Papers
arxiv:2403.19559

Improving Adversarial Data Collection by Supporting Annotators: Lessons from GAHD, a German Hate Speech Dataset

Published on Mar 28
Authors:
,
,

Abstract

Hate speech detection models are only as good as the data they are trained on. Datasets sourced from social media suffer from systematic gaps and biases, leading to unreliable models with simplistic decision boundaries. Adversarial datasets, collected by exploiting model weaknesses, promise to fix this problem. However, adversarial data collection can be slow and costly, and individual annotators have limited creativity. In this paper, we introduce GAHD, a new German Adversarial Hate speech Dataset comprising ca.\ 11k examples. During data collection, we explore new strategies for supporting annotators, to create more diverse adversarial examples more efficiently and provide a manual analysis of annotator disagreements for each strategy. Our experiments show that the resulting dataset is challenging even for state-of-the-art hate speech detection models, and that training on GAHD clearly improves model robustness. Further, we find that mixing multiple support strategies is most advantageous. We make GAHD publicly available at https://github.com/jagol/gahd.

Community

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 2

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2403.19559 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.