new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Jul 8

CLImage: Human-Annotated Datasets for Complementary-Label Learning

Complementary-label learning (CLL) is a weakly-supervised learning paradigm that aims to train a multi-class classifier using only complementary labels, which indicate classes to which an instance does not belong. Despite numerous algorithmic proposals for CLL, their practical applicability remains unverified for two reasons. Firstly, these algorithms often rely on assumptions about the generation of complementary labels, and it is not clear how far the assumptions are from reality. Secondly, their evaluation has been limited to synthetically labeled datasets. To gain insights into the real-world performance of CLL algorithms, we developed a protocol to collect complementary labels from human annotators. Our efforts resulted in the creation of four datasets: CLCIFAR10, CLCIFAR20, CLMicroImageNet10, and CLMicroImageNet20, derived from well-known classification datasets CIFAR10, CIFAR100, and TinyImageNet200. These datasets represent the very first real-world CLL datasets, namely CLImage, which are publicly available at: https://github.com/ntucllab/CLImage\_Dataset. Through extensive benchmark experiments, we discovered a notable decrease in performance when transitioning from synthetically labeled datasets to real-world datasets. We investigated the key factors contributing to the decrease with a thorough dataset-level ablation study. Our analyses highlight annotation noise as the most influential factor in the real-world datasets. In addition, we discover that the biased-nature of human-annotated complementary labels and the difficulty to validate with only complementary labels are two outstanding barriers to practical CLL. These findings suggest that the community focus more research efforts on developing CLL algorithms and validation schemes that are robust to noisy and biased complementary-label distributions.

A molecular Ferroelectric thin film of imidazolium perchlorate on Silicon

Molecular ferroelectric materials have attracted widespread attention due to their abundant chemical diversity, structural tunability, low synthesis temperature, and high flexibility. Meanwhile, the integration of molecular ferroelectric materials and Si is still challenging, while the fundamental understanding of the ferroelectric switching process is still lacking. Herein, we have successfully synthesized the imidazole perchlorate (ImClO4) single crystals and a series of high-quality highly-oriented thin films on a Si substrate. A high inverse piezoelectric coefficient (55.7 pm/V) is demonstrated for the thin films. Two types of domain bands can be observed (in the size of a few microns): type-I band tilts ~60{\deg} with respect to the horizontal axis, while the type-II band is perpendicular to the horizontal axis. Most of the domain walls (DWs) are 180{\deg} DWs for the two bands, while some 109{\deg} DWs can also be observed. Interestingly, the DWs in type-I band are curved, charged domain walls; while the 180{\deg} DWs in type-II band are straight, noncharged domain walls. After applying +20 V for 5 s through a PFM tip, the 180{\deg} DWs in type-I band shrink first, then disconnect from the band boundary, forming a needle-like domain with a size of ~100 nm. The needle-like domain will extend toward the band boundary after an inverse bias is applied (-20 V), and expand along the band boundary after touching the boundary. Whereas for the type-II domain band, the 180{\deg} DWs are more mobile than the 109{\deg} domain walls, which displaces ~500 nm after applying +20 V. While such displacement is much shorter after the application of a negative bias for the same duration, starting from the positively poled sample. We hope to spur further interest in the on-chip design of the molecular ferroelectrics based electronic devices.

μ-Bench: A Vision-Language Benchmark for Microscopy Understanding

Recent advances in microscopy have enabled the rapid generation of terabytes of image data in cell biology and biomedical research. Vision-language models (VLMs) offer a promising solution for large-scale biological image analysis, enhancing researchers' efficiency, identifying new image biomarkers, and accelerating hypothesis generation and scientific discovery. However, there is a lack of standardized, diverse, and large-scale vision-language benchmarks to evaluate VLMs' perception and cognition capabilities in biological image understanding. To address this gap, we introduce {\mu}-Bench, an expert-curated benchmark encompassing 22 biomedical tasks across various scientific disciplines (biology, pathology), microscopy modalities (electron, fluorescence, light), scales (subcellular, cellular, tissue), and organisms in both normal and abnormal states. We evaluate state-of-the-art biomedical, pathology, and general VLMs on {\mu}-Bench and find that: i) current models struggle on all categories, even for basic tasks such as distinguishing microscopy modalities; ii) current specialist models fine-tuned on biomedical data often perform worse than generalist models; iii) fine-tuning in specific microscopy domains can cause catastrophic forgetting, eroding prior biomedical knowledge encoded in their base model. iv) weight interpolation between fine-tuned and pre-trained models offers one solution to forgetting and improves general performance across biomedical tasks. We release {\mu}-Bench under a permissive license to accelerate the research and development of microscopy foundation models.

