Papers
arxiv:2601.04698

TourPlanner: A Competitive Consensus Framework with Constraint-Gated Reinforcement Learning for Travel Planning

Published on Jan 8
· Submitted by
Xiaoxi Li
on Jan 13
Authors:
,
,
,
,
,
,
,

Abstract

TourPlanner addresses travel planning challenges through multi-path reasoning and constraint-gated reinforcement learning to optimize both hard and soft constraints effectively.

AI-generated summary

Travel planning is a sophisticated decision-making process that requires synthesizing multifaceted information to construct itineraries. However, existing travel planning approaches face several challenges: (1) Pruning candidate points of interest (POIs) while maintaining a high recall rate; (2) A single reasoning path restricts the exploration capability within the feasible solution space for travel planning; (3) Simultaneously optimizing hard constraints and soft constraints remains a significant difficulty. To address these challenges, we propose TourPlanner, a comprehensive framework featuring multi-path reasoning and constraint-gated reinforcement learning. Specifically, we first introduce a Personalized Recall and Spatial Optimization (PReSO) workflow to construct spatially-aware candidate POIs' set. Subsequently, we propose Competitive consensus Chain-of-Thought (CCoT), a multi-path reasoning paradigm that improves the ability of exploring the feasible solution space. To further refine the plan, we integrate a sigmoid-based gating mechanism into the reinforcement learning stage, which dynamically prioritizes soft-constraint satisfaction only after hard constraints are met. Experimental results on travel planning benchmarks demonstrate that TourPlanner achieves state-of-the-art performance, significantly surpassing existing methods in both feasibility and user-preference alignment.

Community

Paper submitter

We propose TourPlanner, a comprehensive framework featuring multi-path reasoning and constraint-gated reinforcement learning. Specifically, we first introduce a Personalized Recall and Spatial Optimization (PReSO) workflow to construct spatially-aware candidate POIs' set. Subsequently, we propose Competitive consensus Chain-of-Thought (CCoT), a multi-path reasoning paradigm that improves the ability of exploring the feasible solution space. To further refine the plan, we integrate a sigmoid-based gating mechanism into the reinforcement learning stage, which dynamically prioritizes soft-constraint satisfaction only after hard constraints are met. Experimental results on travel planning benchmarks demonstrate that TourPlanner achieves state-of-the-art performance, significantly surpassing existing methods in both feasibility and user-preference alignment.

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2601.04698 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2601.04698 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2601.04698 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.