new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Apr 3

PIM-GPT: A Hybrid Process-in-Memory Accelerator for Autoregressive Transformers

Decoder-only Transformer models such as GPT have demonstrated superior performance in text generation, by autoregressively predicting the next token. However, the performance of GPT is bounded by low compute-to-memory-ratio and high memory access. Throughput-oriented architectures such as GPUs target parallel processing rather than sequential token generation, and are not efficient for GPT acceleration, particularly on-device inference applications. Process-in-memory (PIM) architectures can significantly reduce data movement and provide high computation parallelism, and are promising candidates to accelerate GPT inference. In this work, we propose PIM-GPT that aims to achieve high throughput, high energy efficiency and end-to-end acceleration of GPT inference. PIM-GPT leverages DRAM-based PIM solutions to perform multiply-accumulate (MAC) operations on the DRAM chips, greatly reducing data movement. A compact application-specific integrated chip (ASIC) is designed and synthesized to initiate instructions to PIM chips and support data communication along with necessary arithmetic computations. At the software level, the mapping scheme is designed to maximize data locality and computation parallelism by partitioning a matrix among DRAM channels and banks to utilize all in-bank computation resources concurrently. We develop an event-driven clock-cycle accurate simulator to validate the efficacy of the proposed PIM-GPT architecture. Overall, PIM-GPT achieves 41-137times, 631-1074times speedup and 339-1085times, 890-1632times energy efficiency over GPU and CPU baseline, respectively, on 8 GPT models with up to 1.4 billion parameters.

Collapsible Linear Blocks for Super-Efficient Super Resolution

With the advent of smart devices that support 4K and 8K resolution, Single Image Super Resolution (SISR) has become an important computer vision problem. However, most super resolution deep networks are computationally very expensive. In this paper, we propose Super-Efficient Super Resolution (SESR) networks that establish a new state-of-the-art for efficient super resolution. Our approach is based on linear overparameterization of CNNs and creates an efficient model architecture for SISR. With theoretical analysis, we uncover the limitations of existing overparameterization methods and show how the proposed method alleviates them. Detailed experiments across six benchmark datasets demonstrate that SESR achieves similar or better image quality than state-of-the-art models while requiring 2x to 330x fewer Multiply-Accumulate (MAC) operations. As a result, SESR can be used on constrained hardware to perform x2 (1080p to 4K) and x4 (1080p to 8K) SISR. Towards this, we estimate hardware performance numbers for a commercial Arm mobile-Neural Processing Unit (NPU) for 1080p to 4K (x2) and 1080p to 8K (x4) SISR. Our results highlight the challenges faced by super resolution on AI accelerators and demonstrate that SESR is significantly faster (e.g., 6x-8x higher FPS) than existing models on mobile-NPU. Finally, SESR outperforms prior models by 1.5x-2x in latency on Arm CPU and GPU when deployed on a real mobile device. The code for this work is available at https://github.com/ARM-software/sesr.

Reduced Precision Floating-Point Optimization for Deep Neural Network On-Device Learning on MicroControllers

Enabling On-Device Learning (ODL) for Ultra-Low-Power Micro-Controller Units (MCUs) is a key step for post-deployment adaptation and fine-tuning of Deep Neural Network (DNN) models in future TinyML applications. This paper tackles this challenge by introducing a novel reduced precision optimization technique for ODL primitives on MCU-class devices, leveraging the State-of-Art advancements in RISC-V RV32 architectures with support for vectorized 16-bit floating-point (FP16) Single-Instruction Multiple-Data (SIMD) operations. Our approach for the Forward and Backward steps of the Back-Propagation training algorithm is composed of specialized shape transform operators and Matrix Multiplication (MM) kernels, accelerated with parallelization and loop unrolling. When evaluated on a single training step of a 2D Convolution layer, the SIMD-optimized FP16 primitives result up to 1.72times faster than the FP32 baseline on a RISC-V-based 8+1-core MCU. An average computing efficiency of 3.11 Multiply and Accumulate operations per clock cycle (MAC/clk) and 0.81 MAC/clk is measured for the end-to-end training tasks of a ResNet8 and a DS-CNN for Image Classification and Keyword Spotting, respectively -- requiring 17.1 ms and 6.4 ms on the target platform to compute a training step on a single sample. Overall, our approach results more than two orders of magnitude faster than existing ODL software frameworks for single-core MCUs and outperforms by 1.6 times previous FP32 parallel implementations on a Continual Learning setup.

