LongVie: Multimodal-Guided Controllable Ultra-Long Video Generation
Abstract
LongVie, an end-to-end autoregressive framework, addresses temporal consistency and visual degradation in ultra-long video generation through unified noise initialization, global control signal normalization, multi-modal control, and degradation-aware training.
Controllable ultra-long video generation is a fundamental yet challenging task. Although existing methods are effective for short clips, they struggle to scale due to issues such as temporal inconsistency and visual degradation. In this paper, we initially investigate and identify three key factors: separate noise initialization, independent control signal normalization, and the limitations of single-modality guidance. To address these issues, we propose LongVie, an end-to-end autoregressive framework for controllable long video generation. LongVie introduces two core designs to ensure temporal consistency: 1) a unified noise initialization strategy that maintains consistent generation across clips, and 2) global control signal normalization that enforces alignment in the control space throughout the entire video. To mitigate visual degradation, LongVie employs 3) a multi-modal control framework that integrates both dense (e.g., depth maps) and sparse (e.g., keypoints) control signals, complemented by 4) a degradation-aware training strategy that adaptively balances modality contributions over time to preserve visual quality. We also introduce LongVGenBench, a comprehensive benchmark consisting of 100 high-resolution videos spanning diverse real-world and synthetic environments, each lasting over one minute. Extensive experiments show that LongVie achieves state-of-the-art performance in long-range controllability, consistency, and quality.
Community
Controllable ultra-long video generation is a fundamental yet challenging task. Although existing methods are effective for short clips, they struggle to scale due to issues such as temporal inconsistency and visual degradation. In this paper, we initially investigate and identify three key factors: separate noise initialization, independent control signal normalization, and the limitations of single-modality guidance. To address these issues, we propose LongVie, an end-to-end autoregressive framework for controllable long video generation. LongVie introduces two core designs to ensure temporal consistency: 1) a unified noise initialization strategy that maintains consistent generation across clips, and 2) global control signal normalization that enforces alignment in the control space throughout the entire video. To mitigate visual degradation, LongVie employs 3) a multi-modal control framework that integrates both dense (e.g., depth maps) and sparse (e.g., keypoints) control signals, complemented by 4) a degradation-aware training strategy that adaptively balances modality contributions over time to preserve visual quality. We also introduce LongVGenBench, a comprehensive benchmark consisting of 100 high-resolution videos spanning diverse real-world and synthetic environments, each lasting over one minute. Extensive experiments show that LongVie achieves state-of-the-art performance in long-range controllability, consistency, and quality.
Homepage: https://vchitect.github.io/LongVie-project
Video: https://youtu.be/SOiTfdGmGEY
Github: https://github.com/Vchitect/LongVie
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- FreeLong++: Training-Free Long Video Generation via Multi-band SpectralFusion (2025)
- Hunyuan-GameCraft: High-dynamic Interactive Game Video Generation with Hybrid History Condition (2025)
- Proteus-ID: ID-Consistent and Motion-Coherent Video Customization (2025)
- Genesis: Multimodal Driving Scene Generation with Spatio-Temporal and Cross-Modal Consistency (2025)
- LoViC: Efficient Long Video Generation with Context Compression (2025)
- Training-Free Motion Customization for Distilled Video Generators with Adaptive Test-Time Distillation (2025)
- FastInit: Fast Noise Initialization for Temporally Consistent Video Generation (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper