AIGCodeSet: A New Annotated Dataset for AI Generated Code Detection
Abstract
AIGCodeSet distinguishes AI-generated and human-written Python code, demonstrating Bayesian classifier superiority in this task.
While large language models provide significant convenience for software development, they can lead to ethical issues in job interviews and student assignments. Therefore, determining whether a piece of code is written by a human or generated by an artificial intelligence (AI) model is a critical issue. In this study, we present AIGCodeSet, which consists of 2.828 AI-generated and 4.755 human-written Python codes, created using CodeLlama 34B, Codestral 22B, and Gemini 1.5 Flash. In addition, we share the results of our experiments conducted with baseline detection methods. Our experiments show that a Bayesian classifier outperforms the other models.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper