Papers
arxiv:2504.04152

Rethinking Multilingual Continual Pretraining: Data Mixing for Adapting LLMs Across Languages and Resources

Published on Apr 5
· Submitted by jisx on Apr 8
Authors:
,
,
,

Abstract

Large Language Models (LLMs) exhibit significant disparities in performance across languages, primarily benefiting high-resource languages while marginalizing underrepresented ones. Continual Pretraining (CPT) has emerged as a promising approach to address this imbalance, although the relative effectiveness of monolingual, bilingual, and code-augmented data strategies remains unclear. This study systematically evaluates 36 CPT configurations involving three multilingual base models, across 30+ languages categorized as altruistic, selfish, and stagnant, spanning various resource levels. Our findings reveal three major insights: (1) Bilingual CPT improves multilingual classification but often causes language mixing issues during generation. (2) Including programming code data during CPT consistently enhances multilingual classification accuracy, particularly benefiting low-resource languages, but introduces a trade-off by slightly degrading generation quality. (3) Contrary to prior work, we observe substantial deviations from language classifications according to their impact on cross-lingual transfer: Languages classified as altruistic often negatively affect related languages, selfish languages show conditional and configuration-dependent behavior, and stagnant languages demonstrate surprising adaptability under certain CPT conditions. These nuanced interactions emphasize the complexity of multilingual representation learning, underscoring the importance of systematic studies on generalizable language classification to inform future multilingual CPT strategies.

Community

Paper submitter

Large Language Models (LLMs) exhibit significant disparities in performance
across languages, primarily benefiting high-resource languages while
marginalizing underrepresented ones. Continual Pretraining (CPT) has emerged as
a promising approach to address this imbalance, although the relative
effectiveness of monolingual, bilingual, and code-augmented data strategies
remains unclear. This study systematically evaluates 36 CPT configurations
involving three multilingual base models, across 30+ languages categorized as
altruistic, selfish, and stagnant, spanning various resource levels. Our
findings reveal three major insights: (1) Bilingual CPT improves multilingual
classification but often causes language mixing issues during generation. (2)
Including programming code data during CPT consistently enhances multilingual
classification accuracy, particularly benefiting low-resource languages, but
introduces a trade-off by slightly degrading generation quality. (3) Contrary
to prior work, we observe substantial deviations from language classifications
according to their impact on cross-lingual transfer: Languages classified as
altruistic often negatively affect related languages, selfish languages show
conditional and configuration-dependent behavior, and stagnant languages
demonstrate surprising adaptability under certain CPT conditions. These nuanced
interactions emphasize the complexity of multilingual representation learning,
underscoring the importance of systematic studies on generalizable language
classification to inform future multilingual CPT strategies.

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2504.04152 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2504.04152 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2504.04152 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.