Papers
arxiv:2505.07584

SecReEvalBench: A Multi-turned Security Resilience Evaluation Benchmark for Large Language Models

Published on May 12
Authors:
,

Abstract

SecReEvalBench evaluates large language models' resilience against various adversarial prompt-based attacks, introducing new metrics and a comprehensive dataset to assess model security in different scenarios.

AI-generated summary

The increasing deployment of large language models in security-sensitive domains necessitates rigorous evaluation of their resilience against adversarial prompt-based attacks. While previous benchmarks have focused on security evaluations with limited and predefined attack domains, such as cybersecurity attacks, they often lack a comprehensive assessment of intent-driven adversarial prompts and the consideration of real-life scenario-based multi-turn attacks. To address this gap, we present SecReEvalBench, the Security Resilience Evaluation Benchmark, which defines four novel metrics: Prompt Attack Resilience Score, Prompt Attack Refusal Logic Score, Chain-Based Attack Resilience Score and Chain-Based Attack Rejection Time Score. Moreover, SecReEvalBench employs six questioning sequences for model assessment: one-off attack, successive attack, successive reverse attack, alternative attack, sequential ascending attack with escalating threat levels and sequential descending attack with diminishing threat levels. In addition, we introduce a dataset customized for the benchmark, which incorporates both neutral and malicious prompts, categorised across seven security domains and sixteen attack techniques. In applying this benchmark, we systematically evaluate five state-of-the-art open-weighted large language models, Llama 3.1, Gemma 2, Mistral v0.3, DeepSeek-R1 and Qwen 3. Our findings offer critical insights into the strengths and weaknesses of modern large language models in defending against evolving adversarial threats. The SecReEvalBench dataset is publicly available at https://kaggle.com/datasets/5a7ee22cf9dab6c93b55a73f630f6c9b42e936351b0ae98fbae6ddaca7fe248d, which provides a groundwork for advancing research in large language model security.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2505.07584 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2505.07584 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.