Papers
arxiv:2309.04542

Examining Autoexposure for Challenging Scenes

Published on Sep 8, 2023
Authors:
,

Abstract

Autoexposure (AE) is a critical step applied by camera systems to ensure properly exposed images. While current AE algorithms are effective in well-lit environments with constant illumination, these algorithms still struggle in environments with bright light sources or scenes with abrupt changes in lighting. A significant hurdle in developing new AE algorithms for challenging environments, especially those with time-varying lighting, is the lack of suitable image datasets. To address this issue, we have captured a new 4D exposure dataset that provides a large solution space (i.e., shutter speed range from (1/500 to 15 seconds) over a temporal sequence with moving objects, bright lights, and varying lighting. In addition, we have designed a software platform to allow AE algorithms to be used in a plug-and-play manner with the dataset. Our dataset and associate platform enable repeatable evaluation of different AE algorithms and provide a much-needed starting point to develop better AE methods. We examine several existing AE strategies using our dataset and show that most users prefer a simple saliency method for challenging lighting conditions.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2309.04542 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2309.04542 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2309.04542 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.