MACPruning: Dynamic Operation Pruning to Mitigate Side-Channel DNN Model Extraction

As deep learning gains popularity, edge IoT devices have seen proliferating deployment of pre-trained Deep Neural Network (DNN) models. These DNNs represent valuable intellectual property and face significant confidentiality threats from side-channel analysis (SCA), particularly non-invasive Differential Electromagnetic (EM) Analysis (DEMA), which retrieves individual model parameters from EM traces collected during model inference. Traditional SCA mitigation methods, such as masking and shuffling, can still be applied to DNN inference, but will incur significant performance degradation due to the large volume of operations and parameters. Based on the insight that DNN models have high redundancy and are robust to input variation, we introduce MACPruning, a novel lightweight defense against DEMA-based parameter extraction attacks, exploiting specific characteristics of DNN execution. The design principle of MACPruning is to randomly deactivate input pixels and prune the operations (typically multiply-accumulate-MAC) on those pixels. The technique removes certain leakages and overall redistributes weight-dependent EM leakages temporally, and thus effectively mitigates DEMA. To maintain DNN performance, we propose an importance-aware pixel map that preserves critical input pixels, keeping randomness in the defense while minimizing its impact on DNN performance due to operation pruning. We conduct a comprehensive security analysis of MACPruning on various datasets for DNNs on edge devices. Our evaluations demonstrate that MACPruning effectively reduces EM leakages with minimal impact on the model accuracy and negligible computational overhead.

Training for temporal sparsity in deep neural networks, application in video processing

Activation sparsity improves compute efficiency and resource utilization in sparsity-aware neural network accelerators. As the predominant operation in DNNs is multiply-accumulate (MAC) of activations with weights to compute inner products, skipping operations where (at least) one of the two operands is zero can make inference more efficient in terms of latency and power. Spatial sparsification of activations is a popular topic in DNN literature and several methods have already been established to bias a DNN for it. On the other hand, temporal sparsity is an inherent feature of bio-inspired spiking neural networks (SNNs), which neuromorphic processing exploits for hardware efficiency. Introducing and exploiting spatio-temporal sparsity, is a topic much less explored in DNN literature, but in perfect resonance with the trend in DNN, to shift from static signal processing to more streaming signal processing. Towards this goal, in this paper we introduce a new DNN layer (called Delta Activation Layer), whose sole purpose is to promote temporal sparsity of activations during training. A Delta Activation Layer casts temporal sparsity into spatial activation sparsity to be exploited when performing sparse tensor multiplications in hardware. By employing delta inference and ``the usual'' spatial sparsification heuristics during training, the resulting model learns to exploit not only spatial but also temporal activation sparsity (for a given input data distribution). One may use the Delta Activation Layer either during vanilla training or during a refinement phase. We have implemented Delta Activation Layer as an extension of the standard Tensoflow-Keras library, and applied it to train deep neural networks on the Human Action Recognition (UCF101) dataset. We report an almost 3x improvement of activation sparsity, with recoverable loss of model accuracy after longer training.

Exploring the Performance Improvement of Tensor Processing Engines through Transformation in the Bit-weight Dimension of MACs

General matrix-matrix multiplication (GEMM) is a cornerstone of AI computations, making tensor processing engines (TPEs) increasingly critical in GPUs and domain-specific architectures. Existing architectures primarily optimize dataflow or operand reuse strategies. However, considering the interaction between matrix multiplication and multiply-accumulators (MACs) offers greater optimization potential. This work introduces a novel hardware perspective on matrix multiplication, focusing on the bit-weight dimension of MACs. We propose a finer-grained TPE notation using matrix triple loops as an example, introducing new methods for designing and optimizing PE microarchitectures. Based on this notation and its transformations, we propose four optimization techniques that improve timing, area, and power consumption. Implementing our design in RTL using the SMIC-28nm process, we evaluate its effectiveness across four classic TPE architectures: systolic array, 3D-Cube, multiplier-adder tree, and 2D-Matrix. Our techniques achieve area efficiency improvements of 1.27x, 1.28x, 1.56x, and 1.44x, and energy efficiency gains of 1.04x, 1.56x, 1.49x, and 1.20x, respectively. Applied to a bit-slice architecture, our approach achieves a 12.10x improvement in energy efficiency and 2.85x in area efficiency compared to Laconic. Our Verilog HDL code, along with timing, area, and power reports, is available at https://github.com/wqzustc/High-Performance-Tensor-Processing-Engines

