Pro, MBPP Pro, and BigCodeBench-Lite Pro, specifically designed to assess LLMs on self-invoking code generation. Second, from the analysis of experimental results over twenty LLMs on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in self-invoking code generation tasks and provide a new direction for future research on enhancing LLMs' code reasoning capabilities.
L2CEval: Evaluating Language-to-Code Generation Capabilities of Large Language Models
Recently, large language models (LLMs), especially those that are pretrained on code, have demonstrated strong capabilities in generating programs from natural language inputs in a few-shot or even zero-shot manner. Despite promising results, there is a notable lack of a comprehensive evaluation of these models language-to-code generation capabilities. Existing studies often focus on specific tasks, model architectures, or learning paradigms, leading to a fragmented understanding of the overall landscape. In this work, we present L2CEval, a systematic evaluation of the language-to-code generation capabilities of LLMs on 7 tasks across the domain spectrum of semantic parsing, math reasoning and Python programming, analyzing the factors that potentially affect their performance, such as model size, pretraining data, instruction tuning, and different prompting methods. In addition to assessing model performance, we measure confidence calibration for the models and conduct human evaluations of the output programs. This enables us to identify and analyze the typical failure modes across various tasks and models. L2CEval offers a comprehensive understanding of the capabilities and limitations of LLMs in language-to-code generation. We also release the evaluation framework and all model outputs, hoping to lay the groundwork for further future research in this domain.
Dynamic Benchmarking of Reasoning Capabilities in Code Large Language Models Under Data Contamination
The rapid evolution of code largelanguage models underscores the need for effective and transparent benchmarking of their reasoning capabilities. However, the current benchmarking approach heavily depends on publicly available, human-created datasets. The widespread use of these fixed benchmark datasets makes the benchmarking process to be static and thus particularly susceptible to data contamination, an unavoidable consequence of the extensive data collection processes used to train Code LLMs. Existing approaches that address data contamination often suffer from human effort limitations and imbalanced problem complexity. To tackle these challenges, we propose \tool, a novel benchmarking suite for evaluating Code LLMs under potential data contamination. Given a seed programming problem, \tool employs multiple agents to extract and modify the context without altering the core logic, generating semantically equivalent variations. We introduce a dynamic data generation methods and conduct empirical studies on two seed datasets across 21 Code LLMs. Results show that \tool effectively benchmarks reasoning capabilities under contamination risks while generating diverse problem sets to ensure consistent and reliable evaluations.
Harnessing the Power of Prompt-based Techniques for Generating School-Level Questions using Large Language Models
Designing high-quality educational questions is a challenging and time-consuming task. In this work, we propose a novel approach that utilizes prompt-based techniques to generate descriptive and reasoning-based questions. However, current question-answering (QA) datasets are inadequate for conducting our experiments on prompt-based question generation (QG) in an educational setting. Therefore, we curate a new QG dataset called EduProbe for school-level subjects, by leveraging the rich content of NCERT textbooks. We carefully annotate this dataset as quadruples of 1) Context: a segment upon which the question is formed; 2) Long Prompt: a long textual cue for the question (i.e., a longer sequence of words or phrases, covering the main theme of the context); 3) Short Prompt: a short textual cue for the question (i.e., a condensed representation of the key information or focus of the context); 4) Question: a deep question that aligns with the context and is coherent with the prompts. We investigate several prompt-based QG methods by fine-tuning pre-trained transformer-based large language models (LLMs), namely PEGASUS, T5, MBART, and BART. Moreover, we explore the performance of two general-purpose pre-trained LLMs such as Text-Davinci-003 and GPT-3.5-Turbo without any further training. By performing automatic evaluation, we show that T5 (with long prompt) outperforms all other models, but still falls short of the human baseline. Under human evaluation criteria, TextDavinci-003 usually shows better results than other models under various prompt settings. Even in the case of human evaluation criteria, QG models mostly fall short of the human baseline. Our code and dataset are available at: https://github.com/my625/PromptQG
CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models
Pre-trained on massive amounts of code and text data, large language models (LLMs) have demonstrated remarkable achievements in performing code generation tasks. With additional execution-based feedback, these models can act as agents with capabilities to self-refine and improve generated code autonomously. However, on challenging coding tasks with extremely large search space, current agentic approaches still struggle with multi-stage planning, generating, and debugging. To address this problem, we propose CodeTree, a framework for LLM agents to efficiently explore the search space in different stages of the code generation process. Specifically, we adopted a unified tree structure to explicitly explore different coding strategies, generate corresponding coding solutions, and subsequently refine the solutions. In each stage, critical decision-making (ranking, termination, expanding) of the exploration process is guided by both the environmental execution-based feedback and LLM-agent-generated feedback. We comprehensively evaluated CodeTree on 7 code generation benchmarks and demonstrated the significant performance gains of CodeTree against strong baselines. Using GPT-4o as the base model, we consistently achieved top results of 95.1 on HumanEval, 98.7 on MBPP, and 43.0 on CodeContests. On the challenging SWEBench benchmark, our approach led to significant performance gains.
Chat2VIS: Generating Data Visualisations via Natural Language using ChatGPT, Codex and GPT-3 Large Language Models
The field of data visualisation has long aimed to devise solutions for generating visualisations directly from natural language text. Research in Natural Language Interfaces (NLIs) has contributed towards the development of such techniques. However, the implementation of workable NLIs has always been challenging due to the inherent ambiguity of natural language, as well as in consequence of unclear and poorly written user queries which pose problems for existing language models in discerning user intent. Instead of pursuing the usual path of developing new iterations of language models, this study uniquely proposes leveraging the advancements in pre-trained large language models (LLMs) such as ChatGPT and GPT-3 to convert free-form natural language directly into code for appropriate visualisations. This paper presents a novel system, Chat2VIS, which takes advantage of the capabilities of LLMs and demonstrates how, with effective prompt engineering, the complex problem of language understanding can be solved more efficiently, resulting in simpler and more accurate end-to-end solutions than prior approaches. Chat2VIS shows that LLMs together with the proposed prompts offer a reliable approach to rendering visualisations from natural language queries, even when queries are highly misspecified and underspecified. This solution also presents a significant reduction in costs for the development of NLI systems, while attaining greater visualisation inference abilities compared to traditional NLP approaches that use hand-crafted grammar rules and tailored models. This study also presents how LLM prompts can be constructed in a way that preserves data security and privacy while being generalisable to different datasets. This work compares the performance of GPT-3, Codex and ChatGPT across a number of case studies and contrasts the performances with prior studies.
Large Language Models are Few-Shot Summarizers: Multi-Intent Comment Generation via In-Context Learning
Code comment generation aims at generating natural language descriptions for a code snippet to facilitate developers' program comprehension activities. Despite being studied for a long time, a bottleneck for existing approaches is that given a code snippet, they can only generate one comment while developers usually need to know information from diverse perspectives such as what is the functionality of this code snippet and how to use it. To tackle this limitation, this study empirically investigates the feasibility of utilizing large language models (LLMs) to generate comments that can fulfill developers' diverse intents. Our intuition is based on the facts that (1) the code and its pairwise comment are used during the pre-training process of LLMs to build the semantic connection between the natural language and programming language, and (2) comments in the real-world projects, which are collected for the pre-training, usually contain different developers' intents. We thus postulate that the LLMs can already understand the code from different perspectives after the pre-training. Indeed, experiments on two large-scale datasets demonstrate the rationale of our insights: by adopting the in-context learning paradigm and giving adequate prompts to the LLM (e.g., providing it with ten or more examples), the LLM can significantly outperform a state-of-the-art supervised learning approach on generating comments with multiple intents. Results also show that customized strategies for constructing the prompts and post-processing strategies for reranking the results can both boost the LLM's performances, which shed light on future research directions for using LLMs to achieve comment generation.
Towards Generating Functionally Correct Code Edits from Natural Language Issue Descriptions
Large language models (LLMs), such as OpenAI's Codex, have demonstrated their potential to generate code from natural language descriptions across a wide range of programming tasks. Several benchmarks have recently emerged to evaluate the ability of LLMs to generate functionally correct code from natural language intent with respect to a set of hidden test cases. This has enabled the research community to identify significant and reproducible advancements in LLM capabilities. However, there is currently a lack of benchmark datasets for assessing the ability of LLMs to generate functionally correct code edits based on natural language descriptions of intended changes. This paper aims to address this gap by motivating the problem NL2Fix of translating natural language descriptions of code changes (namely bug fixes described in Issue reports in repositories) into correct code fixes. To this end, we introduce Defects4J-NL2Fix, a dataset of 283 Java programs from the popular Defects4J dataset augmented with high-level descriptions of bug fixes, and empirically evaluate the performance of several state-of-the-art LLMs for the this task. Results show that these LLMS together are capable of generating plausible fixes for 64.6% of the bugs, and the best LLM-based technique can achieve up to 21.20% top-1 and 35.68% top-5 accuracy on this benchmark.
TritonBench: Benchmarking Large Language Model Capabilities for Generating Triton Operators
Triton, a high-level Python-like language designed for building efficient GPU kernels, is widely adopted in deep learning frameworks due to its portability, flexibility, and accessibility. However, programming and parallel optimization still require considerable trial and error from Triton developers. Despite advances in large language models (LLMs) for conventional code generation, these models struggle to generate accurate, performance-optimized Triton code, as they lack awareness of its specifications and the complexities of GPU programming. More critically, there is an urgent need for systematic evaluations tailored to Triton. In this work, we introduce TritonBench, the first comprehensive benchmark for Triton operator generation. TritonBench features two evaluation channels: a curated set of 184 real-world operators from GitHub and a collection of operators aligned with PyTorch interfaces. Unlike conventional code benchmarks prioritizing functional correctness, TritonBench also profiles efficiency performance on widely deployed GPUs aligned with industry applications. Our study reveals that current state-of-the-art code LLMs struggle to generate efficient Triton operators, highlighting a significant gap in high-performance code generation. TritonBench will be available at https://github.com/thunlp/TritonBench.
Insights from Benchmarking Frontier Language Models on Web App Code Generation
This paper presents insights from evaluating 16 frontier large language models (LLMs) on the WebApp1K benchmark, a test suite designed to assess the ability of LLMs to generate web application code. The results reveal that while all models possess similar underlying knowledge, their performance is differentiated by the frequency of mistakes they make. By analyzing lines of code (LOC) and failure distributions, we find that writing correct code is more complex than generating incorrect code. Furthermore, prompt engineering shows limited efficacy in reducing errors beyond specific cases. These findings suggest that further advancements in coding LLM should emphasize on model reliability and mistake minimization.
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing
The remarkable capability of large language models (LLMs) in generating high-quality code has drawn increasing attention in the software testing community. However, existing code LLMs often demonstrate unsatisfactory capabilities in generating accurate and complete tests since they were trained on code snippets collected without differentiating between code for testing purposes and other code. In this paper, we present a large-scale dataset UniTSyn, which is capable of enhancing the prowess of LLMs for Unit Test Synthesis. Associating tests with the tested functions is crucial for LLMs to infer the expected behavior and the logic paths to be verified. By leveraging Language Server Protocol, UniTSyn achieves the challenging goal of collecting focal-test pairs without per-project execution setups or per-language heuristics that tend to be fragile and difficult to scale. It contains 2.7 million focal-test pairs across five mainstream programming languages, making it possible to be utilized for enhancing the test generation ability of LLMs. The details of UniTSyn can be found in Table 1. Our experiments demonstrate that, by building an autoregressive model based on UniTSyn, we can achieve significant benefits in learning and understanding unit test representations, resulting in improved generation accuracy and code coverage across all evaluated programming languages. Code and data will be publicly available.
Statically Contextualizing Large Language Models with Typed Holes
Large language models (LLMs) have reshaped the landscape of program synthesis. However, contemporary LLM-based code completion systems often hallucinate broken code because they lack appropriate context, particularly when working with definitions not in the training data nor near the cursor. This paper demonstrates that tight integration with the type and binding structure of a language, as exposed by its language server, can address this contextualization problem in a token-efficient manner. In short, we contend that AIs need IDEs, too! In particular, we integrate LLM code generation into the Hazel live program sketching environment. The Hazel Language Server identifies the type and typing context of the hole being filled, even in the presence of errors, ensuring that a meaningful program sketch is always available. This allows prompting with codebase-wide contextual information not lexically local to the cursor, nor necessarily in the same file, but that is likely to be semantically local to the developer's goal. Completions synthesized by the LLM are then iteratively refined via further dialog with the language server. To evaluate these techniques, we introduce MVUBench, a dataset of model-view-update (MVU) web applications. These applications serve as challenge problems due to their reliance on application-specific data structures. We find that contextualization with type definitions is particularly impactful. After introducing our ideas in the context of Hazel we duplicate our techniques and port MVUBench to TypeScript in order to validate the applicability of these methods to higher-resource languages. Finally, we outline ChatLSP, a conservative extension to the Language Server Protocol (LSP) that language servers can implement to expose capabilities that AI code completion systems of various designs can use to incorporate static context when generating prompts for an LLM.
Teaching Large Language Models to Self-Debug
Large language models (LLMs) have achieved impressive performance on code generation. However, for complex programming tasks, generating the correct solution in one go becomes challenging, thus some prior works have designed program repair approaches to improve code generation performance. In this work, we propose Self-Debugging, which teaches a large language model to debug its predicted program via few-shot demonstrations. In particular, we demonstrate that Self-Debugging can teach the large language model to perform rubber duck debugging; i.e., without any feedback on the code correctness or error messages, the model is able to identify its mistakes by explaining the generated code in natural language. Self-Debugging achieves the state-of-the-art performance on several code generation benchmarks, including the Spider dataset for text-to-SQL generation, TransCoder for C++-to-Python translation, and MBPP for text-to-Python generation. On the Spider benchmark where there are no unit tests to verify the correctness of predictions, Self-Debugging with code explanation consistently improves the baseline by 2-3%, and improves the prediction accuracy on problems of the hardest label by 9%. On TransCoder and MBPP where unit tests are available, Self-Debugging improves the baseline accuracy by up to 12%. Meanwhile, by leveraging feedback messages and reusing failed predictions, Self-Debugging notably improves sample efficiency, and can match or outperform baseline models that generate more than 10x candidate programs.
A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification
In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.
Self-play with Execution Feedback: Improving Instruction-following Capabilities of Large Language Models
One core capability of large language models (LLMs) is to follow natural language instructions. However, the issue of automatically constructing high-quality training data to enhance the complex instruction-following abilities of LLMs without manual annotation remains unresolved. In this paper, we introduce AutoIF, the first scalable and reliable method for automatically generating instruction-following training data. AutoIF transforms the validation of instruction-following data quality into code verification, requiring LLMs to generate instructions, the corresponding code to check the correctness of the instruction responses, and unit test samples to verify the code's correctness. Then, execution feedback-based rejection sampling can generate data for Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) training. AutoIF achieves significant improvements across three training algorithms, SFT, Offline DPO, and Online DPO, when applied to the top open-source LLMs, Qwen2 and LLaMA3, in self-alignment and strong-to-weak distillation settings. Our code is publicly available at https://github.com/QwenLM/AutoIF.
Can ChatGPT replace StackOverflow? A Study on Robustness and Reliability of Large Language Model Code Generation
Recently, the large language models (LLMs) have shown extraordinary ability in understanding natural language and generating programming code. It has been a common practice of software engineers to consult LLMs when encountering coding questions. Although efforts have been made to avoid syntax errors and align the code with the intended semantics, the reliability and robustness of the code generationfrom LLMs have not yet been thoroughly studied. The executable code is not equivalent to the reliable and robust code, especially in the context of real-world software development. The misuse of APIs in the generated code could lead to severe problem, such as resource leaks, program crashes. To make things worse, the users of LLM code generation services are actually the developers that are most vulnerable to these code that seems right -- They are always novice developers that are not familiar with the APIs that LLMs generate code for them. Therefore, they could hardly tell the misuse in the code generated by LLMs, which further facilitates the incorrect code applied in real-world software. Existing code evaluation benchmark and datasets focus on crafting small tasks such as programming questions in coding interviews, which however deviates from the problem that developers would ask LLM for real-world coding help. To fill the missing piece, in this work, we propose a dataset RobustAPI for evaluating the reliability and robustness of code generated by LLMs. We collect 1208 coding questions from StackOverflow on 24 representative Java APIs. We summarize thecommon misuse patterns of these APIs and evaluate them oncurrent popular LLMs. The evaluation results show that evenfor GPT-4, 62% of the generated code contains API misuses,which would cause unexpected consequences if the code isintroduced into real-world software.
Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models
Large Language Models (LLMs) rely on instruction samples for alignment, but creating these datasets poses challenges, particularly in expert-dependent tasks like coding, which can be cost-prohibitive. One approach to mitigate these challenges is synthesizing data using another LLM. In this paper, we introduce a scalable method for generating synthetic instructions to enhance the code generation capability of LLMs. The proposed algorithm, Genetic-Instruct, mimics evolutionary processes, utilizing self-instruction to create numerous synthetic samples from a limited number of seeds. Genetic-Instruct is designed for efficient scaling of the generation process. Fine-tuning multiple coding LLMs with the synthetic samples demonstrates a significant improvement in their code generation accuracy compared to the baselines.
