Papers
arxiv:2402.04408

Detection Transformer for Teeth Detection, Segmentation, and Numbering in Oral Rare Diseases: Focus on Data Augmentation and Inpainting Techniques

Published on Feb 6, 2024
Authors:
,
,
,
,
,

Abstract

In this work, we focused on deep learning image processing in the context of oral rare diseases, which pose challenges due to limited data availability. A crucial step involves teeth detection, segmentation and numbering in panoramic radiographs. To this end, we used a dataset consisting of 156 panoramic radiographs from individuals with rare oral diseases and labeled by experts. We trained the Detection Transformer (DETR) neural network for teeth detection, segmentation, and numbering the 52 teeth classes. In addition, we used data augmentation techniques, including geometric transformations. Finally, we generated new panoramic images using inpainting techniques with stable diffusion, by removing teeth from a panoramic radiograph and integrating teeth into it. The results showed a mAP exceeding 0,69 for DETR without data augmentation. The mAP was improved to 0,82 when data augmentation techniques are used. Furthermore, we observed promising performances when using new panoramic radiographs generated with inpainting technique, with mAP of 0,76.

Community

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2402.04408 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2402.04408 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2402.04408 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.