An open-source robust machine learning platform for real-time detection and classification of 2D material flakes

The most widely used method for obtaining high-quality two-dimensional materials is through mechanical exfoliation of bulk crystals. Manual identification of suitable flakes from the resulting random distribution of crystal thicknesses and sizes on a substrate is a time-consuming, tedious task. Here, we present a platform for fully automated scanning, detection, and classification of two-dimensional materials, the source code of which we make openly available. Our platform is designed to be accurate, reliable, fast, and versatile in integrating new materials, making it suitable for everyday laboratory work. The implementation allows fully automated scanning and analysis of wafers with an average inference time of 100 ms for images of 2.3 Mpixels. The developed detection algorithm is based on a combination of the flakes' optical contrast toward the substrate and their geometric shape. We demonstrate that it is able to detect the majority of exfoliated flakes of various materials, with an average recall (AR50) between 67% and 89%. We also show that the algorithm can be trained with as few as five flakes of a given material, which we demonstrate for the examples of few-layer graphene, WSe_2, MoSe_2, CrI_3, 1T-TaS_2 and hexagonal BN. Our platform has been tested over a two-year period, during which more than 10^6 images of multiple different materials were acquired by over 30 individual researchers.

Fine-Tuning and Training of DenseNet for Histopathology Image Representation Using TCGA Diagnostic Slides

Feature vectors provided by pre-trained deep artificial neural networks have become a dominant source for image representation in recent literature. Their contribution to the performance of image analysis can be improved through finetuning. As an ultimate solution, one might even train a deep network from scratch with the domain-relevant images, a highly desirable option which is generally impeded in pathology by lack of labeled images and the computational expense. In this study, we propose a new network, namely KimiaNet, that employs the topology of the DenseNet with four dense blocks, fine-tuned and trained with histopathology images in different configurations. We used more than 240,000 image patches with 1000x1000 pixels acquired at 20x magnification through our proposed "highcellularity mosaic" approach to enable the usage of weak labels of 7,126 whole slide images of formalin-fixed paraffin-embedded human pathology samples publicly available through the The Cancer Genome Atlas (TCGA) repository. We tested KimiaNet using three public datasets, namely TCGA, endometrial cancer images, and colorectal cancer images by evaluating the performance of search and classification when corresponding features of different networks are used for image representation. As well, we designed and trained multiple convolutional batch-normalized ReLU (CBR) networks. The results show that KimiaNet provides superior results compared to the original DenseNet and smaller CBR networks when used as feature extractor to represent histopathology images.

DiffRenderGAN: Addressing Training Data Scarcity in Deep Segmentation Networks for Quantitative Nanomaterial Analysis through Differentiable Rendering and Generative Modelling

Nanomaterials exhibit distinctive properties governed by parameters such as size, shape, and surface characteristics, which critically influence their applications and interactions across technological, biological, and environmental contexts. Accurate quantification and understanding of these materials are essential for advancing research and innovation. In this regard, deep learning segmentation networks have emerged as powerful tools that enable automated insights and replace subjective methods with precise quantitative analysis. However, their efficacy depends on representative annotated datasets, which are challenging to obtain due to the costly imaging of nanoparticles and the labor-intensive nature of manual annotations. To overcome these limitations, we introduce DiffRenderGAN, a novel generative model designed to produce annotated synthetic data. By integrating a differentiable renderer into a Generative Adversarial Network (GAN) framework, DiffRenderGAN optimizes textural rendering parameters to generate realistic, annotated nanoparticle images from non-annotated real microscopy images. This approach reduces the need for manual intervention and enhances segmentation performance compared to existing synthetic data methods by generating diverse and realistic data. Tested on multiple ion and electron microscopy cases, including titanium dioxide (TiO_2), silicon dioxide (SiO_2)), and silver nanowires (AgNW), DiffRenderGAN bridges the gap between synthetic and real data, advancing the quantification and understanding of complex nanomaterial systems.