Qiskit Code Assistant: Training LLMs for generating Quantum Computing Code
Code Large Language Models (Code LLMs) have emerged as powerful tools, revolutionizing the software development landscape by automating the coding process and reducing time and effort required to build applications. This paper focuses on training Code LLMs to specialize in the field of quantum computing. We begin by discussing the unique needs of quantum computing programming, which differ significantly from classical programming approaches or languages. A Code LLM specializing in quantum computing requires a foundational understanding of quantum computing and quantum information theory. However, the scarcity of available quantum code examples and the rapidly evolving field, which necessitates continuous dataset updates, present significant challenges. Moreover, we discuss our work on training Code LLMs to produce high-quality quantum code using the Qiskit library. This work includes an examination of the various aspects of the LLMs used for training and the specific training conditions, as well as the results obtained with our current models. To evaluate our models, we have developed a custom benchmark, similar to HumanEval, which includes a set of tests specifically designed for the field of quantum computing programming using Qiskit. Our findings indicate that our model outperforms existing state-of-the-art models in quantum computing tasks. We also provide examples of code suggestions, comparing our model to other relevant code LLMs. Finally, we introduce a discussion on the potential benefits of Code LLMs for quantum computing computational scientists, researchers, and practitioners. We also explore various features and future work that could be relevant in this context.
xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code Understanding, Generation, Translation and Retrieval
The ability to solve problems is a hallmark of intelligence and has been an enduring goal in AI. AI systems that can create programs as solutions to problems or assist developers in writing programs can increase productivity and make programming more accessible. Recently, pre-trained large language models have shown impressive abilities in generating new codes from natural language descriptions, repairing buggy codes, translating codes between languages, and retrieving relevant code segments. However, the evaluation of these models has often been performed in a scattered way on only one or two specific tasks, in a few languages, at a partial granularity (e.g., function) level and in many cases without proper training data. Even more concerning is that in most cases the evaluation of generated codes has been done in terms of mere lexical overlap rather than actual execution whereas semantic similarity (or equivalence) of two code segments depends only on their ``execution similarity'', i.e., being able to get the same output for a given input.
HumanEval-XL: A Multilingual Code Generation Benchmark for Cross-lingual Natural Language Generalization
Large language models (LLMs) have made significant progress in generating codes from textual prompts. However, existing benchmarks have mainly concentrated on translating English prompts to multilingual codes or have been constrained to very limited natural languages (NLs). These benchmarks have overlooked the vast landscape of massively multilingual NL to multilingual code, leaving a critical gap in the evaluation of multilingual LLMs. In response, we introduce HumanEval-XL, a massively multilingual code generation benchmark specifically crafted to address this deficiency. HumanEval-XL establishes connections between 23 NLs and 12 programming languages (PLs), and comprises of a collection of 22,080 prompts with an average of 8.33 test cases. By ensuring parallel data across multiple NLs and PLs, HumanEval-XL offers a comprehensive evaluation platform for multilingual LLMs, allowing the assessment of the understanding of different NLs. Our work serves as a pioneering step towards filling the void in evaluating NL generalization in the area of multilingual code generation. We make our evaluation code and data publicly available at https://github.com/FloatAI/HumanEval-XL.
COMEX: A Tool for Generating Customized Source Code Representations
Learning effective representations of source code is critical for any Machine Learning for Software Engineering (ML4SE) system. Inspired by natural language processing, large language models (LLMs) like Codex and CodeGen treat code as generic sequences of text and are trained on huge corpora of code data, achieving state of the art performance on several software engineering (SE) tasks. However, valid source code, unlike natural language, follows a strict structure and pattern governed by the underlying grammar of the programming language. Current LLMs do not exploit this property of the source code as they treat code like a sequence of tokens and overlook key structural and semantic properties of code that can be extracted from code-views like the Control Flow Graph (CFG), Data Flow Graph (DFG), Abstract Syntax Tree (AST), etc. Unfortunately, the process of generating and integrating code-views for every programming language is cumbersome and time consuming. To overcome this barrier, we propose our tool COMEX - a framework that allows researchers and developers to create and combine multiple code-views which can be used by machine learning (ML) models for various SE tasks. Some salient features of our tool are: (i) it works directly on source code (which need not be compilable), (ii) it currently supports Java and C#, (iii) it can analyze both method-level snippets and program-level snippets by using both intra-procedural and inter-procedural analysis, and (iv) it is easily extendable to other languages as it is built on tree-sitter - a widely used incremental parser that supports over 40 languages. We believe this easy-to-use code-view generation and customization tool will give impetus to research in source code representation learning methods and ML4SE. Tool: https://pypi.org/project/comex - GitHub: https://github.com/IBM/tree-sitter-codeviews - Demo: https://youtu.be/GER6U87FVbU
Advancing vision-language models in front-end development via data synthesis
Modern front-end (FE) development, especially when leveraging the unique features of frameworks like React and Vue, presents distinctive challenges. These include managing modular architectures, ensuring synchronization between data and visual outputs for declarative rendering, and adapting reusable components to various scenarios. Such complexities make it particularly difficult for state-of-the-art large vision-language models (VLMs) to generate accurate and functional code directly from design images. To address these challenges, we propose a reflective agentic workflow that synthesizes high-quality image-text data to capture the diverse characteristics of FE development. This workflow automates the extraction of self-containedA \textbf{self-contained code snippet is one that encapsulates all necessary logic, styling, and dependencies, ensuring it functions independently without requiring external imports or context.} code snippets from real-world projects, renders the corresponding visual outputs, and generates detailed descriptions that link design elements to functional code. To further expand the scope and utility of the synthesis, we introduce three data synthesis strategies: Evolution-based synthesis, which enables scalable and diverse dataset expansion; Waterfall-Model-based synthesis, which generates logically coherent code derived from system requirements; and Additive Development synthesis, which iteratively increases the complexity of human-authored components. We build a large vision-language model, Flame, trained on the synthesized datasets and demonstrate its effectiveness in generating React code via the pass@k metric. Our results suggest that a code VLM trained to interpret images before code generation may achieve better performance.
StarVector: Generating Scalable Vector Graphics Code from Images
Scalable Vector Graphics (SVGs) have become integral in modern image rendering applications due to their infinite scalability in resolution, versatile usability, and editing capabilities. SVGs are particularly popular in the fields of web development and graphic design. Existing approaches for SVG modeling using deep learning often struggle with generating complex SVGs and are restricted to simpler ones that require extensive processing and simplification. This paper introduces StarVector, a multimodal SVG generation model that effectively integrates Code Generation Large Language Models (CodeLLMs) and vision models. Our approach utilizes a CLIP image encoder to extract visual representations from pixel-based images, which are then transformed into visual tokens via an adapter module. These visual tokens are pre-pended to the SVG token embeddings, and the sequence is modeled by the StarCoder model using next-token prediction, effectively learning to align the visual and code tokens. This enables StarVector to generate unrestricted SVGs that accurately represent pixel images. To evaluate StarVector's performance, we present SVG-Bench, a comprehensive benchmark for evaluating SVG methods across multiple datasets and relevant metrics. Within this benchmark, we introduce novel datasets including SVG-Stack, a large-scale dataset of real-world SVG examples, and use it to pre-train StarVector as a large foundation model for SVGs. Our results demonstrate significant enhancements in visual quality and complexity handling over current methods, marking a notable advancement in SVG generation technology. Code and models: https://github.com/joanrod/star-vector
CoMo: Controllable Motion Generation through Language Guided Pose Code Editing
Text-to-motion models excel at efficient human motion generation, but existing approaches lack fine-grained controllability over the generation process. Consequently, modifying subtle postures within a motion or inserting new actions at specific moments remains a challenge, limiting the applicability of these methods in diverse scenarios. In light of these challenges, we introduce CoMo, a Controllable Motion generation model, adept at accurately generating and editing motions by leveraging the knowledge priors of large language models (LLMs). Specifically, CoMo decomposes motions into discrete and semantically meaningful pose codes, with each code encapsulating the semantics of a body part, representing elementary information such as "left knee slightly bent". Given textual inputs, CoMo autoregressively generates sequences of pose codes, which are then decoded into 3D motions. Leveraging pose codes as interpretable representations, an LLM can directly intervene in motion editing by adjusting the pose codes according to editing instructions. Experiments demonstrate that CoMo achieves competitive performance in motion generation compared to state-of-the-art models while, in human studies, CoMo substantially surpasses previous work in motion editing abilities.
Teaching Code LLMs to Use Autocompletion Tools in Repository-Level Code Generation
Recent code large language models (LLMs) have shown promising performance in generating standalone functions but face limitations in repository-level code generation due to their lack of awareness of repository-level dependencies (e.g., user-defined attributes), resulting in dependency errors such as undefined-variable and no-member errors. In this work, we introduce ToolGen, an approach that integrates autocompletion tools into the code LLM generation process to address these dependencies. ToolGen comprises two main phases: Trigger Insertion and Model Fine-tuning (Offline), and Tool-integrated Code Generation (Online). During the offline phase, ToolGen augments functions within a given code corpus with a special mark token, indicating positions to trigger autocompletion tools. These augmented functions, along with their corresponding docstrings, are then used to fine-tune a selected code LLM. In the online phase, ToolGen iteratively generates functions by predicting tokens step-by-step using the fine-tuned LLM. Whenever a mark token is encountered, ToolGen invokes the autocompletion tool to suggest code completions and selects the most appropriate one. We conduct comprehensive experiments to evaluate ToolGen's effectiveness in repository-level code generation. To facilitate this evaluation, we create a benchmark comprising 680 real-world code repositories and introduce two new repository-level metrics: Dependency Coverage and Static Validity Rate. The results demonstrate that ToolGen significantly improves Dependency Coverage by 15.2% to 45.8% and Static Validity Rate by 10.9% to 42.2% across three distinct code LLMs, while maintaining competitive performance in widely-recognized similarity metrics. Furthermore, our generalizability evaluation confirms ToolGen's consistent performance when applied to diverse code LLMs, including various model architectures and scales.
MdEval: Massively Multilingual Code Debugging
Code large language models (LLMs) have made significant progress in code debugging by directly generating the correct code based on the buggy code snippet. Programming benchmarks, typically consisting of buggy code snippet and their associated test cases, are used to assess the debugging capabilities of LLMs. However, many existing benchmarks primarily focus on Python and are often limited in terms of language diversity (e.g., DebugBench and DebugEval). To advance the field of multilingual debugging with LLMs, we propose the first massively multilingual debugging benchmark, which includes 3.6K test samples of 18 programming languages and covers the automated program repair (APR) task, the code review (CR) task, and the bug identification (BI) task. Further, we introduce the debugging instruction corpora MDEVAL-INSTRUCT by injecting bugs into the correct multilingual queries and solutions (xDebugGen). Further, a multilingual debugger xDebugCoder trained on MDEVAL-INSTRUCT as a strong baseline specifically to handle the bugs of a wide range of programming languages (e.g. "Missing Mut" in language Rust and "Misused Macro Definition" in language C). Our extensive experiments on MDEVAL reveal a notable performance gap between open-source models and closed-source LLMs (e.g., GPT and Claude series), highlighting huge room for improvement in multilingual code debugging scenarios.
Automatic Detection of LLM-generated Code: A Case Study of Claude 3 Haiku
Using Large Language Models (LLMs) has gained popularity among software developers for generating source code. However, the use of LLM-generated code can introduce risks of adding suboptimal, defective, and vulnerable code. This makes it necessary to devise methods for the accurate detection of LLM-generated code. Toward this goal, we perform a case study of Claude 3 Haiku (or Claude 3 for brevity) on CodeSearchNet dataset. We divide our analyses into two parts: function-level and class-level. We extract 22 software metric features, such as Code Lines and Cyclomatic Complexity, for each level of granularity. We then analyze code snippets generated by Claude 3 and their human-authored counterparts using the extracted features to understand how unique the code generated by Claude 3 is. In the following step, we use the unique characteristics of Claude 3-generated code to build Machine Learning (ML) models and identify which features of the code snippets make them more detectable by ML models. Our results indicate that Claude 3 tends to generate longer functions, but shorter classes than humans, and this characteristic can be used to detect Claude 3-generated code with ML models with 82% and 66% accuracies for function-level and class-level snippets, respectively.
ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness?
Although large language models (LLMs) have been largely successful in generating functionally correct programs, conditioning models to produce efficient solutions while ensuring correctness remains a challenge. Further, unreliability in benchmarking code efficiency is a hurdle across varying hardware specifications for popular interpreted languages such as Python. In this paper, we present ECCO, a reproducible benchmark for evaluating program efficiency via two paradigms: natural language (NL) based code generation and history-based code editing. On ECCO, we adapt and thoroughly investigate the three most promising existing LLM-based approaches: in-context learning, iterative refinement with execution or NL feedback, and fine-tuning conditioned on execution and editing history. While most methods degrade functional correctness and moderately increase program efficiency, we find that adding execution information often helps maintain functional correctness, and NL feedback enhances more on efficiency. We release our benchmark to support future work on LLM-based generation of efficient code.
Web-Bench: A LLM Code Benchmark Based on Web Standards and Frameworks
The application of large language models (LLMs) in the field of coding is evolving rapidly: from code assistants, to autonomous coding agents, and then to generating complete projects through natural language. Early LLM code benchmarks primarily focused on code generation accuracy, but these benchmarks have gradually become saturated. Benchmark saturation weakens their guiding role for LLMs. For example, HumanEval Pass@1 has reached 99.4% and MBPP 94.2%. Among various attempts to address benchmark saturation, approaches based on software engineering have stood out, but the saturation of existing software engineering benchmarks is rapidly increasing. To address this, we propose a new benchmark, Web-Bench, which contains 50 projects, each consisting of 20 tasks with sequential dependencies. The tasks implement project features in sequence, simulating real-world human development workflows. When designing Web-Bench, we aim to cover the foundational elements of Web development: Web Standards and Web Frameworks. Given the scale and complexity of these projects, which were designed by engineers with 5 to 10 years of experience, each presents a significant challenge. On average, a single project takes 4 to 8 hours for a senior engineer to complete. On our given benchmark agent (Web-Agent), SOTA (Claude 3.7 Sonnet) achieves only 25.1% Pass@1, significantly lower (better) than SWE-Bench's Verified (65.4%) and Full (33.8%) scores. Finally, we discuss that in any development field, Standards and Frameworks represent foundational knowledge and efficiency tools, respectively, and LLMs require optimization tailored to them.
WebApp1K: A Practical Code-Generation Benchmark for Web App Development
We introduce WebApp1K, a practical code-generation benchmark to measure LLM ability to develop web apps. This benchmark aims to calibrate LLM output and aid the models to progressively improve code correctness and functionality. The benchmark is lightweight and easy to run. We present the initial version of WebApp1K, and share our findings of running the benchmark against the latest frontier LLMs. First, open source LLMs deliver impressive performance, closely trailing behind GPT-4o and Claude 3.5. Second, model size has strong correlation with code correctness. Third, no prompting techniques have been found to lift performance either universally to all models, or significantly to a single model.
Unsupervised Evaluation of Code LLMs with Round-Trip Correctness
To evaluate code large language models (LLMs), research has relied on a few small manually curated benchmarks, such as HumanEval and MBPP, which represent a narrow part of the real-world software domains. In this work, we introduce round-trip correctness (RTC) as an alternative evaluation method. RTC allows Code LLM evaluation on a broader spectrum of real-world software domains without the need for costly human curation. RTC rests on the idea that we can ask a model to make a prediction (e.g., describe some code using natural language), feed that prediction back (e.g., synthesize code from the predicted description), and check if this round-trip leads to code that is semantically equivalent to the original input. We show how to employ RTC to evaluate code synthesis and editing. We find that RTC strongly correlates with model performance on existing narrow-domain code synthesis benchmarks while allowing us to expand to a much broader set of domains and tasks which was not previously possible without costly human annotations.
Empowering AI to Generate Better AI Code: Guided Generation of Deep Learning Projects with LLMs
While large language models (LLMs) have been widely applied to code generation, they struggle with generating entire deep learning projects, which are characterized by complex structures, longer functions, and stronger reliance on domain knowledge than general-purpose code. An open-domain LLM often lacks coherent contextual guidance and domain expertise for specific projects, making it challenging to produce complete code that fully meets user requirements. In this paper, we propose a novel planning-guided code generation method, DLCodeGen, tailored for generating deep learning projects. DLCodeGen predicts a structured solution plan, offering global guidance for LLMs to generate the project. The generated plan is then leveraged to retrieve semantically analogous code samples and subsequently abstract a code template. To effectively integrate these multiple retrieval-augmented techniques, a comparative learning mechanism is designed to generate the final code. We validate the effectiveness of our approach on a dataset we build for deep learning code generation. Experimental results demonstrate that DLCodeGen outperforms other baselines, achieving improvements of 9.7% in CodeBLEU and 3.6% in human evaluation metrics.
Modularization is Better: Effective Code Generation with Modular Prompting
Large Language Models are transforming software development by automatically generating code. Current prompting techniques such as Chain-of-Thought (CoT) suggest tasks step by step and the reasoning process follows a linear structure, which hampers the understanding of complex programming problems, particularly those requiring hierarchical solutions. Inspired by the principle of modularization in software development, in this work, we propose a novel prompting technique, called MoT, to enhance the code generation performance of LLMs. At first, MoT exploits modularization principles to decompose complex programming problems into smaller, independent reasoning steps, enabling a more structured and interpretable problem-solving process. This hierarchical structure improves the LLM's ability to comprehend complex programming problems. Then, it structures the reasoning process using an MLR Graph (Multi-Level Reasoning Graph), which hierarchically organizes reasoning steps. This approach enhances modular understanding and ensures better alignment between reasoning steps and the generated code, significantly improving code generation performance. Our experiments on two advanced LLMs (GPT-4o-mini and DeepSeek-R1), comparing MoT to six baseline prompting techniques across six widely used datasets, HumanEval, HumanEval-ET, HumanEval+, MBPP, MBPP-ET, and MBPP+, demonstrate that MoT significantly outperforms existing baselines (e.g., CoT and SCoT), achieving Pass@1 scores ranging from 58.1% to 95.1%. The experimental results confirm that MoT significantly enhances the performance of LLM-based code generation.
Paper2Code: Automating Code Generation from Scientific Papers in Machine Learning
Despite the rapid growth of machine learning research, corresponding code implementations are often unavailable, making it slow and labor-intensive for researchers to reproduce results and build upon prior work. In the meantime, recent Large Language Models (LLMs) excel at understanding scientific documents and generating high-quality code. Inspired by this, we introduce PaperCoder, a multi-agent LLM framework that transforms machine learning papers into functional code repositories. PaperCoder operates in three stages: planning, where it constructs a high-level roadmap, designs the system architecture with diagrams, identifies file dependencies, and generates configuration files; analysis, which focuses on interpreting implementation-specific details; and generation, where modular, dependency-aware code is produced. Moreover, each phase is instantiated through a set of specialized agents designed to collaborate effectively across the pipeline. We then evaluate PaperCoder on generating code implementations from machine learning papers based on both model-based and human evaluations, specifically from the original paper authors, with author-released repositories as ground truth if available. Our results demonstrate the effectiveness of PaperCoder in creating high-quality, faithful implementations. Furthermore, it consistently shows strengths in the recently released PaperBench benchmark, surpassing strong baselines by substantial margins.
CWEval: Outcome-driven Evaluation on Functionality and Security of LLM Code Generation
Large Language Models (LLMs) have significantly aided developers by generating or assisting in code writing, enhancing productivity across various tasks. While identifying incorrect code is often straightforward, detecting vulnerabilities in functionally correct code is more challenging, especially for developers with limited security knowledge, which poses considerable security risks of using LLM-generated code and underscores the need for robust evaluation benchmarks that assess both functional correctness and security. Current benchmarks like CyberSecEval and SecurityEval attempt to solve it but are hindered by unclear and impractical specifications, failing to assess both functionality and security accurately. To tackle these deficiencies, we introduce CWEval, a novel outcome-driven evaluation framework designed to enhance the evaluation of secure code generation by LLMs. This framework not only assesses code functionality but also its security simultaneously with high-quality task specifications and outcome-driven test oracles which provides high accuracy. Coupled with CWEval-bench, a multilingual, security-critical coding benchmark, CWEval provides a rigorous empirical security evaluation on LLM-generated code, overcoming previous benchmarks' shortcomings. Through our evaluations, CWEval reveals a notable portion of functional but insecure code produced by LLMs, and shows a serious inaccuracy of previous evaluations, ultimately contributing significantly to the field of secure code generation. We open-source our artifact at: https://github.com/Co1lin/CWEval .
Dynamic Scaling of Unit Tests for Code Reward Modeling
Current large language models (LLMs) often struggle to produce accurate responses on the first attempt for complex reasoning tasks like code generation. Prior research tackles this challenge by generating multiple candidate solutions and validating them with LLM-generated unit tests. The execution results of unit tests serve as reward signals to identify correct solutions. As LLMs always confidently make mistakes, these unit tests are not reliable, thereby diminishing the quality of reward signals. Motivated by the observation that scaling the number of solutions improves LLM performance, we explore the impact of scaling unit tests to enhance reward signal quality. Our pioneer experiment reveals a positive correlation between the number of unit tests and reward signal quality, with greater benefits observed in more challenging problems. Based on these insights, we propose CodeRM-8B, a lightweight yet effective unit test generator that enables efficient and high-quality unit test scaling. Additionally, we implement a dynamic scaling mechanism that adapts the number of unit tests based on problem difficulty, further improving efficiency. Experimental results show that our approach significantly improves performance across various models on three benchmarks (e.g., with gains of 18.43% for Llama3-8B and 3.42% for GPT-4o-mini on HumanEval Plus).
ComplexVCoder: An LLM-Driven Framework for Systematic Generation of Complex Verilog Code
Recent advances have demonstrated the promising capabilities of large language models (LLMs) in generating register-transfer level (RTL) code, such as Verilog. However, existing LLM-based frameworks still face significant challenges in accurately handling the complexity of real-world RTL designs, particularly those that are large-scale and involve multi-level module instantiations. To address this issue, we present ComplexVCoder, an open-source LLM-driven framework that enhances both the generation quality and efficiency of complex Verilog code. Specifically, we introduce a two-stage generation mechanism, which leverages an intermediate representation to enable a more accurate and structured transition from natural language descriptions to intricate Verilog designs. In addition, we introduce a rule-based alignment method and a domain-specific retrieval-augmented generation (RAG) to further improve the correctness of the synthesized code by incorporating relevant design knowledge during generation. To evaluate our approach, we construct a comprehensive dataset comprising 55 complex Verilog designs derived from real-world implementations. We also release an open-source benchmark suite for systematically assessing the quality of auto-generated RTL code together with the ComplexVCoder framework. Experimental results show that ComplexVCoder outperforms SOTA frameworks such as CodeV and RTLCoder by 14.6% and 22.2%, respectively, in terms of function correctness on complex Verilog benchmarks. Furthermore, ComplexVcoder achieves comparable generation performances in terms of functionality correctness using a lightweight 32B model (Qwen2.5), rivaling larger-scale models such as GPT-3.5 and DeepSeek-V3.
EffiBench: Benchmarking the Efficiency of Automatically Generated Code
Code generation models have increasingly become integral to aiding software development, offering assistance in tasks such as code completion, debugging, and code translation. Although current research has thoroughly examined the correctness of code produced by code generation models, a vital aspect, i.e., the efficiency of the generated code, has often been neglected. This paper presents EffiBench, a benchmark with 1,000 efficiency-critical coding problems for assessing the efficiency of code generated by code generation models. EffiBench contains a diverse set of LeetCode coding problems. Each problem is paired with an executable human-written canonical solution. With EffiBench, we empirically examine the capability of 21 Large Language Models (13 open-sourced and 8 closed-sourced) in generating efficient code. The results demonstrate that GPT-4-turbo generates the most efficient code, significantly outperforming Palm-2-chat-bison, Claude-instant-1, Gemini-pro, GPT-4, and GPT-3.5. Nevertheless, its code efficiency is still worse than the efficiency of human-written canonical solutions. In particular, the average and worst execution time of GPT-4-turbo generated code is 1.69 and 45.49 times that of the canonical solutions.
SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation
Large language models demonstrate exceptional performance in simple code generation tasks but still face challenges in tackling complex problems. These challenges may stem from insufficient reasoning and problem decomposition capabilities. To address this issue, we propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths. This creates a positive feedback loop, enabling continuous improvement. Our method operates entirely through the model itself without requiring additional supervision. By synthesizing natural language reasoning paths and translating them into executable code, the approach ensures analytical accuracy and enhances the success rate in solving complex tasks. Experimental results show that, even without additional supervisory signals, our method achieves performance improvements across different model scales, demonstrating the significant potential of self-improvement in small models. Furthermore, the method remains robust when traditional Chain-of-Thought (CoT) approaches exhibit performance degradation, with notable improvements observed in diversity metrics such as pass@10. We encourage further exploration of reasoning processes within training data to enhance the ability of language models to address complex problems. Our code and data are public at https://github.com/DIRECT-BIT/SRA-MCTS.
ChartEdit: How Far Are MLLMs From Automating Chart Analysis? Evaluating MLLMs' Capability via Chart Editing
Although multimodal large language models (MLLMs) show promise in generating chart rendering code, chart editing presents a greater challenge. This difficulty stems from its nature as a labor-intensive task for humans that also demands MLLMs to integrate chart understanding, complex reasoning, and precise intent interpretation. While many MLLMs claim such editing capabilities, current assessments typically rely on limited case studies rather than robust evaluation methodologies, highlighting the urgent need for a comprehensive evaluation framework. In this work, we propose ChartEdit, a new high-quality benchmark designed for chart editing tasks. This benchmark comprises 1,405 diverse editing instructions applied to 233 real-world charts, with each instruction-chart instance having been manually annotated and validated for accuracy. Utilizing ChartEdit, we evaluate the performance of 10 mainstream MLLMs across two types of experiments, assessing them at both the code and chart levels. The results suggest that large-scale models can generate code to produce images that partially match the reference images. However, their ability to generate accurate edits according to the instructions remains limited. The state-of-the-art (SOTA) model achieves a score of only 59.96, highlighting significant challenges in precise modification. In contrast, small-scale models, including chart-domain models, struggle both with following editing instructions and generating overall chart images, underscoring the need for further development in this area. Code is available at https://github.com/xxlllz/ChartEdit.
Grammar-Aligned Decoding
Large Language Models (LLMs) struggle with reliably generating highly structured outputs, such as program code, mathematical formulas, or well-formed markup. Constrained decoding approaches mitigate this problem by greedily restricting what tokens an LLM can output at each step to guarantee that the output matches a given constraint. Specifically, in grammar-constrained decoding (GCD), the LLM's output must follow a given grammar. In this paper, we demonstrate that GCD techniques (and in general constrained decoding techniques) can distort the LLM's distribution, leading to outputs that are grammatical but appear with likelihoods that are not proportional to the ones given by the LLM, and so ultimately are low-quality. We call the problem of aligning sampling with a grammar constraint, grammar-aligned decoding (GAD), and propose adaptive sampling with approximate expected futures (ASAp), a decoding algorithm that guarantees the output to be grammatical while provably producing outputs that match the conditional probability of the LLM's distribution conditioned on the given grammar constraint. Our algorithm uses prior sample outputs to soundly overapproximate the future grammaticality of different output prefixes. Our evaluation on code generation and structured NLP tasks shows how ASAp often produces outputs with higher likelihood (according to the LLM's distribution) than existing GCD techniques, while still enforcing the desired grammatical constraints.
CodePDE: An Inference Framework for LLM-driven PDE Solver Generation
Partial differential equations (PDEs) are fundamental to modeling physical systems, yet solving them remains a complex challenge. Traditional numerical solvers rely on expert knowledge to implement and are computationally expensive, while neural-network-based solvers require large training datasets and often lack interpretability. In this work, we frame PDE solving as a code generation task and introduce CodePDE, the first inference framework for generating PDE solvers using large language models (LLMs). Leveraging advanced inference-time algorithms and scaling strategies, CodePDE unlocks critical capacities of LLM for PDE solving: reasoning, debugging, selfrefinement, and test-time scaling -- all without task-specific tuning. CodePDE achieves superhuman performance across a range of representative PDE problems. We also present a systematic empirical analysis of LLM generated solvers, analyzing their accuracy, efficiency, and numerical scheme choices. Our findings highlight the promise and the current limitations of LLMs in PDE solving, offering a new perspective on solver design and opportunities for future model development. Our code is available at https://github.com/LithiumDA/CodePDE.
Fast and Slow Generating: An Empirical Study on Large and Small Language Models Collaborative Decoding
Large Language Models (LLMs) demonstrate impressive performance in diverse applications, yet they face significant drawbacks, including high inference latency, expensive training cost, and generation of hallucination. Collaborative decoding between large and small language models (SLMs) offers a novel approach to address these challenges. Inspired by dual-process cognitive theory, we integrate these methods into a unified framework termed Fast and Slow Generating (FS-GEN). This paper explores several techniques within the FS-GEN framework, including speculative decoding, contrastive decoding, and emulator or proxy fine-tuning. We provide a comprehensive analysis of these methodologies, offering insights into their similarities and differences under this framework. Our study delves into the differential knowledge capabilities of LLMs versus SLMs through the FS-GEN lens, revealing that fewer than 20% of collaborative interactions are required across various methods. These interactions adhere to a scaling law relative to the parameter ratios, thereby facilitating predictable collaboration. Furthermore, we investigate the specific positions where collaboration is most effective from an uncertainty perspective, yielding novel insights that could refine FS-GEN methods. Our findings reveal that the essential difference between models of different sizes lies in the uncertainty of the next token prediction, where interventions by larger models are most needed to assist the smaller ones. Code for Reproduction: https://github.com/TsinghuaC3I/FS-GEN
Learning to Reason via Program Generation, Emulation, and Search
Program synthesis with language models (LMs) has unlocked a large set of reasoning abilities; code-tuned LMs have proven adept at generating programs that solve a wide variety of algorithmic symbolic manipulation tasks (e.g. word concatenation). However, not all reasoning tasks are easily expressible as code, e.g. tasks involving commonsense reasoning, moral decision-making, and sarcasm understanding. Our goal is to extend an LM's program synthesis skills to such tasks and evaluate the results via pseudo-programs, namely Python programs where some leaf function calls are left undefined. To that end, we propose, Code Generation and Emulated EXecution (CoGEX). CoGEX works by (1) training LMs to generate their own pseudo-programs, (2) teaching them to emulate their generated program's execution, including those leaf functions, allowing the LM's knowledge to fill in the execution gaps; and (3) using them to search over many programs to find an optimal one. To adapt the CoGEX model to a new task, we introduce a method for performing program search to find a single program whose pseudo-execution yields optimal performance when applied to all the instances of a given dataset. We show that our approach yields large improvements compared to standard in-context learning approaches on a battery of tasks, both algorithmic and soft reasoning. This result thus demonstrates that code synthesis can be applied to a much broader class of problems than previously considered. Our released dataset, fine-tuned models, and implementation can be found at https://github.com/nweir127/CoGEX.
JuICe: A Large Scale Distantly Supervised Dataset for Open Domain Context-based Code Generation
Interactive programming with interleaved code snippet cells and natural language markdown is recently gaining popularity in the form of Jupyter notebooks, which accelerate prototyping and collaboration. To study code generation conditioned on a long context history, we present JuICe, a corpus of 1.5 million examples with a curated test set of 3.7K instances based on online programming assignments. Compared with existing contextual code generation datasets, JuICe provides refined human-curated data, open-domain code, and an order of magnitude more training data. Using JuICe, we train models for two tasks: (1) generation of the API call sequence in a code cell, and (2) full code cell generation, both conditioned on the NL-Code history up to a particular code cell. Experiments using current baseline code generation models show that both context and distant supervision aid in generation, and that the dataset is challenging for current systems.
L2MAC: Large Language Model Automatic Computer for Extensive Code Generation
Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and coherent outputs. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long output generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, an LLM-based multi-agent system, for long and consistent output generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction in turn is executed by a separate LLM agent, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate extensive outputs, bypassing the constraints of the finite context window while producing outputs that fulfill a complex user-specified task. We empirically demonstrate that L2MAC achieves state-of-the-art performance in generating large codebases for system design tasks, significantly outperforming other coding methods in implementing the detailed user-specified task; we show that L2MAC works for general-purpose extensive text-based tasks, such as writing an entire book; and we provide valuable insights into L2MAC's performance improvement over existing methods.
LLM-Powered Code Vulnerability Repair with Reinforcement Learning and Semantic Reward
In software development, the predominant emphasis on functionality often supersedes security concerns, a trend gaining momentum with AI-driven automation tools like GitHub Copilot. These tools significantly improve developers' efficiency in functional code development. Nevertheless, it remains a notable concern that such tools are also responsible for creating insecure code, predominantly because of pre-training on publicly available repositories with vulnerable code. Moreover, developers are called the "weakest link in the chain" since they have very minimal knowledge of code security. Although existing solutions provide a reasonable solution to vulnerable code, they must adequately describe and educate the developers on code security to ensure that the security issues are not repeated. Therefore we introduce a multipurpose code vulnerability analysis system SecRepair, powered by a large language model, CodeGen2 assisting the developer in identifying and generating fixed code along with a complete description of the vulnerability with a code comment. Our innovative methodology uses a reinforcement learning paradigm to generate code comments augmented by a semantic reward mechanism. Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs. We further identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub. Our findings underscore that incorporating reinforcement learning coupled with semantic reward augments our model's performance, thereby fortifying its capacity to address code vulnerabilities with improved efficacy.
Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning
Despite the remarkable success of large language models (LLMs) on traditional natural language processing tasks, their planning ability remains a critical bottleneck in tackling complex multi-step reasoning tasks. Existing approaches mainly rely on prompting or task-specific fine-tuning, often suffering from poor robustness and cross-task generalization. To address the limitation, we introduce CodePlan, a scalable framework that empowers LLMs to generate and follow code-form plans -- pseudocode that outlines high-level, structured reasoning processes. By leveraging the structured and versatile nature of code, CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks. Importantly, CodePlan allows automatic extraction of code-form plans from massive, wide-ranging text corpora without the need for curated, task-specific datasets. This enables it to scale up efficiently and improve LLM's reasoning capabilities across diverse scenarios. To train CodePlan, we construct a large-scale dataset of 2M examples that integrate code-form plans with standard prompt-response pairs from existing corpora. With minimal computation overhead during both training and inference, CodePlan achieves a 25.1\% relative improvement compared with directly generating responses, averaged across 13 challenging multi-step reasoning benchmarks, spanning mathematical reasoning, symbolic reasoning, instruction-following, multi-hop QA, and decision-making tasks. Further analysis reveals CodePlan's increasing performance gains on more complex reasoning tasks, as well as significant data efficiency thanks to its generalization ability.
RepoAgent: An LLM-Powered Open-Source Framework for Repository-level Code Documentation Generation
Generative models have demonstrated considerable potential in software engineering, particularly in tasks such as code generation and debugging. However, their utilization in the domain of code documentation generation remains underexplored. To this end, we introduce RepoAgent, a large language model powered open-source framework aimed at proactively generating, maintaining, and updating code documentation. Through both qualitative and quantitative evaluations, we have validated the effectiveness of our approach, showing that RepoAgent excels in generating high-quality repository-level documentation. The code and results are publicly accessible at https://github.com/OpenBMB/RepoAgent.
A ML-LLM pairing for better code comment classification
The "Information Retrieval in Software Engineering (IRSE)" at FIRE 2023 shared task introduces code comment classification, a challenging task that pairs a code snippet with a comment that should be evaluated as either useful or not useful to the understanding of the relevant code. We answer the code comment classification shared task challenge by providing a two-fold evaluation: from an algorithmic perspective, we compare the performance of classical machine learning systems and complement our evaluations from a data-driven perspective by generating additional data with the help of large language model (LLM) prompting to measure the potential increase in performance. Our best model, which took second place in the shared task, is a Neural Network with a Macro-F1 score of 88.401% on the provided seed data and a 1.5% overall increase in performance on the data generated by the LLM.
PAL: Program-aided Language Models
Large language models (LLMs) have recently demonstrated an impressive ability to perform arithmetic and symbolic reasoning tasks, when provided with a few examples at test time ("few-shot prompting"). Much of this success can be attributed to prompting methods such as "chain-of-thought'', which employ LLMs for both understanding the problem description by decomposing it into steps, as well as solving each step of the problem. While LLMs seem to be adept at this sort of step-by-step decomposition, LLMs often make logical and arithmetic mistakes in the solution part, even when the problem is decomposed correctly. In this paper, we present Program-Aided Language models (PAL): a novel approach that uses the LLM to read natural language problems and generate programs as the intermediate reasoning steps, but offloads the solution step to a runtime such as a Python interpreter. With PAL, decomposing the natural language problem into runnable steps remains the only learning task for the LLM, while solving is delegated to the interpreter. We demonstrate this synergy between a neural LLM and a symbolic interpreter across 13 mathematical, symbolic, and algorithmic reasoning tasks from BIG-Bench Hard and other benchmarks. In all these natural language reasoning tasks, generating code using an LLM and reasoning using a Python interpreter leads to more accurate results than much larger models. For example, PAL using Codex achieves state-of-the-art few-shot accuracy on the GSM8K benchmark of math word problems, surpassing PaLM-540B which uses chain-of-thought by absolute 15% top-1. Our code and data are publicly available at http://reasonwithpal.com/ .
Nova$^+$: Generative Language Models for Binaries
Generative large language models (LLMs) pre-trained on code have shown impressive effectiveness in code generation, program repair, and document analysis. However, existing generative LLMs focus on source code and are not specialized for binaries. There are three main challenges for LLMs to model and learn binary code: hex-decimal values, complex global dependencies, and compiler optimization levels. To bring the benefit of LLMs to the binary domain, we develop Nova and Nova^+, which are LLMs pre-trained on binary corpora. Nova is pre-trained with the standard language modeling task, showing significantly better capability on five benchmarks for three downstream tasks: binary code similarity detection (BCSD), binary code translation (BCT), and binary code recovery (BCR), over GPT-3.5 and other existing techniques. We build Nova^+ to further boost Nova using two new pre-training tasks, i.e., optimization generation and optimization level prediction, which are designed to learn binary optimization and align equivalent binaries. Nova^+ shows overall the best performance for all three downstream tasks on five benchmarks, demonstrating the contributions of the new pre-training tasks.
Instruction Fusion: Advancing Prompt Evolution through Hybridization
The fine-tuning of Large Language Models (LLMs) specialized in code generation has seen notable advancements through the use of open-domain coding queries. Despite the successes, existing methodologies like Evol-Instruct encounter performance limitations, impeding further enhancements in code generation tasks. This paper examines the constraints of existing prompt evolution techniques and introduces a novel approach, Instruction Fusion (IF). IF innovatively combines two distinct prompts through a hybridization process, thereby enhancing the evolution of training prompts for code LLMs. Our experimental results reveal that the proposed novel method effectively addresses the shortcomings of prior methods, significantly improving the performance of Code LLMs across five code generation benchmarks, namely HumanEval, HumanEval+, MBPP, MBPP+ and MultiPL-E, which underscore the effectiveness of Instruction Fusion in advancing the capabilities of LLMs in code generation.
CodeJudge: Evaluating Code Generation with Large Language Models
Large Language Models (LLMs) have shown promising performance in code generation. However, how to reliably evaluate code generated by LLMs remains an unresolved problem. This paper presents CodeJudge, a code evaluation framework that leverages LLMs to evaluate the semantic correctness of generated code without the need for test cases. We investigate different ways to guide the LLM in performing "slow thinking" to arrive at an in-depth and reliable evaluation. We experimented with four LLMs as evaluators on four code generation datasets and five programming languages. The results show that CodeJudge significantly outperformed existing methods in most settings. Furthermore, compared with a SOTA GPT-3.5-based code evaluation method, CodeJudge achieved better results even when using a much smaller model, Llama-3-8B-Instruct. Our code and datasets are available on GitHub https://github.com/VichyTong/CodeJudge.
Towards Advancing Code Generation with Large Language Models: A Research Roadmap
Recently, we have witnessed the rapid development of large language models, which have demonstrated excellent capabilities in the downstream task of code generation. However, despite their potential, LLM-based code generation still faces numerous technical and evaluation challenges, particularly when embedded in real-world development. In this paper, we present our vision for current research directions, and provide an in-depth analysis of existing studies on this task. We propose a six-layer vision framework that categorizes code generation process into distinct phases, namely Input Phase, Orchestration Phase, Development Phase, and Validation Phase. Additionally, we outline our vision workflow, which reflects on the currently prevalent frameworks. We systematically analyse the challenges faced by large language models, including those LLM-based agent frameworks, in code generation tasks. With these, we offer various perspectives and actionable recommendations in this area. Our aim is to provide guidelines for improving the reliability, robustness and usability of LLM-based code generation systems. Ultimately, this work seeks to address persistent challenges and to provide practical suggestions for a more pragmatic LLM-based solution for future code generation endeavors.
Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models
Large Language Models (LLMs) possess impressive capabilities to generate meaningful code snippets given natural language intents in zero-shot, i.e., without the need for specific fine-tuning. In the perspective of unleashing their full potential, prior work has demonstrated the benefits of fine-tuning the models to task-specific data. However, fine-tuning process demands heavy computational costs and is intractable when resources are scarce, especially for models with billions of parameters. In light of these challenges, previous studies explored In-Context Learning (ICL) as an effective strategy to generate contextually appropriate code without fine-tuning. However, it operates at inference time and does not involve learning task-specific parameters, potentially limiting the model's performance on downstream tasks. In this context, we foresee that Parameter-Efficient Fine-Tuning (PEFT) techniques carry a high potential for efficiently specializing LLMs to task-specific data. In this paper, we deliver a comprehensive study of LLMs with the impact of PEFT techniques under the automated code generation scenario. Our experimental results reveal the superiority and potential of such techniques over ICL on a wide range of LLMs in reducing the computational burden and improving performance. Therefore, the study opens opportunities for broader applications of PEFT in software engineering scenarios.
Leveraging Print Debugging to Improve Code Generation in Large Language Models
Large language models (LLMs) have made significant progress in code generation tasks, but their performance in tackling programming problems with complex data structures and algorithms remains suboptimal. To address this issue, we propose an in-context learning approach that guides LLMs to debug by using a "print debugging" method, which involves inserting print statements to trace and analysing logs for fixing the bug. We collect a Leetcode problem dataset and evaluate our method using the Leetcode online judging system. Experiments with GPT-4 demonstrate the effectiveness of our approach, outperforming rubber duck debugging in easy and medium-level Leetcode problems by 1.5% and 17.9%.
GLLM: Self-Corrective G-Code Generation using Large Language Models with User Feedback
This paper introduces GLLM, an innovative tool that leverages Large Language Models (LLMs) to automatically generate G-code from natural language instructions for Computer Numerical Control (CNC) machining. GLLM addresses the challenges of manual G-code writing by bridging the gap between human-readable task descriptions and machine-executable code. The system incorporates a fine-tuned StarCoder-3B model, enhanced with domain-specific training data and a Retrieval-Augmented Generation (RAG) mechanism. GLLM employs advanced prompting strategies and a novel self-corrective code generation approach to ensure both syntactic and semantic correctness of the generated G-code. The architecture includes robust validation mechanisms, including syntax checks, G-code-specific verifications, and functional correctness evaluations using Hausdorff distance. By combining these techniques, GLLM aims to democratize CNC programming, making it more accessible to users without extensive programming experience while maintaining high accuracy and reliability in G-code generation.
Beyond Correctness: Benchmarking Multi-dimensional Code Generation for Large Language Models
In recent years, researchers have proposed numerous benchmarks to evaluate the impressive coding capabilities of large language models (LLMs). However, existing benchmarks primarily focus on assessing the correctness of code generated by LLMs, while neglecting other critical dimensions that also significantly impact code quality. Therefore, this paper proposes the RACE benchmark, which comprehensively evaluates the quality of code generated by LLMs across 4 dimensions: Readability, mAintainability, Correctness, and Efficiency. Specifically, considering the demand-dependent nature of dimensions beyond correctness, we design various types of user requirements for each dimension to assess the model's ability to generate correct code that also meets user demands. We evaluate 18 representative LLMs on RACE and find that: 1) the current LLMs' ability to generate high-quality code on demand does not yet meet the requirements of software development; 2) readability serves as a critical indicator of the overall quality of generated code; 3) most LLMs exhibit an inherent preference for specific coding style. These findings can help researchers gain a deeper understanding of the coding capabilities of current LLMs and shed light on future directions for model improvement.
EDA-Aware RTL Generation with Large Language Models
Large Language Models (LLMs) have become increasingly popular for generating RTL code. However, producing error-free RTL code in a zero-shot setting remains highly challenging for even state-of-the-art LLMs, often leading to issues that require manual, iterative refinement. This additional debugging process can dramatically increase the verification workload, underscoring the need for robust, automated correction mechanisms to ensure code correctness from the start. In this work, we introduce AIvril2, a self-verifying, LLM-agnostic agentic framework aimed at enhancing RTL code generation through iterative corrections of both syntax and functional errors. Our approach leverages a collaborative multi-agent system that incorporates feedback from error logs generated by EDA tools to automatically identify and resolve design flaws. Experimental results, conducted on the VerilogEval-Human benchmark suite, demonstrate that our framework significantly improves code quality, achieving nearly a 3.4times enhancement over prior methods. In the best-case scenario, functional pass rates of 77% for Verilog and 66% for VHDL were obtained, thus substantially improving the reliability of LLM-driven RTL code generation.
Training Language Models to Generate Quality Code with Program Analysis Feedback
Code generation with large language models (LLMs), often termed vibe coding, is increasingly adopted in production but fails to ensure code quality, particularly in security (e.g., SQL injection vulnerabilities) and maintainability (e.g., missing type annotations). Existing methods, such as supervised fine-tuning and rule-based post-processing, rely on labor-intensive annotations or brittle heuristics, limiting their scalability and effectiveness. We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code using program analysis-guided feedback. Specifically, REAL integrates two automated signals: (1) program analysis detecting security or maintainability defects and (2) unit tests ensuring functional correctness. Unlike prior work, our framework is prompt-agnostic and reference-free, enabling scalable supervision without manual intervention. Experiments across multiple datasets and model scales demonstrate that REAL outperforms state-of-the-art methods in simultaneous assessments of functionality and code quality. Our work bridges the gap between rapid prototyping and production-ready code, enabling LLMs to deliver both speed and quality.
PERC: Plan-As-Query Example Retrieval for Underrepresented Code Generation
Code generation with large language models has shown significant promise, especially when employing retrieval-augmented generation (RAG) with few-shot examples. However, selecting effective examples that enhance generation quality remains a challenging task, particularly when the target programming language (PL) is underrepresented. In this study, we present two key findings: (1) retrieving examples whose presented algorithmic plans can be referenced for generating the desired behavior significantly improves generation accuracy, and (2) converting code into pseudocode effectively captures such algorithmic plans, enhancing retrieval quality even when the source and the target PLs are different. Based on these findings, we propose Plan-as-query Example Retrieval for few-shot prompting in Code generation (PERC), a novel framework that utilizes algorithmic plans to identify and retrieve effective examples. We validate the effectiveness of PERC through extensive experiments on the CodeContests, HumanEval and MultiPL-E benchmarks: PERC consistently outperforms the state-of-the-art RAG methods in code generation, both when the source and target programming languages match or differ, highlighting its adaptability and robustness in diverse coding environments.
AlphaVerus: Bootstrapping Formally Verified Code Generation through Self-Improving Translation and Treefinement
Automated code generation with large language models has gained significant traction, but there remains no guarantee on the correctness of generated code. We aim to use formal verification to provide mathematical guarantees that the generated code is correct. However, generating formally verified code with LLMs is hindered by the scarcity of training data and the complexity of formal proofs. To tackle this challenge, we introduce AlphaVerus, a self-improving framework that bootstraps formally verified code generation by iteratively translating programs from a higher-resource language and leveraging feedback from a verifier. AlphaVerus operates in three phases: exploration of candidate translations, Treefinement -- a novel tree search algorithm for program refinement using verifier feedback, and filtering misaligned specifications and programs to prevent reward hacking. Through this iterative process, AlphaVerus enables a LLaMA-3.1-70B model to generate verified code without human intervention or model finetuning. AlphaVerus shows an ability to generate formally verified solutions for HumanEval and MBPP, laying the groundwork for truly trustworthy code-generation agents.
VeriReason: Reinforcement Learning with Testbench Feedback for Reasoning-Enhanced Verilog Generation
Automating Register Transfer Level (RTL) code generation using Large Language Models (LLMs) offers substantial promise for streamlining digital circuit design and reducing human effort. However, current LLM-based approaches face significant challenges with training data scarcity, poor specification-code alignment, lack of verification mechanisms, and balancing generalization with specialization. Inspired by DeepSeek-R1, we introduce VeriReason, a framework integrating supervised fine-tuning with Guided Reward Proximal Optimization (GRPO) reinforcement learning for RTL generation. Using curated training examples and a feedback-driven reward model, VeriReason combines testbench evaluations with structural heuristics while embedding self-checking capabilities for autonomous error correction. On the VerilogEval Benchmark, VeriReason delivers significant improvements: achieving 83.1% functional correctness on the VerilogEval Machine benchmark, substantially outperforming both comparable-sized models and much larger commercial systems like GPT-4 Turbo. Additionally, our approach demonstrates up to a 2.8X increase in first-attempt functional correctness compared to baseline methods and exhibits robust generalization to unseen designs. To our knowledge, VeriReason represents the first system to successfully integrate explicit reasoning capabilities with reinforcement learning for Verilog generation, establishing a new state-of-the-art for automated RTL synthesis. The models and datasets are available at: https://huggingface.co/collections/AI4EDA-CASE Code is Available at: https://github.com/NellyW8/VeriReason
A Performance Study of LLM-Generated Code on Leetcode
This study evaluates the efficiency of code generation by Large Language Models (LLMs) and measures their performance against human-crafted solutions using a dataset from Leetcode. We compare 18 LLMs, considering factors such as model temperature and success rate, and their impact on code performance. This research introduces a novel method for measuring and comparing the speed of LLM-generated code, revealing that LLMs produce code with comparable performance, irrespective of the adopted LLM. We also find that LLMs are capable of generating code that is, on average, more efficient than the code written by humans. The paper further discusses the use of Leetcode as a benchmarking dataset, the limitations imposed by potential data contamination, and the platform's measurement reliability. We believe that our findings contribute to a better understanding of LLM capabilities in code generation and set the stage for future optimizations in the field.
Code Agents are State of the Art Software Testers
Rigorous software testing is crucial for developing and maintaining high-quality code, making automated test generation a promising avenue for both improving software quality and boosting the effectiveness of code generation methods. However, while code generation with Large Language Models (LLMs) is an extraordinarily active research area, test generation remains relatively unexplored. We address this gap and investigate the capability of LLM-based Code Agents for formalizing user issues into test cases. To this end, we propose a novel benchmark based on popular GitHub repositories, containing real-world issues, ground-truth patches, and golden tests. We find that LLMs generally perform surprisingly well at generating relevant test cases with Code Agents designed for code repair exceeding the performance of systems designed specifically for test generation. Further, as test generation is a similar but more structured task than code generation, it allows for a more fine-grained analysis using fail-to-pass rate and coverage metrics, providing a dual metric for analyzing systems designed for code repair. Finally, we find that generated tests are an effective filter for proposed code fixes, doubling the precision of SWE-Agent.
Can Github issues be solved with Tree Of Thoughts?
While there have been extensive studies in code generation by large language models (LLM), where benchmarks like HumanEval have been surpassed with an impressive 96.3% success rate, these benchmarks predominantly judge a model's performance on basic function-level code generation and lack the critical thinking and concept of scope required of real-world scenarios such as solving GitHub issues. This research introduces the application of the Tree of Thoughts (ToT) language model reasoning framework for enhancing the decision-making and problem-solving abilities of LLMs for this complex task. Compared to traditional input-output (IO) prompting and Retrieval Augmented Generation (RAG) techniques, ToT is designed to improve performance by facilitating a structured exploration of multiple reasoning trajectories and enabling self-assessment of potential solutions. We experimentally deploy ToT in tackling a Github issue contained within an instance of the SWE-bench. However, our results reveal that the ToT framework alone is not enough to give LLMs the critical reasoning capabilities to outperform existing methods. In this paper we analyze the potential causes of these shortcomings and identify key areas for improvement such as deepening the thought process and introducing agentic capabilities. The insights of this research are aimed at informing future directions for refining the application of ToT and better harnessing the potential of LLMs in real-world problem-solving scenarios.
