Effective Multi-Task Learning for Biomedical Named Entity Recognition
Abstract
A novel Slot-based Recurrent Unit NER (SRU-NER) approach handles nested named entities and improves cross-domain generalization in biomedical and general-domain NER tasks.
Biomedical Named Entity Recognition presents significant challenges due to the complexity of biomedical terminology and inconsistencies in annotation across datasets. This paper introduces SRU-NER (Slot-based Recurrent Unit NER), a novel approach designed to handle nested named entities while integrating multiple datasets through an effective multi-task learning strategy. SRU-NER mitigates annotation gaps by dynamically adjusting loss computation to avoid penalizing predictions of entity types absent in a given dataset. Through extensive experiments, including a cross-corpus evaluation and human assessment of the model's predictions, SRU-NER achieves competitive performance in biomedical and general-domain NER tasks, while improving cross-domain generalization.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper