7 Tower: An Open Multilingual Large Language Model for Translation-Related Tasks While general-purpose large language models (LLMs) demonstrate proficiency on multiple tasks within the domain of translation, approaches based on open LLMs are competitive only when specializing on a single task. In this paper, we propose a recipe for tailoring LLMs to multiple tasks present in translation workflows. We perform continued pretraining on a multilingual mixture of monolingual and parallel data, creating TowerBase, followed by finetuning on instructions relevant for translation processes, creating TowerInstruct. Our final model surpasses open alternatives on several tasks relevant to translation workflows and is competitive with general-purpose closed LLMs. To facilitate future research, we release the Tower models, our specialization dataset, an evaluation framework for LLMs focusing on the translation ecosystem, and a collection of model generations, including ours, on our benchmark. 13 authors · Feb 27, 2024
- Tower+: Bridging Generality and Translation Specialization in Multilingual LLMs Fine-tuning pretrained LLMs has been shown to be an effective strategy for reaching state-of-the-art performance on specific tasks like machine translation. However, this process of adaptation often implies sacrificing general-purpose capabilities, such as conversational reasoning and instruction-following, hampering the utility of the system in real-world applications that require a mixture of skills. In this paper, we introduce Tower+, a suite of models designed to deliver strong performance across both translation and multilingual general-purpose text capabilities. We achieve a Pareto frontier between translation specialization and multilingual general-purpose capabilities by introducing a novel training recipe that builds on Tower (Alves et al., 2024), comprising continued pretraining, supervised fine-tuning, preference optimization, and reinforcement learning with verifiable rewards. At each stage of training, we carefully generate and curate data to strengthen performance on translation as well as general-purpose tasks involving code generation, mathematics problem solving, and general instruction-following. We develop models at multiple scales: 2B, 9B, and 72B. Our smaller models often outperform larger general-purpose open-weight and proprietary LLMs (e.g., Llama 3.3 70B, GPT-4o). Our largest model delivers best-in-class translation performance for high-resource languages and top results in multilingual Arena Hard evaluations and in IF-MT, a benchmark we introduce for evaluating both translation and instruction-following. Our findings highlight that it is possible to rival frontier models in general capabilities, while optimizing for specific business domains, such as translation and localization. 7 authors · Jun 20
7 From TOWER to SPIRE: Adding the Speech Modality to a Text-Only LLM Large language models (LLMs) have shown remarkable performance and generalization capabilities across multiple languages and tasks, making them very attractive targets for multi-modality integration (e.g., images or speech). In this work, we extend an existing LLM to the speech modality via speech discretization and continued pre-training. In particular, we are interested in multilingual LLMs, such as TOWER, as their pre-training setting allows us to treat discretized speech input as an additional translation language. The resulting open-source model, SPIRE, is able to transcribe and translate English speech input while maintaining TOWER's original performance on translation-related tasks, showcasing that discretized speech input integration as an additional language is feasible during LLM adaptation. We make our code and models available to the community. 8 authors · Mar 13 2
- Manager: Aggregating Insights from Unimodal Experts in Two-Tower VLMs and MLLMs Two-Tower Vision--Language Models (VLMs) have demonstrated strong performance across various downstream VL tasks. While BridgeTower further enhances performance by building bridges between encoders, it (i) suffers from ineffective layer-by-layer utilization of unimodal representations, (ii) restricts the flexible exploitation of different levels of unimodal semantic knowledge, and (iii) is limited to the evaluation on traditional low-resolution datasets only with the Two-Tower VLM architecture. In this work, we propose Manager, a lightweight, efficient and effective plugin that adaptively aggregates insights from different levels of pre-trained unimodal experts to facilitate more comprehensive VL alignment and fusion. First, under the Two-Tower VLM architecture, we introduce ManagerTower, a novel VLM that introduces the manager in each cross-modal layer. Whether with or without VL pre-training, ManagerTower outperforms previous strong baselines and achieves superior performance on 4 downstream VL tasks. Moreover, we extend our exploration to the latest Multimodal Large Language Model (MLLM) architecture. We demonstrate that LLaVA-OV-Manager significantly boosts the zero-shot performance of LLaVA-OV across different categories of capabilities, images, and resolutions on 20 downstream datasets, whether the multi-grid algorithm is enabled or not. In-depth analysis reveals that both our manager and the multi-grid algorithm can be viewed as a plugin that improves the visual representation by capturing more diverse visual details from two orthogonal perspectives (depth and width). Their synergy can mitigate the semantic ambiguity caused by the multi-grid algorithm and further improve performance. Code and models are available at https://github.com/LooperXX/ManagerTower. 4 authors · Jun 13
12 Zipper: A Multi-Tower Decoder Architecture for Fusing Modalities Integrating multiple generative foundation models, especially those trained on different modalities, into something greater than the sum of its parts poses significant challenges. Two key hurdles are the availability of aligned data (concepts that contain similar meaning but is expressed differently in different modalities), and effectively leveraging unimodal representations in cross-domain generative tasks, without compromising their original unimodal capabilities. We propose Zipper, a multi-tower decoder architecture that addresses these concerns by using cross-attention to flexibly compose multimodal generative models from independently pre-trained unimodal decoders. In our experiments fusing speech and text modalities, we show the proposed architecture performs very competitively in scenarios with limited aligned text-speech data. We also showcase the flexibility of our model to selectively maintain unimodal (e.g., text-to-text generation) generation performance by freezing the corresponding modal tower (e.g. text). In cross-modal tasks such as automatic speech recognition (ASR) where the output modality is text, we show that freezing the text backbone results in negligible performance degradation. In cross-modal tasks such as text-to-speech generation (TTS) where the output modality is speech, we show that using a pre-trained speech backbone results in superior performance to the baseline. 4 authors · May 28, 2024
- Dynamic Double Space Tower The Visual Question Answering (VQA) task requires the simultaneous understanding of image content and question semantics. However, existing methods often have difficulty handling complex reasoning scenarios due to insufficient cross-modal interaction and capturing the entity spatial relationships in the image.huang2023adaptiveliu2021comparingguibas2021adaptivezhang2022vsaWe studied a brand-new approach to replace the attention mechanism in order to enhance the reasoning ability of the model and its understanding of spatial relationships.Specifically, we propose a dynamic bidirectional spatial tower, which is divided into four layers to observe the image according to the principle of human gestalt vision. This naturally provides a powerful structural prior for the spatial organization between entities, enabling the model to no longer blindly search for relationships between pixels but make judgments based on more meaningful perceptual units. Change from "seeing images" to "perceiving and organizing image content".A large number of experiments have shown that our module can be used in any other multimodal model and achieve advanced results, demonstrating its potential in spatial relationship processing.Meanwhile, the multimodal visual question-answering model July trained by our method has achieved state-of-the-art results with only 3B parameters, especially on the question-answering dataset of spatial relations. 3 authors · Jun 12
- The Rise and Down of Babel Tower: Investigating the Evolution Process of Multilingual Code Large Language Model Large language models (LLMs) have shown significant multilingual capabilities. However, the mechanisms underlying the development of these capabilities during pre-training are not well understood. In this paper, we use code LLMs as an experimental platform to explore the evolution of multilingual capabilities in LLMs during the pre-training process. Based on our observations, we propose the Babel Tower Hypothesis, which describes the entire process of LLMs acquiring new language capabilities. During the learning process, multiple languages initially share a single knowledge system dominated by the primary language and gradually develop language-specific knowledge systems. We then validate the above hypothesis by tracking the internal states of the LLMs through identifying working languages and language transferring neurons. Experimental results show that the internal state changes of the LLM are consistent with our Babel Tower Hypothesis. Building on these insights, we propose a novel method to construct an optimized pre-training corpus for multilingual code LLMs, which significantly outperforms LLMs trained on the original corpus. The proposed Babel Tower Hypothesis provides new insights into designing pre-training data distributions to achieve optimal multilingual capabilities in LLMs. 9 authors · Dec 10, 2024
- Disaggregated Multi-Tower: Topology-aware Modeling Technique for Efficient Large-Scale Recommendation We study a mismatch between the deep learning recommendation models' flat architecture, common distributed training paradigm and hierarchical data center topology. To address the associated inefficiencies, we propose Disaggregated Multi-Tower (DMT), a modeling technique that consists of (1) Semantic-preserving Tower Transform (SPTT), a novel training paradigm that decomposes the monolithic global embedding lookup process into disjoint towers to exploit data center locality; (2) Tower Module (TM), a synergistic dense component attached to each tower to reduce model complexity and communication volume through hierarchical feature interaction; and (3) Tower Partitioner (TP), a feature partitioner to systematically create towers with meaningful feature interactions and load balanced assignments to preserve model quality and training throughput via learned embeddings. We show that DMT can achieve up to 1.9x speedup compared to the state-of-the-art baselines without losing accuracy across multiple generations of hardware at large data center scales. 14 authors · Mar 1, 2024
1 ToNER: Type-oriented Named Entity Recognition with Generative Language Model In recent years, the fine-tuned generative models have been proven more powerful than the previous tagging-based or span-based models on named entity recognition (NER) task. It has also been found that the information related to entities, such as entity types, can prompt a model to achieve NER better. However, it is not easy to determine the entity types indeed existing in the given sentence in advance, and inputting too many potential entity types would distract the model inevitably. To exploit entity types' merit on promoting NER task, in this paper we propose a novel NER framework, namely ToNER based on a generative model. In ToNER, a type matching model is proposed at first to identify the entity types most likely to appear in the sentence. Then, we append a multiple binary classification task to fine-tune the generative model's encoder, so as to generate the refined representation of the input sentence. Moreover, we add an auxiliary task for the model to discover the entity types which further fine-tunes the model to output more accurate results. Our extensive experiments on some NER benchmarks verify the effectiveness of our proposed strategies in ToNER that are oriented towards entity types' exploitation. 6 authors · Apr 14, 2024 2
2 Three Towers: Flexible Contrastive Learning with Pretrained Image Models We introduce Three Towers (3T), a flexible method to improve the contrastive learning of vision-language models by incorporating pretrained image classifiers. While contrastive models are usually trained from scratch, LiT (Zhai et al., 2022) has recently shown performance gains from using pretrained classifier embeddings. However, LiT directly replaces the image tower with the frozen embeddings, excluding any potential benefits of contrastively training the image tower. With 3T, we propose a more flexible strategy that allows the image tower to benefit from both pretrained embeddings and contrastive training. To achieve this, we introduce a third tower that contains the frozen pretrained embeddings, and we encourage alignment between this third tower and the main image-text towers. Empirically, 3T consistently improves over LiT and the CLIP-style from-scratch baseline for retrieval tasks. For classification, 3T reliably improves over the from-scratch baseline, and while it underperforms relative to LiT for JFT-pretrained models, it outperforms LiT for ImageNet-21k and Places365 pretraining. 10 authors · May 26, 2023
22 MS MARCO Web Search: a Large-scale Information-rich Web Dataset with Millions of Real Click Labels Recent breakthroughs in large models have highlighted the critical significance of data scale, labels and modals. In this paper, we introduce MS MARCO Web Search, the first large-scale information-rich web dataset, featuring millions of real clicked query-document labels. This dataset closely mimics real-world web document and query distribution, provides rich information for various kinds of downstream tasks and encourages research in various areas, such as generic end-to-end neural indexer models, generic embedding models, and next generation information access system with large language models. MS MARCO Web Search offers a retrieval benchmark with three web retrieval challenge tasks that demand innovations in both machine learning and information retrieval system research domains. As the first dataset that meets large, real and rich data requirements, MS MARCO Web Search paves the way for future advancements in AI and system research. MS MARCO Web Search dataset is available at: https://github.com/microsoft/MS-MARCO-Web-Search. 31 authors · May 13, 2024 1
1 REVS: Unlearning Sensitive Information in Language Models via Rank Editing in the Vocabulary Space Language models (LMs) risk inadvertently memorizing and divulging sensitive or personally identifiable information (PII) seen in training data, causing privacy concerns. Current approaches to address this issue involve costly dataset scrubbing, or model filtering through unlearning and model editing, which can be bypassed through extraction attacks. We propose REVS, a novel non-gradient-based method for unlearning sensitive information from LMs. REVS identifies and modifies a small subset of neurons relevant for constituent tokens that form sensitive information. To adequately evaluate our method on truly sensitive information, we curate three datasets: email and URL datasets naturally memorized by the models, and a synthetic social security number dataset that we tune the models to memorize. Compared to other methods, REVS demonstrates superior performance in unlearning sensitive information and robustness to extraction attacks, while retaining underlying model integrity. 3 authors · Jun 13, 2024
1 SAGA: Spectral Adversarial Geometric Attack on 3D Meshes A triangular mesh is one of the most popular 3D data representations. As such, the deployment of deep neural networks for mesh processing is widely spread and is increasingly attracting more attention. However, neural networks are prone to adversarial attacks, where carefully crafted inputs impair the model's functionality. The need to explore these vulnerabilities is a fundamental factor in the future development of 3D-based applications. Recently, mesh attacks were studied on the semantic level, where classifiers are misled to produce wrong predictions. Nevertheless, mesh surfaces possess complex geometric attributes beyond their semantic meaning, and their analysis often includes the need to encode and reconstruct the geometry of the shape. We propose a novel framework for a geometric adversarial attack on a 3D mesh autoencoder. In this setting, an adversarial input mesh deceives the autoencoder by forcing it to reconstruct a different geometric shape at its output. The malicious input is produced by perturbing a clean shape in the spectral domain. Our method leverages the spectral decomposition of the mesh along with additional mesh-related properties to obtain visually credible results that consider the delicacy of surface distortions. Our code is publicly available at https://github.com/StolikTomer/SAGA. 3 authors · Nov 24, 2022
- Dual Precision Quantization for Efficient and Accurate Deep Neural Networks Inference Deep neural networks have achieved state-of-the-art results in a wide range of applications, from natural language processing and computer vision to speech recognition. However, as tasks become increasingly complex, model sizes continue to grow, posing challenges in latency and memory efficiency. To meet these constraints, post-training quantization has emerged as a promising solution. In this paper, we propose a novel hardware-efficient quantization and inference scheme that exploits hardware advantages with minimal accuracy degradation. Specifically, we introduce a W4A8 scheme, where weights are quantized and stored using 4-bit integer precision, and inference computations are performed using 8-bit floating-point arithmetic, demonstrating significant speedups and improved memory utilization compared to 16-bit operations, applicable on various modern accelerators. To mitigate accuracy loss, we develop a novel quantization algorithm, dubbed Dual Precision Quantization (DPQ), that leverages the unique structure of our scheme without introducing additional inference overhead. Experimental results demonstrate improved performance (i.e., increased throughput) while maintaining tolerable accuracy degradation relative to the full-precision model. 3 authors · May 20