RLTF: Reinforcement Learning from Unit Test Feedback
The goal of program synthesis, or code generation, is to generate executable code based on given descriptions. Recently, there has been an increasing number of studies employing reinforcement learning (RL) to improve the performance of large language models (LLMs) for code. However, these RL methods have only used offline frameworks, limiting their exploration of new sample spaces. Additionally, current approaches that utilize unit test signals are rather simple, not accounting for specific error locations within the code. To address these issues, we proposed RLTF, i.e., Reinforcement Learning from Unit Test Feedback, a novel online RL framework with unit test feedback of multi-granularity for refining code LLMs. Our approach generates data in real-time during training and simultaneously utilizes fine-grained feedback signals to guide the model towards producing higher-quality code. Extensive experiments show that RLTF achieves state-of-the-art performance on the APPS and the MBPP benchmarks. Our code can be found at: https://github.com/Zyq-scut/RLTF.
TST$^\mathrm{R}$: Target Similarity Tuning Meets the Real World
Target similarity tuning (TST) is a method of selecting relevant examples in natural language (NL) to code generation through large language models (LLMs) to improve performance. Its goal is to adapt a sentence embedding model to have the similarity between two NL inputs match the similarity between their associated code outputs. In this paper, we propose different methods to apply and improve TST in the real world. First, we replace the sentence transformer with embeddings from a larger model, which reduces sensitivity to the language distribution and thus provides more flexibility in synthetic generation of examples, and we train a tiny model that transforms these embeddings to a space where embedding similarity matches code similarity, which allows the model to remain a black box and only requires a few matrix multiplications at inference time. Second, we show how to efficiently select a smaller number of training examples to train the TST model. Third, we introduce a ranking-based evaluation for TST that does not require end-to-end code generation experiments, which can be expensive to perform.
DA-Code: Agent Data Science Code Generation Benchmark for Large Language Models
We introduce DA-Code, a code generation benchmark specifically designed to assess LLMs on agent-based data science tasks. This benchmark features three core elements: First, the tasks within DA-Code are inherently challenging, setting them apart from traditional code generation tasks and demanding advanced coding skills in grounding and planning. Second, examples in DA-Code are all based on real and diverse data, covering a wide range of complex data wrangling and analytics tasks. Third, to solve the tasks, the models must utilize complex data science programming languages, to perform intricate data processing and derive the answers. We set up the benchmark in a controllable and executable environment that aligns with real-world data analysis scenarios and is scalable. The annotators meticulously design the evaluation suite to ensure the accuracy and robustness of the evaluation. We develop the DA-Agent baseline. Experiments show that although the baseline performs better than other existing frameworks, using the current best LLMs achieves only 30.5% accuracy, leaving ample room for improvement. We release our benchmark at https://da-code-bench.github.io.
JavaBench: A Benchmark of Object-Oriented Code Generation for Evaluating Large Language Models
Code generation benchmarks such as HumanEval are widely adopted to evaluate LLMs' capabilities. However, after consolidating the latest 24 benchmarks, we noticed three significant imbalances. First, imbalanced programming language. 95.8% of benchmarks involve Python, while only 5 benchmarks involve Java. Second, imbalanced code granularity. Function-/statement-level benchmarks account for over 83.3% of benchmarks. Only a mere handful extends to class-/project-levels, and all are limited to Python. Third, lacking advanced features. Existing benchmarks primarily assess basic coding skills, while overlooking advanced Object-Oriented Programming (OOP) features (i.e., encapsulation, inheritance, and polymorphism). To fill these gaps, we propose JavaBench, a project-level Java benchmark that exercises OOP features. It comprises four Java projects with 389 methods in 106 Java classes. The test coverage is up to 92%, and JavaBench is attested by 282 undergraduate students, reaching a 90.93/100 average score (i.e., pass rate against the test suite), ensuring the quality of documentation, code skeleton, and tests. To better evaluate LLM's capability against JavaBench, we introduce a systematic evaluation design covering three context settings and five synthesis strategies at two granularities using three hierarchical metrics. Our extensive experiment yields several interesting findings. First, we noticed that regarding project-level Java programming, LLMs are far behind undergraduate students (no project can be correctly completed by any studied LLMs, and at most 41.17% Pass@5 in a more relaxed evaluation). Second, using method signature as prompt context may strike an ideal balance for project-level code generation. JavaBench is publicly available at https://github.com/java-bench/JavaBench.
CodeIE: Large Code Generation Models are Better Few-Shot Information Extractors
Large language models (LLMs) pre-trained on massive corpora have demonstrated impressive few-shot learning ability on many NLP tasks. A common practice is to recast the task into a text-to-text format such that generative LLMs of natural language (NL-LLMs) like GPT-3 can be prompted to solve it. However, it is nontrivial to perform information extraction (IE) tasks with NL-LLMs since the output of the IE task is usually structured and therefore is hard to be converted into plain text. In this paper, we propose to recast the structured output in the form of code instead of natural language and utilize generative LLMs of code (Code-LLMs) such as Codex to perform IE tasks, in particular, named entity recognition and relation extraction. In contrast to NL-LLMs, we show that Code-LLMs can be well-aligned with these IE tasks by designing code-style prompts and formulating these IE tasks as code generation tasks. Experiment results on seven benchmarks show that our method consistently outperforms fine-tuning moderate-size pre-trained models specially designed for IE tasks (e.g., UIE) and prompting NL-LLMs under few-shot settings. We further conduct a series of in-depth analyses to demonstrate the merits of leveraging Code-LLMs for IE tasks.
MHPP: Exploring the Capabilities and Limitations of Language Models Beyond Basic Code Generation
Recent advancements in large language models (LLMs) have greatly improved code generation, specifically at the function level. For instance, GPT-4 has achieved an 88.4% pass rate on HumanEval. However, this draws into question the adequacy of existing benchmarks in thoroughly assessing function-level code generation capabilities. Our study analyzed two common benchmarks, HumanEval and MBPP, and found that these might not thoroughly evaluate LLMs' code generation capacities due to limitations in quality, difficulty, and granularity. To resolve this, we introduce the Mostly Hard Python Problems (MHPP) dataset, consisting of 140 unique human-curated problems. By focusing on the combination of natural language and code reasoning, MHPP gauges LLMs' abilities to comprehend specifications and restrictions, engage in multi-step reasoning, and apply coding knowledge effectively. Initial evaluations of 22 LLMs using MHPP showed many high-performing models on HumanEval failed to achieve similar success on MHPP. Moreover, MHPP highlighted various previously undiscovered limitations within various LLMs, leading us to believe that it could pave the way for a better understanding of LLMs' capabilities and limitations. Dataset and code are available at https://github.com/SparksofAGI/MHPP.
Rewriting the Code: A Simple Method for Large Language Model Augmented Code Search
In code search, the Generation-Augmented Retrieval (GAR) framework, which generates exemplar code snippets to augment queries, has emerged as a promising strategy to address the principal challenge of modality misalignment between code snippets and natural language queries, particularly with the demonstrated code generation capabilities of Large Language Models (LLMs). Nevertheless, our preliminary investigations indicate that the improvements conferred by such an LLM-augmented framework are somewhat constrained. This limitation could potentially be ascribed to the fact that the generated codes, albeit functionally accurate, frequently display a pronounced stylistic deviation from the ground truth code in the codebase. In this paper, we extend the foundational GAR framework and propose a simple yet effective method that additionally Rewrites the Code (ReCo) within the codebase for style normalization. Experimental results demonstrate that ReCo significantly boosts retrieval accuracy across sparse (up to 35.7%), zero-shot dense (up to 27.6%), and fine-tuned dense (up to 23.6%) retrieval settings in diverse search scenarios. To further elucidate the advantages of ReCo and stimulate research in code style normalization, we introduce Code Style Similarity, the first metric tailored to quantify stylistic similarities in code. Notably, our empirical findings reveal the inadequacy of existing metrics in capturing stylistic nuances.
LLM-SR: Scientific Equation Discovery via Programming with Large Language Models
Mathematical equations have been unreasonably effective in describing complex natural phenomena across various scientific disciplines. However, discovering such insightful equations from data presents significant challenges due to the necessity of navigating extremely high-dimensional combinatorial and nonlinear hypothesis spaces. Traditional methods of equation discovery largely focus on extracting equations from data alone, often neglecting the rich domain-specific prior knowledge that scientists typically depend on. To bridge this gap, we introduce LLM-SR, a novel approach that leverages the extensive scientific knowledge and robust code generation capabilities of Large Language Models (LLMs) to discover scientific equations from data in an efficient manner. Specifically, LLM-SR treats equations as programs with mathematical operators and combines LLMs' scientific priors with evolutionary search over equation programs. The LLM iteratively proposes new equation skeletons, drawing from its physical understanding, which are then optimized against data to estimate skeleton parameters. We demonstrate LLM-SR's effectiveness across three diverse scientific domains, where it discovers physically accurate equations that provide significantly better fits to in-domain and out-of-domain data compared to the well-established equation discovery baselines
Who Wrote this Code? Watermarking for Code Generation
With the remarkable generation performance of large language models, ethical and legal concerns about using them have been raised, such as plagiarism and copyright issues. For such concerns, several approaches to watermark and detect LLM-generated text have been proposed very recently. However, we discover that the previous methods fail to function appropriately with code generation tasks because of the syntactic and semantic characteristics of code. Based on Kirchenbauer2023watermark, we propose a new watermarking method, Selective WatErmarking via Entropy Thresholding (SWEET), that promotes "green" tokens only at the position with high entropy of the token distribution during generation, thereby preserving the correctness of the generated code. The watermarked code is detected by the statistical test and Z-score based on the entropy information. Our experiments on HumanEval and MBPP show that SWEET significantly improves the Pareto Frontier between the code correctness and watermark detection performance. We also show that notable post-hoc detection methods (e.g. DetectGPT) fail to work well in this task. Finally, we show that setting a reasonable entropy threshold is not much of a challenge. Code is available at https://github.com/hongcheki/sweet-watermark.
CodeArena: A Collective Evaluation Platform for LLM Code Generation
Large Language Models (LLMs) have reshaped code generation by synergizing their exceptional comprehension of natural language and programming syntax, thereby substantially boosting developer productivity. These advancements have prompted numerous efforts to quantitatively evaluate their coding capabilities. However, persistent challenges, such as benchmark leakage, data dissipation, and limited system accessibility, continue to impede a timely and accurate assessment. To address these limitations, we introduce CodeArena, an online evaluation framework tailored for LLM code generation. The key innovation is a collective evaluation mechanism, which dynamically recalibrates individual model scores based on the holistic performance of all participating models, mitigating score biases caused by widespread benchmark leakage. In addition, CodeArena ensures open access to all submitted solutions and test cases and provides automation-friendly APIs to streamline the code evaluation workflow. Our main contributions are: (1) a collective evaluation system for unbiased assessment, (2) a public repository of solutions and test cases, and (3) automation-ready APIs for seamless integration.
FAIT: Fault-Aware Fine-Tuning for Better Code Generation
Modern instruction-tuned large language models (LLMs) have made remarkable progress in code generation. However, these LLMs fine-tuned with standard supervised fine-tuning (SFT) sometimes generate plausible-looking but functionally incorrect code variants. This issue likely stems from the limitation of standard SFT, which treats all tokens equally during optimization and fails to emphasize the error-sensitive segments-specific code differences between correct implementations and similar incorrect variants. To address this problem, we propose Fault-Aware Fine-Tuning (FAIT), a novel fine-tuning technique that enhances LLMs' code generation by (1) extracting multi-granularity (line/token-level) differences between correct and incorrect yet similar implementations to identify error-sensitive segments, and (2) dynamically prioritizing those segments during training via dynamic loss weighting. Through extensive experiments on seven LLMs across three widely-used benchmarks, our method achieves an average relative improvement of 6.9% on pass@1 with just one epoch of training, with some enhanced 6.7B LLMs outperforming closed-source models, e.g., GPT-3.5-Turbo. Furthermore, our fine-tuning technique demonstrates strong generalization with performance improvements ranging from 3.8% to 19.1% across diverse instruction-tuned LLMs, and our ablation studies confirm the contributions of different granularities of differences and loss function components.
FactCheXcker: Mitigating Measurement Hallucinations in Chest X-ray Report Generation Models
Medical vision-language models often struggle with generating accurate quantitative measurements in radiology reports, leading to hallucinations that undermine clinical reliability. We introduce FactCheXcker, a modular framework that de-hallucinates radiology report measurements by leveraging an improved query-code-update paradigm. Specifically, FactCheXcker employs specialized modules and the code generation capabilities of large language models to solve measurement queries generated based on the original report. After extracting measurable findings, the results are incorporated into an updated report. We evaluate FactCheXcker on endotracheal tube placement, which accounts for an average of 78% of report measurements, using the MIMIC-CXR dataset and 11 medical report-generation models. Our results show that FactCheXcker significantly reduces hallucinations, improves measurement precision, and maintains the quality of the original reports. Specifically, FactCheXcker improves the performance of 10/11 models and achieves an average improvement of 135.0% in reducing measurement hallucinations measured by mean absolute error. Code is available at https://github.com/rajpurkarlab/FactCheXcker.
DSTC: Direct Preference Learning with Only Self-Generated Tests and Code to Improve Code LMs
Direct preference learning offers a promising and computation-efficient beyond supervised fine-tuning (SFT) for improving code generation in coding large language models (LMs). However, the scarcity of reliable preference data is a bottleneck for the performance of direct preference learning to improve the coding accuracy of code LMs. In this paper, we introduce \textbf{D}irect Preference Learning with Only \textbf{S}elf-Generated \textbf{T}ests and \textbf{C}ode (DSTC), a framework that leverages only self-generated code snippets and tests to construct reliable preference pairs such that direct preference learning can improve LM coding accuracy without external annotations. DSTC combines a minimax selection process and test-code concatenation to improve preference pair quality, reducing the influence of incorrect self-generated tests and enhancing model performance without the need for costly reward models. When applied with direct preference learning methods such as Direct Preference Optimization (DPO) and Kahneman-Tversky Optimization (KTO), DSTC yields stable improvements in coding accuracy (pass@1 score) across diverse coding benchmarks, including HumanEval, MBPP, and BigCodeBench, demonstrating both its effectiveness and scalability for models of various sizes. This approach autonomously enhances code generation accuracy across LLMs of varying sizes, reducing reliance on expensive annotated coding datasets.
What Makes Large Language Models Reason in (Multi-Turn) Code Generation?
Prompting techniques such as chain-of-thought have established themselves as a popular vehicle for improving the outputs of large language models (LLMs). For code generation, however, their exact mechanics and efficacy are under-explored. We thus investigate the effects of a wide range of prompting strategies with a focus on automatic re-prompting over multiple turns and computational requirements. After systematically decomposing reasoning, instruction, and execution feedback prompts, we conduct an extensive grid search on the competitive programming benchmarks CodeContests and TACO for multiple LLM families and sizes (Llama 3.0 and 3.1, 8B, 70B, 405B, and GPT-4o). Our study reveals strategies that consistently improve performance across all models with small and large sampling budgets. We then show how finetuning with such an optimal configuration allows models to internalize the induced reasoning process and obtain improvements in performance and scalability for multi-turn code generation.
VerilogEval: Evaluating Large Language Models for Verilog Code Generation
The increasing popularity of large language models (LLMs) has paved the way for their application in diverse domains. This paper proposes a benchmarking framework tailored specifically for evaluating LLM performance in the context of Verilog code generation for hardware design and verification. We present a comprehensive evaluation dataset consisting of 156 problems from the Verilog instructional website HDLBits. The evaluation set consists of a diverse set of Verilog code generation tasks, ranging from simple combinational circuits to complex finite state machines. The Verilog code completions can be automatically tested for functional correctness by comparing the transient simulation outputs of the generated design with a golden solution. We also demonstrate that the Verilog code generation capability of pretrained language models could be improved with supervised fine-tuning by bootstrapping with LLM generated synthetic problem-code pairs.
CodeMixBench: Evaluating Large Language Models on Code Generation with Code-Mixed Prompts
Large Language Models (LLMs) have achieved remarkable success in code generation tasks, powering various applications like code completion, debugging, and programming assistance. However, existing benchmarks such as HumanEval, MBPP, and BigCodeBench primarily evaluate LLMs on English-only prompts, overlooking the real-world scenario where multilingual developers often use code-mixed language while interacting with LLMs. To address this gap, we introduce CodeMixBench, a novel benchmark designed to evaluate the robustness of LLMs on code generation from code-mixed prompts. Built upon BigCodeBench, CodeMixBench introduces controlled code-mixing (CMD) into the natural language parts of prompts across three language pairs: Hinglish (Hindi-English), Spanish-English, and Chinese Pinyin-English. We comprehensively evaluate a diverse set of open-source code generation models ranging from 1.5B to 15B parameters. Our results show that code-mixed prompts consistently degrade Pass@1 performance compared to their English-only counterparts, with performance drops increasing under higher CMD levels for smaller models. CodeMixBench provides a realistic evaluation framework for studying multilingual code generation and highlights new challenges and directions for building robust code generation models that generalize well across diverse linguistic settings.
