new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

May 29

BountyBench: Dollar Impact of AI Agent Attackers and Defenders on Real-World Cybersecurity Systems

AI agents have the potential to significantly alter the cybersecurity landscape. To help us understand this change, we introduce the first framework to capture offensive and defensive cyber-capabilities in evolving real-world systems. Instantiating this framework with BountyBench, we set up 25 systems with complex, real-world codebases. To capture the vulnerability lifecycle, we define three task types: Detect (detecting a new vulnerability), Exploit (exploiting a specific vulnerability), and Patch (patching a specific vulnerability). For Detect, we construct a new success indicator, which is general across vulnerability types and provides localized evaluation. We manually set up the environment for each system, including installing packages, setting up server(s), and hydrating database(s). We add 40 bug bounties, which are vulnerabilities with monetary awards from \10 to 30,485, and cover 9 of the OWASP Top 10 Risks. To modulate task difficulty, we devise a new strategy based on information to guide detection, interpolating from identifying a zero day to exploiting a specific vulnerability. We evaluate 5 agents: Claude Code, OpenAI Codex CLI, and custom agents with GPT-4.1, Gemini 2.5 Pro Preview, and Claude 3.7 Sonnet Thinking. Given up to three attempts, the top-performing agents are Claude Code (5% on Detect, mapping to \1,350), Custom Agent with Claude 3.7 Sonnet Thinking (5% on Detect, mapping to 1,025; 67.5% on Exploit), and OpenAI Codex CLI (5% on Detect, mapping to \2,400; 90% on Patch, mapping to 14,422). OpenAI Codex CLI and Claude Code are more capable at defense, achieving higher Patch scores of 90% and 87.5%, compared to Exploit scores of 32.5% and 57.5% respectively; in contrast, the custom agents are relatively balanced between offense and defense, achieving Exploit scores of 40-67.5% and Patch scores of 45-60%.

QwenLong-L1: Towards Long-Context Large Reasoning Models with Reinforcement Learning

Recent large reasoning models (LRMs) have demonstrated strong reasoning capabilities through reinforcement learning (RL). These improvements have primarily been observed within the short-context reasoning tasks. In contrast, extending LRMs to effectively process and reason on long-context inputs via RL remains a critical unsolved challenge. To bridge this gap, we first formalize the paradigm of long-context reasoning RL, and identify key challenges in suboptimal training efficiency and unstable optimization process. To address these issues, we propose QwenLong-L1, a framework that adapts short-context LRMs to long-context scenarios via progressive context scaling. Specifically, we utilize a warm-up supervised fine-tuning (SFT) stage to establish a robust initial policy, followed by a curriculum-guided phased RL technique to stabilize the policy evolution, and enhanced with a difficulty-aware retrospective sampling strategy to incentivize the policy exploration. Experiments on seven long-context document question-answering benchmarks demonstrate that QwenLong-L1-32B outperforms flagship LRMs like OpenAI-o3-mini and Qwen3-235B-A22B, achieving performance on par with Claude-3.7-Sonnet-Thinking, demonstrating leading performance among state-of-the-art LRMs. This work advances the development of practical long-context LRMs capable of robust reasoning across information-intensive environments.

MMMR: Benchmarking Massive Multi-Modal Reasoning Tasks

Recent advances in Multi-Modal Large Language Models (MLLMs) have enabled unified processing of language, vision, and structured inputs, opening the door to complex tasks such as logical deduction, spatial reasoning, and scientific analysis. Despite their promise, the reasoning capabilities of MLLMs, particularly those augmented with intermediate thinking traces (MLLMs-T), remain poorly understood and lack standardized evaluation benchmarks. Existing work focuses primarily on perception or final answer correctness, offering limited insight into how models reason or fail across modalities. To address this gap, we introduce the MMMR, a new benchmark designed to rigorously evaluate multi-modal reasoning with explicit thinking. The MMMR comprises 1) a high-difficulty dataset of 1,083 questions spanning six diverse reasoning types with symbolic depth and multi-hop demands and 2) a modular Reasoning Trace Evaluation Pipeline (RTEP) for assessing reasoning quality beyond accuracy through metrics like relevance, consistency, and structured error annotations. Empirical results show that MLLMs-T overall outperform non-thinking counterparts, but even top models like Claude-3.7-Sonnet and Gemini-2.5 Pro suffer from reasoning pathologies such as inconsistency and overthinking. This benchmark reveals persistent gaps between accuracy and reasoning quality and provides an actionable evaluation pipeline for future model development. Overall, the MMMR offers a scalable foundation for evaluating, comparing, and improving the next generation of multi-modal reasoning systems.

A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1

Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.