- Resolving Discrepancies in Compute-Optimal Scaling of Language Models Kaplan et al. and Hoffmann et al. developed influential scaling laws for the optimal model size as a function of the compute budget, but these laws yield substantially different predictions. We explain the discrepancy by reproducing the Kaplan scaling law on two datasets (OpenWebText2 and RefinedWeb) and identifying three factors causing the difference: last layer computational cost, warmup duration, and scale-dependent optimizer tuning. With these factors corrected, we obtain excellent agreement with the Hoffmann et al. (i.e., "Chinchilla") scaling law. Counter to a hypothesis of Hoffmann et al., we find that careful learning rate decay is not essential for the validity of their scaling law. As a secondary result, we derive scaling laws for the optimal learning rate and batch size, finding that tuning the AdamW beta_2 parameter is essential at lower batch sizes. 5 authors · Jun 27, 2024
- On the Role of Neural Collapse in Transfer Learning We study the ability of foundation models to learn representations for classification that are transferable to new, unseen classes. Recent results in the literature show that representations learned by a single classifier over many classes are competitive on few-shot learning problems with representations learned by special-purpose algorithms designed for such problems. In this paper we provide an explanation for this behavior based on the recently observed phenomenon that the features learned by overparameterized classification networks show an interesting clustering property, called neural collapse. We demonstrate both theoretically and empirically that neural collapse generalizes to new samples from the training classes, and -- more importantly -- to new classes as well, allowing foundation models to provide feature maps that work well in transfer learning and, specifically, in the few-shot setting. 3 authors · Dec 30, 2021
33 Padding Tone: A Mechanistic Analysis of Padding Tokens in T2I Models Text-to-image (T2I) diffusion models rely on encoded prompts to guide the image generation process. Typically, these prompts are extended to a fixed length by adding padding tokens before text encoding. Despite being a default practice, the influence of padding tokens on the image generation process has not been investigated. In this work, we conduct the first in-depth analysis of the role padding tokens play in T2I models. We develop two causal techniques to analyze how information is encoded in the representation of tokens across different components of the T2I pipeline. Using these techniques, we investigate when and how padding tokens impact the image generation process. Our findings reveal three distinct scenarios: padding tokens may affect the model's output during text encoding, during the diffusion process, or be effectively ignored. Moreover, we identify key relationships between these scenarios and the model's architecture (cross or self-attention) and its training process (frozen or trained text encoder). These insights contribute to a deeper understanding of the mechanisms of padding tokens, potentially informing future model design and training practices in T2I systems. 7 authors · Jan 12 2
1 Diffusion Lens: Interpreting Text Encoders in Text-to-Image Pipelines Text-to-image diffusion models (T2I) use a latent representation of a text prompt to guide the image generation process. However, the process by which the encoder produces the text representation is unknown. We propose the Diffusion Lens, a method for analyzing the text encoder of T2I models by generating images from its intermediate representations. Using the Diffusion Lens, we perform an extensive analysis of two recent T2I models. Exploring compound prompts, we find that complex scenes describing multiple objects are composed progressively and more slowly compared to simple scenes; Exploring knowledge retrieval, we find that representation of uncommon concepts requires further computation compared to common concepts, and that knowledge retrieval is gradual across layers. Overall, our findings provide valuable insights into the text encoder component in T2I pipelines. 5 authors · Mar 9, 2024
- Artificial Intelligence, Scientific Discovery, and Product Innovation This paper studies the impact of artificial intelligence on innovation, exploiting the randomized introduction of a new materials discovery technology to 1,018 scientists in the R&D lab of a large U.S. firm. AI-assisted researchers discover 44% more materials, resulting in a 39% increase in patent filings and a 17% rise in downstream product innovation. These compounds possess more novel chemical structures and lead to more radical inventions. However, the technology has strikingly disparate effects across the productivity distribution: while the bottom third of scientists see little benefit, the output of top researchers nearly doubles. Investigating the mechanisms behind these results, I show that AI automates 57% of "idea-generation" tasks, reallocating researchers to the new task of evaluating model-produced candidate materials. Top scientists leverage their domain knowledge to prioritize promising AI suggestions, while others waste significant resources testing false positives. Together, these findings demonstrate the potential of AI-augmented research and highlight the complementarity between algorithms and expertise in the innovative process. Survey evidence reveals that these gains come at a cost, however, as 82% of scientists report reduced satisfaction with their work due to decreased creativity and skill underutilization. 1 authors · Dec 21, 2024