Test-Case-Driven Programming Understanding in Large Language Models for Better Code Generation
Code generation is to automatically generate source code conforming to a given programming specification, which has received extensive attention especially with the development of large language models (LLMs). Due to the inherent difficulty of code generation, the code generated by LLMs may be also not aligned with the specification. To improve the perfor mance of LLMs in code generation, some Chain of Thought (CoT) techniques have been proposed to guide LLMs for programming understanding before code generation. However, they are still hard to figure out complicated programming logic according to the (concise) specification, leadingto unsatisfactory code generation performance. In this work, we propose the first test-case-driven CoT technique, called TCoT, to further enhance the ability of LLMs in code generation. It understands the programming specification from the novel perspective of test cases, which is aligned with human practice by using examples to understand complicated problems. Due to the existence of the expected output specified in a test case, TCoT can instantly check the correctness of the programming understanding and then refine it to be as correct as possible before code generation. In this way, it is more likely to generate correct code. Our evaluation on 6 datasets and 14 baselines demonstrates the effectiveness of TCoT. For example, TCoT improves ChatGPT by 13.93%~69.44% in terms of Pass@1 (measuring the ratio of programming problems for which the generated code passes all test cases), and outperforms the existing CoT technique with the improvement of 12.14%~53.72% in terms of Pass@1.
RefineCoder: Iterative Improving of Large Language Models via Adaptive Critique Refinement for Code Generation
Code generation has attracted increasing attention with the rise of Large Language Models (LLMs). Many studies have developed powerful code LLMs by synthesizing code-related instruction data and applying supervised fine-tuning. However, these methods are limited by teacher model distillation and ignore the potential of iterative refinement by self-generated code. In this paper, we propose Adaptive Critique Refinement (ACR), which enables the model to refine itself by self-generated code and external critique, rather than directly imitating the code responses of the teacher model. Concretely, ACR includes a composite scoring system with LLM-as-a-Judge to evaluate the quality of code responses and a selective critique strategy with LLM-as-a-Critic to critique self-generated low-quality code responses. We develop the RefineCoder series by iteratively applying ACR, achieving continuous performance improvement on multiple code generation benchmarks. Compared to the baselines of the same size, our proposed RefineCoder series can achieve comparable or even superior performance using less data.
Planning with Large Language Models for Code Generation
Existing large language model-based code generation pipelines typically use beam search or sampling algorithms during the decoding process. Although the programs they generate achieve high token-matching-based scores, they often fail to compile or generate incorrect outputs. The main reason is that conventional Transformer decoding algorithms may not be the best choice for code generation. In this work, we propose a novel Transformer decoding algorithm, Planning-Guided Transformer Decoding (PG-TD), that uses a planning algorithm to do lookahead search and guide the Transformer to generate better programs. Specifically, instead of simply optimizing the likelihood of the generated sequences, the Transformer makes use of a planner to generate candidate programs and test them on public test cases. The Transformer can therefore make more informed decisions and generate tokens that will eventually lead to higher-quality programs. We also design a mechanism that shares information between the Transformer and the planner to make our algorithm computationally efficient. We empirically evaluate our framework with several large language models as backbones on public coding challenge benchmarks, showing that 1) it can generate programs that consistently achieve higher performance compared with competing baseline methods; 2) it enables controllable code generation, such as concise codes and highly-commented codes by optimizing modified objective.
A Survey On Large Language Models For Code Generation
Large Language Models (LLMs) have demonstrated their remarkable capabilities in numerous fields. This survey focuses on how LLMs empower users, regardless of their technical background, to use human languages to automatically generate executable code. We begin with understanding LLMs' limitations and challenges in automated code generation. Subsequently, we review various fine-tuning techniques designed to enhance both the performance and adaptability of LLMs in code generation tasks. We then review the existing metrics and benchmarks for evaluations to assess model performance based on fine-tuning techniques. Finally, we explore the applications of LLMs (e.g. CodeLlama, GitHub Copilot, ToolGen) in code generation tasks to illustrate their roles and functionalities. This survey provides a comprehensive overview of LLMs for code generation, helps researchers in diverse fields better understand the current state-of-the-art technologies, and offers the potential of effectively leveraging LLMs for code generation tasks.
LLM4DS: Evaluating Large Language Models for Data Science Code Generation
The adoption of Large Language Models (LLMs) for code generation in data science offers substantial potential for enhancing tasks such as data manipulation, statistical analysis, and visualization. However, the effectiveness of these models in the data science domain remains underexplored. This paper presents a controlled experiment that empirically assesses the performance of four leading LLM-based AI assistants-Microsoft Copilot (GPT-4 Turbo), ChatGPT (o1-preview), Claude (3.5 Sonnet), and Perplexity Labs (Llama-3.1-70b-instruct)-on a diverse set of data science coding challenges sourced from the Stratacratch platform. Using the Goal-Question-Metric (GQM) approach, we evaluated each model's effectiveness across task types (Analytical, Algorithm, Visualization) and varying difficulty levels. Our findings reveal that all models exceeded a 50% baseline success rate, confirming their capability beyond random chance. Notably, only ChatGPT and Claude achieved success rates significantly above a 60% baseline, though none of the models reached a 70% threshold, indicating limitations in higher standards. ChatGPT demonstrated consistent performance across varying difficulty levels, while Claude's success rate fluctuated with task complexity. Hypothesis testing indicates that task type does not significantly impact success rate overall. For analytical tasks, efficiency analysis shows no significant differences in execution times, though ChatGPT tended to be slower and less predictable despite high success rates. This study provides a structured, empirical evaluation of LLMs in data science, delivering insights that support informed model selection tailored to specific task demands. Our findings establish a framework for future AI assessments, emphasizing the value of rigorous evaluation beyond basic accuracy measures.
Quantizing Large Language Models for Code Generation: A Differentiated Replication
Large Language Models (LLMs) have shown an impressive capability in code generation and, specifically, to automatically implement requirements described in natural language. The LLM effectiveness generally increases with its size: The higher the number of LLM's trainable parameters the better its ability to implement code. However, when it comes to deploying LLM-based code generators, larger LLMs pose significant challenges related to their memory (and, consequently, carbon) footprint. A previous work by Wei et al. proposed to leverage quantization techniques to reduce the memory footprint of LLM-based code generators without substantially degrading their effectiveness. In short, they studied LLMs featuring up to 16B parameters, quantizing their precision from floating point 32 bits down to int 8 bits and showing their limited impact on code generation performance. Given the fast pace at which LLM capabilities and quantization techniques are evolving, in this work we present a differentiated replication of the work by Wei et al. in which we consider (i) on the one side, more recent and larger code-related LLMs, of up to 34B parameters; (ii) the latest advancements in model quantization techniques, which allow pushing the compression to the extreme quantization level of 2 bits per model parameter and; (iii) different types of calibration datasets to guide the quantization process, including code-specific ones. Our empirical evaluation reveals that the new frontier for LLM quantization is 4-bit precision, resulting in an average memory footprint reduction of 70% compared to the original model without observing any significant decrease in performance. Additionally, when the quantization becomes even more extreme (3 and 2 bits), a code-specific calibration dataset helps to limit the loss of performance.
CodeT5+: Open Code Large Language Models for Code Understanding and Generation
Large language models (LLMs) pretrained on vast source code have achieved prominent progress in code intelligence. However, existing code LLMs have two main limitations in terms of architecture and pretraining tasks. First, they often adopt a specific architecture (encoder-only or decoder-only) or rely on a unified encoder-decoder network for different downstream tasks. The former paradigm is limited by inflexibility in applications while in the latter, the model is treated as a single system for all tasks, leading to suboptimal performance on a subset of tasks. Secondly, they often employ a limited set of pretraining objectives which might not be relevant to some downstream tasks and hence result in substantial performance degrade. To address these limitations, we propose ``CodeT5+'', a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of downstream code tasks. Such flexibility is enabled by our proposed mixture of pretraining objectives to mitigate the pretrain-finetune discrepancy. These objectives cover span denoising, contrastive learning, text-code matching, and causal LM pretraining tasks, on both unimodal and bimodal multilingual code corpora. Furthermore, we propose to initialize CodeT5+ with frozen off-the-shelf LLMs without training from scratch to efficiently scale up our models, and explore instruction-tuning to align with natural language instructions. We extensively evaluate CodeT5+ on over 20 code-related benchmarks in different settings, including zero-shot, finetuning, and instruction-tuning. We observe state-of-the-art (SoTA) model performance on various code-related tasks, such as code generation and completion, math programming, and text-to-code retrieval tasks. Particularly, our instruction-tuned CodeT5+ 16B achieves new SoTA results on HumanEval code generation task against other open code LLMs.
CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation
With the rapid advancement of Large Language Models (LLMs), the demand for robust instruction-following capabilities in code generation tasks has grown significantly. Code generation not only facilitates faster prototyping and automated testing, but also augments developer efficiency through improved maintainability and reusability of code. In this paper, we introduce CodeIF, the first benchmark specifically designed to assess the abilities of LLMs to adhere to task-oriented instructions within diverse code generation scenarios. CodeIF encompasses a broad range of tasks, including function synthesis, error debugging, algorithmic refactoring, and code explanation, thereby providing a comprehensive suite to evaluate model performance across varying complexity levels and programming domains. We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks. The experimental results offer valuable insights into how well current models align with human instructions, as well as the extent to which they can generate consistent, maintainable, and contextually relevant code. Our findings not only underscore the critical role that instruction-following LLMs can play in modern software development, but also illuminate pathways for future research aimed at enhancing their adaptability, reliability, and overall effectiveness in automated code generation.
A Survey on Large Language Models for Code Generation
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks, known as Code LLMs, particularly in code generation that generates source code with LLM from natural language descriptions. This burgeoning field has captured significant interest from both academic researchers and industry professionals due to its practical significance in software development, e.g., GitHub Copilot. Despite the active exploration of LLMs for a variety of code tasks, either from the perspective of natural language processing (NLP) or software engineering (SE) or both, there is a noticeable absence of a comprehensive and up-to-date literature review dedicated to LLM for code generation. In this survey, we aim to bridge this gap by providing a systematic literature review that serves as a valuable reference for researchers investigating the cutting-edge progress in LLMs for code generation. We introduce a taxonomy to categorize and discuss the recent developments in LLMs for code generation, covering aspects such as data curation, latest advances, performance evaluation, and real-world applications. In addition, we present a historical overview of the evolution of LLMs for code generation and offer an empirical comparison using the widely recognized HumanEval and MBPP benchmarks to highlight the progressive enhancements in LLM capabilities for code generation. We identify critical challenges and promising opportunities regarding the gap between academia and practical development. Furthermore, we have established a dedicated resource website (https://codellm.github.io) to continuously document and disseminate the most recent advances in the field.
Enhancing Large Language Models for Secure Code Generation: A Dataset-driven Study on Vulnerability Mitigation
Large language models (LLMs) have brought significant advancements to code generation, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, introduces the risk of inadvertently propagating security vulnerabilities. To effectively mitigate this concern, this paper presents a comprehensive study focused on evaluating and enhancing code LLMs from a software security perspective. We introduce SecuCoGenSecuCoGen has been uploaded as supplemental material and will be made publicly available after publication., a meticulously curated dataset targeting 21 critical vulnerability types. SecuCoGen comprises 180 samples and serves as the foundation for conducting experiments on three crucial code-related tasks: code generation, code repair and vulnerability classification, with a strong emphasis on security. Our experimental results reveal that existing models often overlook security concerns during code generation, leading to the generation of vulnerable code. To address this, we propose effective approaches to mitigate the security vulnerabilities and enhance the overall robustness of code generated by LLMs. Moreover, our study identifies weaknesses in existing models' ability to repair vulnerable code, even when provided with vulnerability information. Additionally, certain vulnerability types pose challenges for the models, hindering their performance in vulnerability classification. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.
mHumanEval -- A Multilingual Benchmark to Evaluate Large Language Models for Code Generation
Recent advancements in large language models (LLMs) have significantly enhanced code generation from natural language prompts. The HumanEval Benchmark, developed by OpenAI, remains the most widely used code generation benchmark. However, this and other Code LLM benchmarks face critical limitations, particularly in task diversity, test coverage, and linguistic scope. Current evaluations primarily focus on English-to-Python conversion tasks with limited test cases, potentially overestimating model performance. While recent works have addressed test coverage and programming language (PL) diversity, code generation from low-resource language prompts remains largely unexplored. To address this gap, we introduce mHumanEval, an extended benchmark supporting prompts in over 200 natural languages. We employ established machine translation methods to compile the benchmark, coupled with a quality assurance process. Furthermore, we provide expert human translations for 15 diverse natural languages (NLs). We conclude by analyzing the multilingual code generation capabilities of state-of-the-art (SOTA) Code LLMs, offering insights into the current landscape of cross-lingual code generation.
GREEN-CODE: Optimizing Energy Efficiency in Large Language Models for Code Generation
Large Language Models (LLMs) are becoming integral to daily life, showcasing their vast potential across various Natural Language Processing (NLP) tasks. Beyond NLP, LLMs are increasingly used in software development tasks, such as code completion, modification, bug fixing, and code translation. Software engineers widely use tools like GitHub Copilot and Amazon Q, streamlining workflows and automating tasks with high accuracy. While the resource and energy intensity of LLM training is often highlighted, inference can be even more resource-intensive over time, as it's a continuous process with a high number of invocations. Therefore, developing resource-efficient alternatives for LLM inference is crucial for sustainability. This work proposes GREEN-CODE, a framework for energy-aware code generation in LLMs. GREEN-CODE performs dynamic early exit during LLM inference. We train a Reinforcement Learning (RL) agent that learns to balance the trade-offs between accuracy, latency, and energy consumption. Our approach is evaluated on two open-source LLMs, Llama 3.2 3B and OPT 2.7B, using the JavaCorpus and PY150 datasets. Results show that our method reduces the energy consumption between 23-50 % on average for code generation tasks without significantly affecting accuracy.
Large Language Models Are State-of-the-Art Evaluators of Code Generation
Recent advancements in the field of natural language generation have facilitated the use of large language models to assess the quality of generated text. Although these models have shown promising results in tasks such as machine translation and summarization, their applicability in code generation tasks remains limited without human involvement. The complexity of programming concepts required for such tasks makes it difficult to develop evaluation metrics that align with human judgment. Token-matching-based metrics, such as BLEU, have demonstrated weak correlations with human practitioners in code generation tasks. Moreover, the utilization of human-written test suites to evaluate functional correctness can be challenging in domains with low resources. To overcome these obstacles, we propose a new evaluation framework based on the GPT-3.5 (GPT-3.5-turbo), for code generation assessments. Our framework addresses the limitations of existing approaches by achieving superior correlations with functional correctness and human preferences, without the need for test oracles or references. We evaluate the efficacy of our framework on two different tasks and four programming languages, comparing its performance with the state-of-the-art CodeBERTScore metric, which relies on a pre-trained model. Our results demonstrate that our framework surpasses CodeBERTScore, delivering high levels of accuracy and consistency across various programming languages and tasks. We also make our evaluation framework and datasets available to the public at https://github.com/terryyz/llm-code-eval, encouraging further research in the evaluation of code generation.
Automated Code generation for Information Technology Tasks in YAML through Large Language Models
The recent improvement in code generation capabilities due to the use of large language models has mainly benefited general purpose programming languages. Domain specific languages, such as the ones used for IT Automation, have received far less attention, despite involving many active developers and being an essential component of modern cloud platforms. This work focuses on the generation of Ansible-YAML, a widely used markup language for IT Automation. We present Ansible Wisdom, a natural-language to Ansible-YAML code generation tool, aimed at improving IT automation productivity. Ansible Wisdom is a transformer-based model, extended by training with a new dataset containing Ansible-YAML. We also develop two novel performance metrics for YAML and Ansible to capture the specific characteristics of this domain. Results show that Ansible Wisdom can accurately generate Ansible script from natural language prompts with performance comparable or better than existing state of the art code generation models.
Is Model Attention Aligned with Human Attention? An Empirical Study on Large Language Models for Code Generation
Large Language Models (LLMs) have been demonstrated effective for code generation. Due to the complexity and opacity of LLMs, little is known about how these models generate code. To deepen our understanding, we investigate whether LLMs attend to the same parts of a natural language description as human programmers during code generation. An analysis of five LLMs on a popular benchmark, HumanEval, revealed a consistent misalignment between LLMs' and programmers' attention. Furthermore, we found that there is no correlation between the code generation accuracy of LLMs and their alignment with human programmers. Through a quantitative experiment and a user study, we confirmed that, among twelve different attention computation methods, attention computed by the perturbation-based method is most aligned with human attention and is constantly favored by human programmers. Our findings highlight the need for human-aligned LLMs for better interpretability and programmer trust.
An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation
AI-powered coding assistants such as GitHub Copilot and OpenAI ChatGPT have achieved notable success in automating code generation. However, these tools rely on pre-trained Large Language Models (LLMs) that are typically trained on human-written code sourced from open-source project hosting sites like GitHub, which often contains inherent security vulnerabilities. These vulnerabilities may then be mirrored in the code generated by these LLMs, a critical risk revealed and highlighted by recent empirical studies. In this work, we present an exploratory study on whether fine-tuning pre-trained LLMs on datasets of vulnerability-fixing commits can promote secure code generation. We explored two parameter-efficient fine-tuning techniques (LoRa and IA3) on two pre-trained LLMs for code generation. We crawled a fine-tuning dataset (14,622 C and C++ files) for secure code generation by collecting code fixes of confirmed vulnerabilities from open-source repositories. Our evaluation dataset comprises 52 vulnerability scenarios designed to cover the top most dangerous C and C++ Common Weakness Enumerations (CWEs). Each scenario is a prompt that may induce LLMs to generate vulnerable code. Our exploration reveals that fine-tuning LLMs can improve secure code generation by 6.4% in C language and 5.4% in C++ language. We further experimented with fine-tuning LLMs using different versions of the collected secure code dataset (block, function, and line). We found that fine-tuning with function-level and block-level datasets achieves the best secure code generation performance, compared to the alternatives (file-level and line-level).
