Papers
arxiv:2503.18446

Latent Space Super-Resolution for Higher-Resolution Image Generation with Diffusion Models

Published on Mar 24
· Submitted by 3587jjh on Mar 26
Authors:
,
,
,

Abstract

In this paper, we propose LSRNA, a novel framework for higher-resolution (exceeding 1K) image generation using diffusion models by leveraging super-resolution directly in the latent space. Existing diffusion models struggle with scaling beyond their training resolutions, often leading to structural distortions or content repetition. Reference-based methods address the issues by upsampling a low-resolution reference to guide higher-resolution generation. However, they face significant challenges: upsampling in latent space often causes manifold deviation, which degrades output quality. On the other hand, upsampling in RGB space tends to produce overly smoothed outputs. To overcome these limitations, LSRNA combines Latent space Super-Resolution (LSR) for manifold alignment and Region-wise Noise Addition (RNA) to enhance high-frequency details. Our extensive experiments demonstrate that integrating LSRNA outperforms state-of-the-art reference-based methods across various resolutions and metrics, while showing the critical role of latent space upsampling in preserving detail and sharpness. The code is available at https://github.com/3587jjh/LSRNA.

Community

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2503.18446 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2503.18446 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2503.18446 in a Space README.md to link it from this page.

Collections including this paper 2