L2MAC: Large Language Model Automatic Computer for Extensive Code Generation

Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and coherent outputs. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long output generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, an LLM-based multi-agent system, for long and consistent output generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction in turn is executed by a separate LLM agent, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate extensive outputs, bypassing the constraints of the finite context window while producing outputs that fulfill a complex user-specified task. We empirically demonstrate that L2MAC achieves state-of-the-art performance in generating large codebases for system design tasks, significantly outperforming other coding methods in implementing the detailed user-specified task; we show that L2MAC works for general-purpose extensive text-based tasks, such as writing an entire book; and we provide valuable insights into L2MAC's performance improvement over existing methods.

OpsEval: A Comprehensive IT Operations Benchmark Suite for Large Language Models

Information Technology (IT) Operations (Ops), particularly Artificial Intelligence for IT Operations (AIOps), is the guarantee for maintaining the orderly and stable operation of existing information systems. According to Gartner's prediction, the use of AI technology for automated IT operations has become a new trend. Large language models (LLMs) that have exhibited remarkable capabilities in NLP-related tasks, are showing great potential in the field of AIOps, such as in aspects of root cause analysis of failures, generation of operations and maintenance scripts, and summarizing of alert information. Nevertheless, the performance of current LLMs in Ops tasks is yet to be determined. In this paper, we present OpsEval, a comprehensive task-oriented Ops benchmark designed for LLMs. For the first time, OpsEval assesses LLMs' proficiency in various crucial scenarios at different ability levels. The benchmark includes 7184 multi-choice questions and 1736 question-answering (QA) formats in English and Chinese. By conducting a comprehensive performance evaluation of the current leading large language models, we show how various LLM techniques can affect the performance of Ops, and discussed findings related to various topics, including model quantification, QA evaluation, and hallucination issues. To ensure the credibility of our evaluation, we invite dozens of domain experts to manually review our questions. At the same time, we have open-sourced 20% of the test QA to assist current researchers in preliminary evaluations of their OpsLLM models. The remaining 80% of the data, which is not disclosed, is used to eliminate the issue of the test set leakage. Additionally, we have constructed an online leaderboard that is updated in real-time and will continue to be updated, ensuring that any newly emerging LLMs will be evaluated promptly. Both our dataset and leaderboard have been made public.

T-MAC: CPU Renaissance via Table Lookup for Low-Bit LLM Deployment on Edge

The deployment of Large Language Models (LLMs) on edge devices is increasingly important to enhance on-device intelligence. Weight quantization is crucial for reducing the memory footprint of LLMs on devices. However, low-bit LLMs necessitate mixed precision matrix multiplication (mpGEMM) of low precision weights and high precision activations during inference. Existing systems, lacking native support for mpGEMM, resort to dequantize weights for high precision computation. Such an indirect way can lead to a significant inference overhead. In this paper, we introduce T-MAC, an innovative lookup table(LUT)-based method designed for efficient low-bit LLM (i.e., weight-quantized LLM) inference on CPUs. T-MAC directly supports mpGEMM without dequantization, while simultaneously eliminating multiplications and reducing additions required. Specifically, T-MAC transforms the traditional data-type-centric multiplication to bit-wise table lookup, and enables a unified and scalable mpGEMM solution. Our LUT-based kernels scale linearly to the weight bit-width. Evaluated on low-bit Llama and BitNet models, T-MAC demonstrates up to 4x increase in throughput and 70% reduction in energy consumption compared to llama.cpp. For BitNet-b1.58-3B, T-MAC delivers a token generation throughput of 30 tokens/s with a single core and 71 tokens/s with eight cores on M2-Ultra, and 11 tokens/s on lower-end devices like Raspberry Pi 5, which significantly exceeds the adult average reading speed. T-MAC with LUT-based computing paradigm, paves the way for the practical deployment of low-bit LLMs on resource-constrained edge devices without compromising computational efficiency. The system is open-sourced at https://github.com/microsoft/T-MAC.