Dynamic Cheatsheet: Test-Time Learning with Adaptive Memory

Despite their impressive performance on complex tasks, current language models (LMs) typically operate in a vacuum: Each input query is processed separately, without retaining insights from previous attempts. Here, we present Dynamic Cheatsheet (DC), a lightweight framework that endows a black-box LM with a persistent, evolving memory. Rather than repeatedly re-discovering or re-committing the same solutions and mistakes, DC enables models to store and reuse accumulated strategies, code snippets, and general problem-solving insights at inference time. This test-time learning enhances performance substantially across a range of tasks without needing explicit ground-truth labels or human feedback. Leveraging DC, Claude 3.5 Sonnet's accuracy more than doubled on AIME math exams once it began retaining algebraic insights across questions. Similarly, GPT-4o's success rate on Game of 24 increased from 10% to 99% after the model discovered and reused a Python-based solution. In tasks prone to arithmetic mistakes, such as balancing equations, DC enabled GPT-4o and Claude to reach near-perfect accuracy by recalling previously validated code, whereas their baselines stagnated around 50%. Beyond arithmetic challenges, DC yields notable accuracy gains on knowledge-demanding tasks. Claude achieved a 9% improvement in GPQA-Diamond and an 8% boost on MMLU-Pro problems. Crucially, DC's memory is self-curated, focusing on concise, transferable snippets rather than entire transcript. Unlike finetuning or static retrieval methods, DC adapts LMs' problem-solving skills on the fly, without modifying their underlying parameters. Overall, our findings present DC as a promising approach for augmenting LMs with persistent memory, bridging the divide between isolated inference events and the cumulative, experience-driven learning characteristic of human cognition.

Does Chain-of-Thought Reasoning Help Mobile GUI Agent? An Empirical Study

Reasoning capabilities have significantly improved the performance of vision-language models (VLMs) in domains such as mathematical problem-solving, coding, and visual question-answering. However, their impact on real-world applications remains unclear. This paper presents the first empirical study on the effectiveness of reasoning-enabled VLMs in mobile GUI agents, a domain that requires interpreting complex screen layouts, understanding user instructions, and executing multi-turn interactions. We evaluate two pairs of commercial models--Gemini 2.0 Flash and Claude 3.7 Sonnet--comparing their base and reasoning-enhanced versions across two static benchmarks (ScreenSpot and AndroidControl) and one interactive environment (AndroidWorld). We surprisingly find the Claude 3.7 Sonnet reasoning model achieves state-of-the-art performance on AndroidWorld. However, reasoning VLMs generally offer marginal improvements over non-reasoning models on static benchmarks and even degrade performance in some agent setups. Notably, reasoning and non-reasoning VLMs fail on different sets of tasks, suggesting that reasoning does have an impact, but its benefits and drawbacks counterbalance each other. We attribute these inconsistencies to the limitations of benchmarks and VLMs. Based on the findings, we provide insights for further enhancing mobile GUI agents in terms of benchmarks, VLMs, and their adaptability in dynamically invoking reasoning VLMs. The experimental data are publicly available at https://github.com/LlamaTouch/VLM-Reasoning-Traces.

ING-VP: MLLMs cannot Play Easy Vision-based Games Yet

As multimodal large language models (MLLMs) continue to demonstrate increasingly competitive performance across a broad spectrum of tasks, more intricate and comprehensive benchmarks have been developed to assess these cutting-edge models. These benchmarks introduce new challenges to core capabilities such as perception, reasoning, and planning. However, existing multimodal benchmarks fall short in providing a focused evaluation of multi-step planning based on spatial relationships in images. To bridge this gap, we present ING-VP, the first INteractive Game-based Vision Planning benchmark, specifically designed to evaluate the spatial imagination and multi-step reasoning abilities of MLLMs. ING-VP features 6 distinct games, encompassing 300 levels, each with 6 unique configurations. A single model engages in over 60,000 rounds of interaction. The benchmark framework allows for multiple comparison settings, including image-text vs. text-only inputs, single-step vs. multi-step reasoning, and with-history vs. without-history conditions, offering valuable insights into the model's capabilities. We evaluated numerous state-of-the-art MLLMs, with the highest-performing model, Claude-3.5 Sonnet, achieving an average accuracy of only 3.37%, far below the anticipated standard. This work aims to provide a specialized evaluation framework to drive advancements in MLLMs' capacity for complex spatial reasoning and planning. The code is publicly available at https://github.com/Thisisus7/ING-VP.git.

On the Diagram of Thought

We introduce Diagram of Thought (DoT), a framework that models iterative reasoning in large language models (LLMs) as the construction of a directed acyclic graph (DAG) within a single model. Unlike traditional approaches that represent reasoning as linear chains or trees, DoT organizes propositions, critiques, refinements, and verifications into a cohesive DAG structure, allowing the model to explore complex reasoning pathways while maintaining logical consistency. Each node in the diagram corresponds to a proposition that has been proposed, critiqued, refined, or verified, enabling the LLM to iteratively improve its reasoning through natural language feedback. By leveraging auto-regressive next-token prediction with role-specific tokens, DoT facilitates seamless transitions between proposing ideas and critically evaluating them, providing richer feedback than binary signals. Furthermore, we formalize the DoT framework using Topos Theory, providing a mathematical foundation that ensures logical consistency and soundness in the reasoning process. This approach enhances both the training and inference processes within a single LLM, eliminating the need for multiple models or external control mechanisms. DoT offers a conceptual framework for designing next-generation reasoning-specialized models, emphasizing training efficiency, robust reasoning capabilities, and theoretical grounding. The code is available at https://github.com/diagram-of-thought/diagram-of-thought.

A NotSo Simple Way to Beat Simple Bench

This paper presents a novel framework for enhancing reasoning capabilities in large language models (LLMs) by leveraging iterative reasoning and feedback-driven methodologies. Building on the limitations identified in the SimpleBench benchmark, a dataset designed to evaluate logical coherence and real-world reasoning, we propose a multi-step prompting strategy coupled with global consistency checks to improve model accuracy and robustness. Through comparative analysis of state-of-the-art models, including Claude 3 Opus, Claude 3.5, GPT- 4o, and o1-preview, we demonstrate that iterative reasoning significantly enhances model performance, with improvements observed in both standard accuracy metrics (AVG@5) and a newly introduced metric, Extreme Averaging (EAG@5). Our results reveal model-specific strengths: Claude excels in maintaining logical consistency, while GPT-4o exhibits exploratory creativity but struggles with ambiguous prompts. By analyzing case studies and identifying gaps in spatial and temporal reasoning, we highlight areas for further refinement. The findings underscore the potential of structured reasoning frameworks to address inherent model limitations, irrespective of pretraining methodologies. This study lays the groundwork for integrating dynamic feedback mechanisms, adaptive restart strategies, and diverse evaluation metrics to advance LLM reasoning capabilities across complex and multi-domain problem spaces.

Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution

Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.

A Comparative Study of Open-Source Large Language Models, GPT-4 and Claude 2: Multiple-Choice Test Taking in Nephrology

In recent years, there have been significant breakthroughs in the field of natural language processing, particularly with the development of large language models (LLMs). These LLMs have showcased remarkable capabilities on various benchmarks. In the healthcare field, the exact role LLMs and other future AI models will play remains unclear. There is a potential for these models in the future to be used as part of adaptive physician training, medical co-pilot applications, and digital patient interaction scenarios. The ability of AI models to participate in medical training and patient care will depend in part on their mastery of the knowledge content of specific medical fields. This study investigated the medical knowledge capability of LLMs, specifically in the context of internal medicine subspecialty multiple-choice test-taking ability. We compared the performance of several open-source LLMs (Koala 7B, Falcon 7B, Stable-Vicuna 13B, and Orca Mini 13B), to GPT-4 and Claude 2 on multiple-choice questions in the field of Nephrology. Nephrology was chosen as an example of a particularly conceptually complex subspecialty field within internal medicine. The study was conducted to evaluate the ability of LLM models to provide correct answers to nephSAP (Nephrology Self-Assessment Program) multiple-choice questions. The overall success of open-sourced LLMs in answering the 858 nephSAP multiple-choice questions correctly was 17.1% - 25.5%. In contrast, Claude 2 answered 54.4% of the questions correctly, whereas GPT-4 achieved a score of 73.3%. We show that current widely used open-sourced LLMs do poorly in their ability for zero-shot reasoning when compared to GPT-4 and Claude 2. The findings of this study potentially have significant implications for the future of subspecialty medical training and patient care.

MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models

Recent advancements in foundation models have enhanced AI systems' capabilities in autonomous tool usage and reasoning. However, their ability in location or map-based reasoning - which improves daily life by optimizing navigation, facilitating resource discovery, and streamlining logistics - has not been systematically studied. To bridge this gap, we introduce MapEval, a benchmark designed to assess diverse and complex map-based user queries with geo-spatial reasoning. MapEval features three task types (textual, API-based, and visual) that require collecting world information via map tools, processing heterogeneous geo-spatial contexts (e.g., named entities, travel distances, user reviews or ratings, images), and compositional reasoning, which all state-of-the-art foundation models find challenging. Comprising 700 unique multiple-choice questions about locations across 180 cities and 54 countries, MapEval evaluates foundation models' ability to handle spatial relationships, map infographics, travel planning, and navigation challenges. Using MapEval, we conducted a comprehensive evaluation of 28 prominent foundation models. While no single model excelled across all tasks, Claude-3.5-Sonnet, GPT-4o, and Gemini-1.5-Pro achieved competitive performance overall. However, substantial performance gaps emerged, particularly in MapEval, where agents with Claude-3.5-Sonnet outperformed GPT-4o and Gemini-1.5-Pro by 16% and 21%, respectively, and the gaps became even more amplified when compared to open-source LLMs. Our detailed analyses provide insights into the strengths and weaknesses of current models, though all models still fall short of human performance by more than 20% on average, struggling with complex map images and rigorous geo-spatial reasoning. This gap highlights MapEval's critical role in advancing general-purpose foundation models with stronger geo-spatial understanding.