- A Dataset for Metaphor Detection in Early Medieval Hebrew Poetry There is a large volume of late antique and medieval Hebrew texts. They represent a crucial linguistic and cultural bridge between Biblical and modern Hebrew. Poetry is prominent in these texts and one of its main haracteristics is the frequent use of metaphor. Distinguishing figurative and literal language use is a major task for scholars of the Humanities, especially in the fields of literature, linguistics, and hermeneutics. This paper presents a new, challenging dataset of late antique and medieval Hebrew poetry with expert annotations of metaphor, as well as some baseline results, which we hope will facilitate further research in this area. 5 authors · Feb 27, 2024
- Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game While Large Language Models (LLMs) are increasingly being used in real-world applications, they remain vulnerable to prompt injection attacks: malicious third party prompts that subvert the intent of the system designer. To help researchers study this problem, we present a dataset of over 126,000 prompt injection attacks and 46,000 prompt-based "defenses" against prompt injection, all created by players of an online game called Tensor Trust. To the best of our knowledge, this is currently the largest dataset of human-generated adversarial examples for instruction-following LLMs. The attacks in our dataset have a lot of easily interpretable stucture, and shed light on the weaknesses of LLMs. We also use the dataset to create a benchmark for resistance to two types of prompt injection, which we refer to as prompt extraction and prompt hijacking. Our benchmark results show that many models are vulnerable to the attack strategies in the Tensor Trust dataset. Furthermore, we show that some attack strategies from the dataset generalize to deployed LLM-based applications, even though they have a very different set of constraints to the game. We release all data and source code at https://tensortrust.ai/paper 12 authors · Nov 2, 2023
- DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation Earth observation is a fundamental tool for monitoring the evolution of land use in specific areas of interest. Observing and precisely defining change, in this context, requires both time-series data and pixel-wise segmentations. To that end, we propose the DynamicEarthNet dataset that consists of daily, multi-spectral satellite observations of 75 selected areas of interest distributed over the globe with imagery from Planet Labs. These observations are paired with pixel-wise monthly semantic segmentation labels of 7 land use and land cover (LULC) classes. DynamicEarthNet is the first dataset that provides this unique combination of daily measurements and high-quality labels. In our experiments, we compare several established baselines that either utilize the daily observations as additional training data (semi-supervised learning) or multiple observations at once (spatio-temporal learning) as a point of reference for future research. Finally, we propose a new evaluation metric SCS that addresses the specific challenges associated with time-series semantic change segmentation. The data is available at: https://mediatum.ub.tum.de/1650201. 13 authors · Mar 23, 2022
1 ManagerTower: Aggregating the Insights of Uni-Modal Experts for Vision-Language Representation Learning Two-Tower Vision-Language (VL) models have shown promising improvements on various downstream VL tasks. Although the most advanced work improves performance by building bridges between encoders, it suffers from ineffective layer-by-layer utilization of uni-modal representations and cannot flexibly exploit different levels of uni-modal semantic knowledge. In this work, we propose ManagerTower, a novel VL model architecture that gathers and combines the insights of pre-trained uni-modal experts at different levels. The managers introduced in each cross-modal layer can adaptively aggregate uni-modal semantic knowledge to facilitate more comprehensive cross-modal alignment and fusion. ManagerTower outperforms previous strong baselines both with and without Vision-Language Pre-training (VLP). With only 4M VLP data, ManagerTower achieves superior performances on various downstream VL tasks, especially 79.15% accuracy on VQAv2 Test-Std, 86.56% IR@1 and 95.64% TR@1 on Flickr30K. Code and checkpoints are available at https://github.com/LooperXX/ManagerTower. 9 authors · May 31, 2023