LLaMoCo: Instruction Tuning of Large Language Models for Optimization Code Generation
Recent research explores optimization using large language models (LLMs) by either iteratively seeking next-step solutions from LLMs or directly prompting LLMs for an optimizer. However, these approaches exhibit inherent limitations, including low operational efficiency, high sensitivity to prompt design, and a lack of domain-specific knowledge. We introduce LLaMoCo, the first instruction-tuning framework designed to adapt LLMs for solving optimization problems in a code-to-code manner. Specifically, we establish a comprehensive instruction set containing well-described problem prompts and effective optimization codes. We then develop a novel two-phase learning strategy that incorporates a contrastive learning-based warm-up procedure before the instruction-tuning phase to enhance the convergence behavior during model fine-tuning. The experiment results demonstrate that a CodeGen (350M) model fine-tuned by our LLaMoCo achieves superior optimization performance compared to GPT-4 Turbo and the other competitors across both synthetic and realistic problem sets. The fine-tuned model and the usage instructions are available at https://anonymous.4open.science/r/LLaMoCo-722A.
Plot2Code: A Comprehensive Benchmark for Evaluating Multi-modal Large Language Models in Code Generation from Scientific Plots
The remarkable progress of Multi-modal Large Language Models (MLLMs) has attracted significant attention due to their superior performance in visual contexts. However, their capabilities in turning visual figure to executable code, have not been evaluated thoroughly. To address this, we introduce Plot2Code, a comprehensive visual coding benchmark designed for a fair and in-depth assessment of MLLMs. We carefully collect 132 manually selected high-quality matplotlib plots across six plot types from publicly available matplotlib galleries. For each plot, we carefully offer its source code, and an descriptive instruction summarized by GPT-4. This approach enables Plot2Code to extensively evaluate MLLMs' code capabilities across various input modalities. Furthermore, we propose three automatic evaluation metrics, including code pass rate, text-match ratio, and GPT-4V overall rating, for a fine-grained assessment of the output code and rendered images. Instead of simply judging pass or fail, we employ GPT-4V to make an overall judgement between the generated and reference images, which has been shown to be consistent with human evaluation. The evaluation results, which include analyses of 14 MLLMs such as the proprietary GPT-4V, Gemini-Pro, and the open-sourced Mini-Gemini, highlight the substantial challenges presented by Plot2Code. With Plot2Code, we reveal that most existing MLLMs struggle with visual coding for text-dense plots, heavily relying on textual instruction. We hope that the evaluation results from Plot2Code on visual coding will guide the future development of MLLMs. All data involved with Plot2Code are available at https://huggingface.co/datasets/TencentARC/Plot2Code.
Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation
Program synthesis has been long studied with recent approaches focused on directly using the power of Large Language Models (LLMs) to generate code. Programming benchmarks, with curated synthesis problems and test-cases, are used to measure the performance of various LLMs on code synthesis. However, these test-cases can be limited in both quantity and quality for fully assessing the functional correctness of the generated code. Such limitation in the existing benchmarks begs the following question: In the era of LLMs, is the code generated really correct? To answer this, we propose EvalPlus -- a code synthesis evaluation framework to rigorously benchmark the functional correctness of LLM-synthesized code. EvalPlus augments a given evaluation dataset with large amounts of test-cases newly produced by an automatic test input generator, powered by both LLM- and mutation-based strategies. While EvalPlus is general, we extend the test-cases of the popular HumanEval benchmark by 80x to build HumanEval+. Our extensive evaluation across 26 popular LLMs (e.g., GPT-4 and ChatGPT) demonstrates that HumanEval+ is able to catch significant amounts of previously undetected wrong code synthesized by LLMs, reducing the pass@k by up-to 19.3-28.9%. We also surprisingly found that test insufficiency can lead to mis-ranking. For example, both WizardCoder-CodeLlama and Phind-CodeLlama now outperform ChatGPT on HumanEval+, while none of them could on HumanEval. Our work not only indicates that prior popular code synthesis evaluation results do not accurately reflect the true performance of LLMs for code synthesis, but also opens up a new direction to improve such programming benchmarks through automated testing. We have open-sourced our tools, enhanced datasets as well as all LLM-generated code at https://github.com/evalplus/evalplus to facilitate and accelerate future LLM-for-code research.
Bugs in Large Language Models Generated Code: An Empirical Study
Large Language Models (LLMs) for code have gained significant attention recently. They can generate code in different programming languages based on provided prompts, fulfilling a long-lasting dream in Software Engineering (SE), i.e., automatic code generation. Similar to human-written code, LLM-generated code is prone to bugs, and these bugs have not yet been thoroughly examined by the community. Given the increasing adoption of LLM-based code generation tools (e.g., GitHub Copilot) in SE activities, it is critical to understand the characteristics of bugs contained in code generated by LLMs. This paper examines a sample of 333 bugs collected from code generated using three leading LLMs (i.e., CodeGen, PanGu-Coder, and Codex) and identifies the following 10 distinctive bug patterns: Misinterpretations, Syntax Error, Silly Mistake, Prompt-biased code, Missing Corner Case, Wrong Input Type, Hallucinated Object, Wrong Attribute, Incomplete Generation, and Non-Prompted Consideration. The bug patterns are presented in the form of a taxonomy. The identified bug patterns are validated using an online survey with 34 LLM practitioners and researchers. The surveyed participants generally asserted the significance and prevalence of the bug patterns. Researchers and practitioners can leverage these findings to develop effective quality assurance techniques for LLM-generated code. This study sheds light on the distinctive characteristics of LLM-generated code.
An Empirical Study of Using Large Language Models for Unit Test Generation
A code generation model generates code by taking a prompt from a code comment, existing code, or a combination of both. Although code generation models (e.g. GitHub Copilot) are increasingly being adopted in practice, it is unclear whether they can successfully be used for unit test generation without fine-tuning. We investigated how well three generative models (Codex, GPT-3.5-Turbo, and StarCoder) can generate test cases to fill this gap. We used two benchmarks (HumanEval and Evosuite SF110) to investigate the context generation's effect in the unit test generation process. We evaluated the models based on compilation rates, test correctness, coverage, and test smells. We found that the Codex model achieved above 80% coverage for the HumanEval dataset, but no model had more than 2% coverage for the EvoSuite SF110 benchmark. The generated tests also suffered from test smells, such as Duplicated Asserts and Empty Tests.
Quantifying Contamination in Evaluating Code Generation Capabilities of Language Models
While large language models have achieved remarkable performance on various code generation benchmarks, there have been growing concerns regarding potential contamination of these benchmarks as they may be leaked into pretraining and finetuning data. While recent work has investigated contamination in natural language generation and understanding tasks, there has been less extensive research into how data contamination impacts the evaluation of code generation, which is critical for understanding the robustness and reliability of LLMs in programming contexts. In this work, we perform a comprehensive study of data contamination of popular code generation benchmarks, and precisely quantify their overlap with pretraining corpus through both surface-level and semantic-level matching. In our experiments, we show that there are substantial overlap between popular code generation benchmarks and open training corpus, and models perform significantly better on the subset of the benchmarks where similar solutions are seen during training. We also conduct extensive analysis on the factors that affects model memorization and generalization, such as model size, problem difficulty, and question length. We release all resulting files from our matching pipeline for future research.
WizardCoder: Empowering Code Large Language Models with Evol-Instruct
Code Large Language Models (Code LLMs), such as StarCoder, have demonstrated exceptional performance in code-related tasks. However, most existing models are solely pre-trained on extensive raw code data without instruction fine-tuning. In this paper, we introduce WizardCoder, which empowers Code LLMs with complex instruction fine-tuning, by adapting the Evol-Instruct method to the domain of code. Through comprehensive experiments on four prominent code generation benchmarks, namely HumanEval, HumanEval+, MBPP, and DS-1000, we unveil the exceptional capabilities of our model. It surpasses all other open-source Code LLMs by a substantial margin. Moreover, our model even outperforms the largest closed LLMs, Anthropic's Claude and Google's Bard, on HumanEval and HumanEval+. Our code, model weights, and data are public at https://github.com/nlpxucan/WizardLM
Discriminative Finetuning of Generative Large Language Models without Reward Models and Preference Data
Supervised fine-tuning (SFT) followed by preference optimization (PO) denoted by SFTrightarrowPO has become the standard for improving pretrained large language models (LLMs), with PO demonstrating significant performance gains. However, PO methods rely on either human-labeled preference data or a strong reward model to generate preference data. Can we fine-tune LLMs without preference data or reward models while achieving competitive performance to SFTrightarrowPO? We address this question by introducing Discriminative Fine-Tuning (DFT), a novel approach that eliminates the need for preference data. Unlike SFT, which employs a generative approach and overlooks negative data, DFT adopts a discriminative paradigm that that increases the probability of positive answers while suppressing potentially negative ones, shifting from token prediction to data prediction. Our contributions include: (i) a discriminative probabilistic framework for fine-tuning LLMs by explicitly modeling the discriminative likelihood of an answer among all possible outputs given an input; (ii) efficient algorithms to optimize this discriminative likelihood; and (iii) extensive experiments demonstrating DFT's effectiveness, achieving performance better than SFT and comparable to if not better than SFTrightarrowPO. The code can be found at https://github.com/PenGuln/DFT.
RMCBench: Benchmarking Large Language Models' Resistance to Malicious Code
The emergence of Large Language Models (LLMs) has significantly influenced various aspects of software development activities. Despite their benefits, LLMs also pose notable risks, including the potential to generate harmful content and being abused by malicious developers to create malicious code. Several previous studies have focused on the ability of LLMs to resist the generation of harmful content that violates human ethical standards, such as biased or offensive content. However, there is no research evaluating the ability of LLMs to resist malicious code generation. To fill this gap, we propose RMCBench, the first benchmark comprising 473 prompts designed to assess the ability of LLMs to resist malicious code generation. This benchmark employs two scenarios: a text-to-code scenario, where LLMs are prompted with descriptions to generate code, and a code-to-code scenario, where LLMs translate or complete existing malicious code. Based on RMCBench, we conduct an empirical study on 11 representative LLMs to assess their ability to resist malicious code generation. Our findings indicate that current LLMs have a limited ability to resist malicious code generation with an average refusal rate of 40.36% in text-to-code scenario and 11.52% in code-to-code scenario. The average refusal rate of all LLMs in RMCBench is only 28.71%; ChatGPT-4 has a refusal rate of only 35.73%. We also analyze the factors that affect LLMs' ability to resist malicious code generation and provide implications for developers to enhance model robustness.
PanGu-Coder2: Boosting Large Language Models for Code with Ranking Feedback
Large Language Models for Code (Code LLM) are flourishing. New and powerful models are released on a weekly basis, demonstrating remarkable performance on the code generation task. Various approaches have been proposed to boost the code generation performance of pre-trained Code LLMs, such as supervised fine-tuning, instruction tuning, reinforcement learning, etc. In this paper, we propose a novel RRTF (Rank Responses to align Test&Teacher Feedback) framework, which can effectively and efficiently boost pre-trained large language models for code generation. Under this framework, we present PanGu-Coder2, which achieves 62.20% pass@1 on the OpenAI HumanEval benchmark. Furthermore, through an extensive evaluation on CoderEval and LeetCode benchmarks, we show that PanGu-Coder2 consistently outperforms all previous Code LLMs.
If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code Empowers Large Language Models to Serve as Intelligent Agents
The prominent large language models (LLMs) of today differ from past language models not only in size, but also in the fact that they are trained on a combination of natural language and formal language (code). As a medium between humans and computers, code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity. In this survey, we present an overview of the various benefits of integrating code into LLMs' training data. Specifically, beyond enhancing LLMs in code generation, we observe that these unique properties of code help (i) unlock the reasoning ability of LLMs, enabling their applications to a range of more complex natural language tasks; (ii) steer LLMs to produce structured and precise intermediate steps, which can then be connected to external execution ends through function calls; and (iii) take advantage of code compilation and execution environment, which also provides diverse feedback for model improvement. In addition, we trace how these profound capabilities of LLMs, brought by code, have led to their emergence as intelligent agents (IAs) in situations where the ability to understand instructions, decompose goals, plan and execute actions, and refine from feedback are crucial to their success on downstream tasks. Finally, we present several key challenges and future directions of empowering LLMs with code.
Optimizing Large Language Models for OpenAPI Code Completion
Recent advancements in Large Language Models (LLMs) and their utilization in code generation tasks have significantly reshaped the field of software development. Despite the remarkable efficacy of code completion solutions in mainstream programming languages, their performance lags when applied to less ubiquitous formats such as OpenAPI definitions. This study evaluates the OpenAPI completion performance of GitHub Copilot, a prevalent commercial code completion tool, and proposes a set of task-specific optimizations leveraging Meta's open-source model Code Llama. A semantics-aware OpenAPI completion benchmark proposed in this research is used to perform a series of experiments through which the impact of various prompt-engineering and fine-tuning techniques on the Code Llama model's performance is analyzed. The fine-tuned Code Llama model reaches a peak correctness improvement of 55.2% over GitHub Copilot despite utilizing 25 times fewer parameters than the commercial solution's underlying Codex model. Additionally, this research proposes an enhancement to a widely used code infilling training technique, addressing the issue of underperformance when the model is prompted with context sizes smaller than those used during training. The dataset, the benchmark, and the model fine-tuning code are made publicly available.
PAC Prediction Sets for Large Language Models of Code
Prediction sets have recently been shown to be a promising strategy for quantifying the uncertainty of deep neural networks in a way that provides theoretical guarantees. However, existing techniques have largely targeted settings where the space of labels is simple, so prediction sets can be arbitrary subsets of labels. For structured prediction problems where the space of labels is exponential in size, even prediction sets containing a small fraction of all labels can be exponentially large. In the context of code generation, we propose a solution that considers a restricted set of prediction sets that can compactly be represented as partial programs, which are programs with portions replaced with holes. Given a trained code generation model, our algorithm leverages a programming language's abstract syntax tree to generate a set of programs such that the correct program is in the set with high-confidence. Valuable applications of our algorithm include a Codex-style code generator with holes in uncertain parts of the generated code, which provides a partial program with theoretical guarantees. We evaluate our approach on PICARD (a T5 model for SQL semantic parsing) and Codex (a GPT model for over a dozen programming languages, including Python), demonstrating that our approach generates compact PAC prediction sets. This is the first research contribution that generates PAC prediction sets for generative code models.
CodeEditorBench: Evaluating Code Editing Capability of Large Language Models
Large Language Models (LLMs) for code are rapidly evolving, with code editing emerging as a critical capability. We introduce CodeEditorBench, an evaluation framework designed to rigorously assess the performance of LLMs in code editing tasks, including debugging, translating, polishing, and requirement switching. Unlike existing benchmarks focusing solely on code generation, CodeEditorBench emphasizes real-world scenarios and practical aspects of software development. We curate diverse coding challenges and scenarios from five sources, covering various programming languages, complexity levels, and editing tasks. Evaluation of 19 LLMs reveals that closed-source models (particularly Gemini-Ultra and GPT-4), outperform open-source models in CodeEditorBench, highlighting differences in model performance based on problem types and prompt sensitivities. CodeEditorBench aims to catalyze advancements in LLMs by providing a robust platform for assessing code editing capabilities. We will release all prompts and datasets to enable the community to expand the dataset and benchmark emerging LLMs. By introducing CodeEditorBench, we contribute to the advancement of LLMs in code editing and provide a valuable resource for researchers and practitioners.
ChartCoder: Advancing Multimodal Large Language Model for Chart-to-Code Generation
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in chart understanding tasks. However, interpreting charts with textual descriptions often leads to information loss, as it fails to fully capture the dense information embedded in charts. In contrast, parsing charts into code provides lossless representations that can effectively contain all critical details. Although existing open-source MLLMs have achieved success in chart understanding tasks, they still face two major challenges when applied to chart-to-code tasks.: (1) Low executability and poor restoration of chart details in the generated code and (2) Lack of large-scale and diverse training data. To address these challenges, we propose ChartCoder, the first dedicated chart-to-code MLLM, which leverages Code LLMs as the language backbone to enhance the executability of the generated code. Furthermore, we introduce Chart2Code-160k, the first large-scale and diverse dataset for chart-to-code generation, and propose the Snippet-of-Thought (SoT) method, which transforms direct chart-to-code generation data into step-by-step generation. Experiments demonstrate that ChartCoder, with only 7B parameters, surpasses existing open-source MLLMs on chart-to-code benchmarks, achieving superior chart restoration and code excitability. Our code will be available at https://github.com/thunlp/ChartCoder.
Towards End-to-end 4-Bit Inference on Generative Large Language Models
We show that the majority of the inference computations for large generative models such as LLaMA and OPT can be performed with both weights and activations being cast to 4 bits, in a way that leads to practical speedups while at the same time maintaining good accuracy. We achieve this via a hybrid quantization strategy called QUIK, which compresses most of the weights and activations to 4-bit, while keeping some outlier weights and activations in higher-precision. Crucially, our scheme is designed with computational efficiency in mind: we provide GPU kernels with highly-efficient layer-wise runtimes, which lead to practical end-to-end throughput improvements of up to 3.1x relative to FP16 execution. Code and models are provided at https://github.com/IST-DASLab/QUIK.
CodeJudge-Eval: Can Large Language Models be Good Judges in Code Understanding?