Auto-Evolve: Enhancing Large Language Model's Performance via Self-Reasoning Framework

Recent advancements in prompt engineering strategies, such as Chain-of-Thought (CoT) and Self-Discover, have demonstrated significant potential in improving the reasoning abilities of Large Language Models (LLMs). However, these state-of-the-art (SOTA) prompting strategies rely on single or fixed set of static seed reasoning modules like "think step by step" or "break down this problem" intended to simulate human approach to problem-solving. This constraint limits the flexibility of models in tackling diverse problems effectively. In this paper, we introduce Auto-Evolve, a novel framework that enables LLMs to self-create dynamic reasoning modules and downstream action plan, resulting in significant improvements over current SOTA methods. We evaluate Auto-Evolve on the challenging BigBench-Hard (BBH) dataset with Claude 2.0, Claude 3 Sonnet, Mistral Large, and GPT 4, where it consistently outperforms the SOTA prompt strategies. Auto-Evolve outperforms CoT by up to 10.4% and on an average by 7% across these four models. Our framework introduces two innovations: a) Auto-Evolve dynamically generates reasoning modules for each task while aligning with human reasoning paradigm, thus eliminating the need for predefined templates. b) We introduce an iterative refinement component, that incrementally refines instruction guidance for LLMs and helps boost performance by average 2.8% compared to doing it in a single step.

PhyX: Does Your Model Have the "Wits" for Physical Reasoning?

Existing benchmarks fail to capture a crucial aspect of intelligence: physical reasoning, the integrated ability to combine domain knowledge, symbolic reasoning, and understanding of real-world constraints. To address this gap, we introduce PhyX: the first large-scale benchmark designed to assess models capacity for physics-grounded reasoning in visual scenarios. PhyX includes 3K meticulously curated multimodal questions spanning 6 reasoning types across 25 sub-domains and 6 core physics domains: thermodynamics, electromagnetism, mechanics, modern physics, optics, and wave\&acoustics. In our comprehensive evaluation, even state-of-the-art models struggle significantly with physical reasoning. GPT-4o, Claude3.7-Sonnet, and GPT-o4-mini achieve only 32.5\%, 42.2\%, and 45.8\% accuracy respectively-performance gaps exceeding 29\% compared to human experts. Our analysis exposes critical limitations in current models: over-reliance on memorized disciplinary knowledge, excessive dependence on mathematical formulations, and surface-level visual pattern matching rather than genuine physical understanding. We provide in-depth analysis through fine-grained statistics, detailed case studies, and multiple evaluation paradigms to thoroughly examine physical reasoning capabilities. To ensure reproducibility, we implement a compatible evaluation protocol based on widely-used toolkits such as VLMEvalKit, enabling one-click evaluation.

Can Atomic Step Decomposition Enhance the Self-structured Reasoning of Multimodal Large Models?

In this paper, we address the challenging task of multimodal mathematical reasoning by incorporating the ability of "slow thinking" into multimodal large language models (MLLMs). Our core idea is that different levels of reasoning abilities can be combined dynamically to tackle questions with different complexity. To this end, we propose a paradigm of Self-structured Chain of Thought (SCoT), which is composed of minimal semantic atomic steps. Different from existing methods that rely on structured templates or free-form paradigms, our method can not only generate cognitive CoT structures for various complex tasks but also mitigates the phenomenon of overthinking. To introduce structured reasoning capabilities into visual understanding models, we further design a novel AtomThink framework with four key modules, including (i) a data engine to generate high-quality multimodal reasoning paths; (ii) a supervised fine-tuning process with serialized inference data; (iii) a policy-guided multi-turn inference method; and (iv) an atomic capability metric to evaluate the single step utilization rate. We conduct extensive experiments to show that the proposed AtomThink significantly improves the performance of baseline MLLMs, achieving more than 10\% average accuracy gains on MathVista and MathVerse. Compared to state-of-the-art structured CoT approaches, our method not only achieves higher accuracy but also improves data utilization by 5 times and boosts inference efficiency by 85.3\%. Our code is now public available in https://github.com/Quinn777/AtomThink.