Papers
arxiv:2508.03789

HPSv3: Towards Wide-Spectrum Human Preference Score

Published on Aug 5
· Submitted by xilanhua12138 on Aug 7
Authors:
,
,
,

Abstract

HPSv3, a human preference score using a wide-spectrum dataset and uncertainty-aware ranking loss, enhances text-to-image generation quality through iterative refinement.

AI-generated summary

Evaluating text-to-image generation models requires alignment with human perception, yet existing human-centric metrics are constrained by limited data coverage, suboptimal feature extraction, and inefficient loss functions. To address these challenges, we introduce Human Preference Score v3 (HPSv3). (1) We release HPDv3, the first wide-spectrum human preference dataset integrating 1.08M text-image pairs and 1.17M annotated pairwise comparisons from state-of-the-art generative models and low to high-quality real-world images. (2) We introduce a VLM-based preference model trained using an uncertainty-aware ranking loss for fine-grained ranking. Besides, we propose Chain-of-Human-Preference (CoHP), an iterative image refinement method that enhances quality without extra data, using HPSv3 to select the best image at each step. Extensive experiments demonstrate that HPSv3 serves as a robust metric for wide-spectrum image evaluation, and CoHP offers an efficient and human-aligned approach to improve image generation quality. The code and dataset are available at the HPSv3 Homepage.

Community

Paper submitter

We release HPSv3!

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2508.03789 in a Space README.md to link it from this page.

Collections including this paper 2