Recent advancements in large language models (LLMs) have showcased impressive code generation capabilities, primarily evaluated through language-to-code benchmarks. However, these benchmarks may not fully capture a model's code understanding abilities. We introduce CodeJudge-Eval (CJ-Eval), a novel benchmark designed to assess LLMs' code understanding abilities from the perspective of code judging rather than code generation. CJ-Eval challenges models to determine the correctness of provided code solutions, encompassing various error types and compilation issues. By leveraging a diverse set of problems and a fine-grained judging system, CJ-Eval addresses the limitations of traditional benchmarks, including the potential memorization of solutions. Evaluation of 12 well-known LLMs on CJ-Eval reveals that even state-of-the-art models struggle, highlighting the benchmark's ability to probe deeper into models' code understanding abilities. Our benchmark will be available at https://github.com/CodeLLM-Research/CodeJudge-Eval.
Evaluating Large Language Models Trained on Code
We introduce Codex, a GPT language model fine-tuned on publicly available code from GitHub, and study its Python code-writing capabilities. A distinct production version of Codex powers GitHub Copilot. On HumanEval, a new evaluation set we release to measure functional correctness for synthesizing programs from docstrings, our model solves 28.8% of the problems, while GPT-3 solves 0% and GPT-J solves 11.4%. Furthermore, we find that repeated sampling from the model is a surprisingly effective strategy for producing working solutions to difficult prompts. Using this method, we solve 70.2% of our problems with 100 samples per problem. Careful investigation of our model reveals its limitations, including difficulty with docstrings describing long chains of operations and with binding operations to variables. Finally, we discuss the potential broader impacts of deploying powerful code generation technologies, covering safety, security, and economics.
Steering Large Language Models between Code Execution and Textual Reasoning
While a lot of recent research focuses on enhancing the textual reasoning capabilities of Large Language Models (LLMs) by optimizing the multi-agent framework or reasoning chains, several benchmark tasks can be solved with 100% success through direct coding, which is more scalable and avoids the computational overhead associated with textual iterating and searching. Textual reasoning has inherent limitations in solving tasks with challenges in math, logics, optimization, and searching, which is unlikely to be solved by simply scaling up the model and data size. The recently released OpenAI GPT Code Interpreter and multi-agent frameworks such as AutoGen have demonstrated remarkable proficiency of integrating code generation and execution to solve complex tasks using LLMs. However, based on our experiments on 7 existing popular methods for steering code/text generation in both single- and multi-turn settings with 14 tasks and 6 types of LLMs (including the new O1-preview), currently there is no optimal method to correctly steer LLMs to write code when needed. We discover some interesting patterns on when models use code vs. textual reasoning with the evolution to task complexity and model sizes, which even result in an astonishingly inverse scaling law. We also discover that results from LLM written code are not always better than using textual reasoning, even if the task could be solved through code. To mitigate the above issues, we propose three methods to better steer LLM code/text generation and achieve a notable improvement. The costs of token lengths and runtime are thoroughly discussed for all the methods. We believe the problem of steering LLM code/text generation is critical for future research and has much space for further improvement. Project Page, Datasets, and Codes are available at https://yongchao98.github.io/CodeSteer/.
DolphCoder: Echo-Locating Code Large Language Models with Diverse and Multi-Objective Instruction Tuning
Code Large Language Models (Code LLMs) have demonstrated outstanding performance in code-related tasks. Several instruction tuning approaches have been proposed to boost the code generation performance of pre-trained Code LLMs. In this paper, we introduce a diverse instruction model (DolphCoder) with self-evaluating for code generation. It learns diverse instruction targets and combines a code evaluation objective to enhance its code generation ability. Our model achieves superior performance on the HumanEval and MBPP benchmarks, demonstrating new insights for future code instruction tuning work. Our key findings are: (1) Augmenting more diverse responses with distinct reasoning paths increases the code capability of LLMs. (2) Improving one's ability to evaluate the correctness of code solutions also enhances their ability to create it.
CodeReviewQA: The Code Review Comprehension Assessment for Large Language Models
State-of-the-art large language models (LLMs) have demonstrated impressive code generation capabilities but struggle with real-world software engineering tasks, such as revising source code to address code reviews, hindering their practical use. Code review comments are often implicit, ambiguous, and colloquial, requiring models to grasp both code and human intent. This challenge calls for evaluating large language models' ability to bridge both technical and conversational contexts. While existing work has employed the automated code refinement (ACR) task to resolve these comments, current evaluation methods fall short, relying on text matching metrics that provide limited insight into model failures and remain susceptible to training data contamination. To address these limitations, we introduce a novel evaluation benchmark, CodeReviewQA that enables us to conduct fine-grained assessment of model capabilities and mitigate data contamination risks. In CodeReviewQA, we decompose the generation task of code refinement into three essential reasoning steps: change type recognition (CTR), change localisation (CL), and solution identification (SI). Each step is reformulated as multiple-choice questions with varied difficulty levels, enabling precise assessment of model capabilities, while mitigating data contamination risks. Our comprehensive evaluation spans 72 recently released large language models on 900 manually curated, high-quality examples across nine programming languages. Our results show that CodeReviewQA is able to expose specific model weaknesses in code review comprehension, disentangled from their generative automated code refinement results.
Evaluating Language Models for Efficient Code Generation
We introduce Differential Performance Evaluation (DPE), a framework designed to reliably evaluate Large Language Models (LLMs) for efficient code generation. Traditional coding benchmarks often fail to provide reliable insights into code efficiency, due to their reliance on simplistic test inputs and the absence of effective compound metrics. DPE addresses these issues by focusing on efficiency-demanding programming tasks and establishing an insightful compound metric for performance evaluation. DPE operates in two phases: To curate efficiency datasets, it selects efficiency-demanding tasks from existing coding benchmarks and generates computationally expensive inputs to stress the efficiency of LLM solutions. To assess the code efficiency, DPE profiles the new solution and compares it globally against a set of reference solutions that exhibit distinct efficiency levels, where the matched level defines its efficiency score. As a proof of concept, we use DPE to create EvalPerf, a benchmark with 121 performance-challenging coding tasks. Our comprehensive evaluation draws interesting findings on the efficiency impact of model sizes, instruction tuning, and prompting. For example, while the scaling law fails to account for code efficiency, general instruction tuning benefits both code correctness and efficiency. We also evaluate the evaluation by examining the effectiveness of DPE, showing that EvalPerf is reliable and convenient to use even across platforms.
StudentEval: A Benchmark of Student-Written Prompts for Large Language Models of Code
Code LLMs are being rapidly deployed and there is evidence that they can make professional programmers more productive. Current benchmarks for code generation measure whether models generate correct programs given an expert prompt. In this paper, we present a new benchmark containing multiple prompts per problem, written by a specific population of non-expert prompters: beginning programmers. StudentEval contains 1,749 prompts for 48 problems, written by 80 students who have only completed one semester of Python programming. Our students wrote these prompts while working interactively with a Code LLM, and we observed very mixed success rates. We use StudentEval to evaluate 5 Code LLMs and find that StudentEval is a better discriminator of model performance than existing benchmarks. We analyze the prompts and find significant variation in students' prompting techniques. We also find that nondeterministic LLM sampling could mislead students into thinking that their prompts are more (or less) effective than they actually are, which has implications for how to teach with Code LLMs.
Large Language Model for Verilog Generation with Golden Code Feedback
Recent advancements in large language models (LLMs) have catalyzed significant interest in the automatic generation of Register-Transfer Level (RTL) code, particularly Verilog, from natural language instructions. While commercial LLMs like ChatGPT have dominated this domain, open-source alternatives have lagged considerably in performance, limiting the flexibility and data privacy of this emerging technology. This study introduces a novel approach utilizing reinforcement learning with golden code feedback to enhance the performance of pre-trained models. Leveraging open-source data and base models, we have achieved state-of-the-art (SOTA) results with a substantial margin. Notably, our 6.7B parameter model demonstrates superior performance compared to current best-in-class 13B and 16B models. Furthermore, through a comprehensive analysis of the limitations in direct fine-tuning and the training dynamics of reinforcement learning, we posit that the development of comprehensive supervisory signals, which are align with the inherent parallel semantics of Verilog code, is critical to effective generation. The code and data associated with this research are publicly available at https://github.com/CatIIIIIIII/veriseek. The model weights can be accessed at https://huggingface.co/WANGNingroci/VeriSeek.
A Survey of Large Language Models for Code: Evolution, Benchmarking, and Future Trends
General large language models (LLMs), represented by ChatGPT, have demonstrated significant potential in tasks such as code generation in software engineering. This has led to the development of specialized LLMs for software engineering, known as Code LLMs. A considerable portion of Code LLMs is derived from general LLMs through model fine-tuning. As a result, Code LLMs are often updated frequently and their performance can be influenced by the base LLMs. However, there is currently a lack of systematic investigation into Code LLMs and their performance. In this study, we conduct a comprehensive survey and analysis of the types of Code LLMs and their differences in performance compared to general LLMs. We aim to address three questions: (1) What LLMs are specifically designed for software engineering tasks, and what is the relationship between these Code LLMs? (2) Do Code LLMs really outperform general LLMs in software engineering tasks? (3) Which LLMs are more proficient in different software engineering tasks? To answer these questions, we first collect relevant literature and work from five major databases and open-source communities, resulting in 134 works for analysis. Next, we categorize the Code LLMs based on their publishers and examine their relationships with general LLMs and among themselves. Furthermore, we investigate the performance differences between general LLMs and Code LLMs in various software engineering tasks to demonstrate the impact of base models and Code LLMs. Finally, we comprehensively maintained the performance of LLMs across multiple mainstream benchmarks to identify the best-performing LLMs for each software engineering task. Our research not only assists developers of Code LLMs in choosing base models for the development of more advanced LLMs but also provides insights for practitioners to better understand key improvement directions for Code LLMs.
Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models
The high cost of full-parameter fine-tuning (FFT) of Large Language Models (LLMs) has led to a series of parameter-efficient fine-tuning (PEFT) methods. However, it remains unclear which methods provide the best cost-performance trade-off at different model scales. We introduce Astraios, a suite of 28 instruction-tuned OctoCoder models using 7 tuning methods and 4 model sizes up to 16 billion parameters. Through investigations across 5 tasks and 8 different datasets encompassing both code comprehension and code generation tasks, we find that FFT generally leads to the best downstream performance across all scales, and PEFT methods differ significantly in their efficacy based on the model scale. LoRA usually offers the most favorable trade-off between cost and performance. Further investigation into the effects of these methods on both model robustness and code security reveals that larger models tend to demonstrate reduced robustness and less security. At last, we explore the relationships among updated parameters, cross-entropy loss, and task performance. We find that the tuning effectiveness observed in small models generalizes well to larger models, and the validation loss in instruction tuning can be a reliable indicator of overall downstream performance.
Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study
The advent of large language models (LLMs) like GitHub Copilot has significantly enhanced programmers' productivity, particularly in code generation. However, these models often struggle with real-world tasks without fine-tuning. As LLMs grow larger and more performant, fine-tuning for specialized tasks becomes increasingly expensive. Parameter-efficient fine-tuning (PEFT) methods, which fine-tune only a subset of model parameters, offer a promising solution by reducing the computational costs of tuning LLMs while maintaining their performance. Existing studies have explored using PEFT and LLMs for various code-related tasks and found that the effectiveness of PEFT techniques is task-dependent. The application of PEFT techniques in unit test generation remains underexplored. The state-of-the-art is limited to using LLMs with full fine-tuning to generate unit tests. This paper investigates both full fine-tuning and various PEFT methods, including LoRA, (IA)^3, and prompt tuning, across different model architectures and sizes. We use well-established benchmark datasets to evaluate their effectiveness in unit test generation. Our findings show that PEFT methods can deliver performance comparable to full fine-tuning for unit test generation, making specialized fine-tuning more accessible and cost-effective. Notably, prompt tuning is the most effective in terms of cost and resource utilization, while LoRA approaches the effectiveness of full fine-tuning in several cases.
PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers
In this paper, we conduct a study to utilize LLMs as a solution for decision making that requires complex data analysis. We define Decision QA as the task of answering the best decision, d_{best}, for a decision-making question Q, business rules R and a database D. Since there is no benchmark that can examine Decision QA, we propose Decision QA benchmark, DQA. It has two scenarios, Locating and Building, constructed from two video games (Europa Universalis IV and Victoria 3) that have almost the same goal as Decision QA. To address Decision QA effectively, we also propose a new RAG technique called the iterative plan-then-retrieval augmented generation (PlanRAG). Our PlanRAG-based LM generates the plan for decision making as the first step, and the retriever generates the queries for data analysis as the second step. The proposed method outperforms the state-of-the-art iterative RAG method by 15.8% in the Locating scenario and by 7.4% in the Building scenario, respectively. We release our code and benchmark at https://github.com/myeon9h/PlanRAG.
MMCode: Evaluating Multi-Modal Code Large Language Models with Visually Rich Programming Problems
Programming often involves converting detailed and complex specifications into code, a process during which developers typically utilize visual aids to more effectively convey concepts. While recent developments in Large Multimodal Models have demonstrated remarkable abilities in visual reasoning and mathematical tasks, there is little work on investigating whether these models can effectively interpret visual elements for code generation. To this end, we present MMCode, the first multi-modal coding dataset for evaluating algorithmic problem-solving skills in visually rich contexts. MMCode contains 3,548 questions and 6,620 images collected from real-world programming challenges harvested from 10 code competition websites, presenting significant challenges due to the extreme demand for reasoning abilities. Our experiment results show that current state-of-the-art models struggle to solve these problems. The results highlight the lack of powerful vision-code models, and we hope MMCode can serve as an inspiration for future works in this domain. The data and code are publicly available at https://github.com/happylkx/MMCode.
Large Language Model-Aware In-Context Learning for Code Generation
Large language models (LLMs) have shown impressive in-context learning (ICL) ability in code generation. LLMs take a prompt consisting of requirement-code examples and a new requirement as input, and output new programs. Existing studies have found that ICL is highly dominated by the examples and thus arises research on example selection. However, existing approaches randomly select examples or only consider the textual similarity of requirements to retrieve, leading to sub-optimal performance. In this paper, we propose a novel learning-based selection approach named LAIL (LLM-Aware In-context Learning) for code generation. Given a candidate example, we exploit LLMs themselves to estimate it by considering the generation probabilities of ground-truth programs given a requirement and the example. We then label candidate examples as positive or negative through the probability feedback. Based on the labeled data, we import a contrastive learning objective to train an effective retriever that acquires the preference of LLMs in code generation. We apply LAIL to three LLMs and evaluate it on three representative datasets (e.g., MBJP, MBPP, and MBCPP). LATA outperforms the state-of-the-art baselines by 11.58%, 6.89%, and 5.07% on CodeGen, and 4.38%, 2.85%, and 2.74% on GPT-3.5 in terms of Pass@1, respectively.
OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs suitable for rigorous scientific investigation, particularly those with reproducible data processing pipelines and transparent training protocols, remain limited. The scarcity is due to various challenges, including resource constraints, ethical considerations, and the competitive advantages of keeping models advanced. To address the gap, we introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an ``open cookbook'' for the research community. Unlike most prior efforts, we release not only model weights and inference code, but also the reproducible training data, complete data processing pipeline, rigorous experimental ablation results, and detailed training protocols for open scientific research. Through this comprehensive release, we identify the key ingredients for building a top-tier code LLM: (1) code optimized heuristic rules for data cleaning and methods for data deduplication, (2) recall of text corpus related to code and (3) high-quality synthetic data in both annealing and supervised fine-tuning stages. By offering this level of openness, we aim to broaden access to all aspects of a top-tier code LLM, with OpenCoder serving as both a powerful model and an open foundation to accelerate research, and enable reproducible advancements in code AI.
SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors
Large language models (LLMs) have demonstrated remarkable capabilities in code-related tasks, such as code understanding and code generation. However, an equally important yet underexplored question is whether LLMs can serve as general-purpose surrogate code executors, to predict the output and behavior of a program without actually running it. To systematically investigate this capability, we introduce SURGE, a comprehensive benchmark covering eight key aspects: multi-language programming tasks, competition-level programming problems, repository-level code analysis, high-cost scientific computing, time-complexity-intensive algorithms, buggy code analysis, programs dependent on specific compilers or execution environments, and formal mathematical proof verification. We evaluate multiple open-source and proprietary LLMs on SURGE and conduct a scaling study to analyze the impact of model size and training data scale on surrogate execution accuracy. Additionally, we categorize model prediction errors and explore potential areas for improvement. Our findings indicate that while LLMs can predict code execution results in certain cases, they exhibit limitations in general-purpose surrogate execution. This study provides empirical insights into the feasibility of using LLMs as surrogate code executors. Code and dataset are released at https://github.com/Imbernoulli/SURGE.
Investigating the Efficacy of Large Language Models for Code Clone Detection
Large Language Models (LLMs) have demonstrated remarkable success in various natural language processing and software engineering tasks, such as code generation. The LLMs are mainly utilized in the prompt-based zero/few-shot paradigm to guide the model in accomplishing the task. GPT-based models are one of the popular ones studied for tasks such as code comment generation or test generation. These tasks are `generative' tasks. However, there is limited research on the usage of LLMs for `non-generative' tasks such as classification using the prompt-based paradigm. In this preliminary exploratory study, we investigated the applicability of LLMs for Code Clone Detection (CCD), a non-generative task. By building a mono-lingual and cross-lingual CCD dataset derived from CodeNet, we first investigated two different prompts using ChatGPT to detect Type-4 code clones in Java-Java and Java-Ruby pairs in a zero-shot setting. We then conducted an analysis to understand the strengths and weaknesses of ChatGPT in CCD. ChatGPT surpasses the baselines in cross-language CCD attaining an F1-score of 0.877 and achieves comparable performance to fully fine-tuned models for mono-lingual CCD, with an F1-score of 0.878. Also, the prompt and the difficulty level of the problems has an impact on the performance of ChatGPT. Finally we provide insights and future directions based on our initial analysis